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Abstract—We propose an inter-disciplinary approach to particle
swarm optimization (PSO) by establishing a molecular dynamics (MD)
formulation of the algorithm, leading to a physical theory for the
swarm environment. The physical theory provides new insights on
the operational mechanism of the PSO method. In particular, a
thermodynamic analysis, which is based on the MD formulation,
is introduced to provide deeper understanding of the convergence
behavior of the basic classical PSO algorithm. The thermodynamic
theory is used to propose a new acceleration technique for the PSO.
This technique is applied to the problem of synthesis of linear array
antennas and very good improvement in the convergence performance
is observed. A macroscopic study of the PSO is conducted by
formulating a diffusion model for the swarm environment. The
Einstein’s diffusion equation is solved for the corresponding probability
density function (pdf) of the particles trajectory. The diffusion
model for the classical PSO is used, in conjunction with Schrödinger’s
equation for the quantum PSO, to propose a generalized version of the
PSO algorithm based on the theory of Markov chains. This unifies the
two versions of the PSO, classical and quantum, by eliminating the
velocity and introducing position-only update equations based on the
probability law of the method.

1. INTRODUCTION

There is a close connection between the evolution of the dynamical
variables in physical systems and optimization. It has been known
since two hundred years that the law of motion in Newtonian mechanics
can be obtained by minimizing certain functional called the “action.”



172 Mikki and Kishk

Moreover, with the invention of the path integral formalism by Richard
Feynman in the last century, we now know that quantum phenomena
can also be described by the very same approach [1]. It turns out that
most of the known physical processes can be intimately related to some
sort of “critical” or deeper variational problem: The optimum of this
problem leads to the equations of motion in an elegant and neat way.

Although this has been known for a long time, optimization is
still considered in physics, applied mathematics, and engineering, as
a tool used to solve some difficult practical or theoretical problems.
For example, the use of optimization codes in engineering problems
is mainly due to our inability to find a desired solution in reasonable
time. Optimization methods provides then a faster “search” for the
best performance of the system of interest. However, optimization
and physical systems are really two different ways to describe the
same thing. If any particle moves in the trajectory that minimizes
the action of the problem, then the search for the optimum of the
functional (objective function) is equivalent to find the equations of
motion of the particle. Our point of view is that if a more formal
analogy between physical systems and optimization algorithms can be
constructed on the fundamental level, then deeper insights on both
theoretical physics and the algorithm itself can be obtained.

The main purpose of this paper is twofold. First, we take
the particle swarm optimization (PSO) algorithm as a case study,
or a toy model, to study how a Lagrangian formulation of this
global optimization strategy can be constructed. This will motivate
some of the tuning parameters that were introduced by the heuristic
optimization community based on an intuition that is not directly
related to the physical nature of the problem. Also, the Lagrangian
formalism will reveal new hidden aspects in the algorithm. For
example, we will show that the basic PSO algorithm lacks any
“electromagnetic” nature. Particles are not electrically charged and
hence do not radiate. However, the general formalism can provide
some insights on how to add this electromagnetic behavior to the
algorithm in future studies. The most interesting insight, however,
is the possibility of looking to both the classical and quantum versions
of the PSO algorithm as different manifestations of a single underlying
Markov process, a view that is currently revived in theoretical physics.

Second, this work aims to introduce new inter-disciplinary
perspectives for the artificial intelligence (AI) and evolutionary
computing (EC) communities. While EC methods, generally referred
to as heuristic, work very well with complicated problems [2–5], still
little is known about the fundamental mechanisms responsible for
the satisfactory performance of the technique. Although the social
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intelligence point of view has been emphasized considerably in the
PSO literature, it seems that the treatment so far is still conventional
in the sense of working with interpretations based on the previously
established literature of the GA [7]. The main thrust behind EC and
AI strategies is the inspiration by nature, where in the case of AI
nature is the human mind, while in EC it is the evolutionary paradigm.
Therefore, it looks plausible to continue following this original impulse
by allowing for further analogies inspired by similarities with other
non-biological natural phenomena. It is the hope of the authors of
this work that the utilization of concepts that are totally outside the
traditional AI literature may illuminates new routes in studying the
problem of foundations of EC methods.

In this paper, we introduce a new view on the PSO algorithm
that is based on physics, rather than artificial intelligence (AI) or
evolutionary computing (EC). The purpose of this analogy is to
further enhance the understanding of how the algorithm works and
to provide new tools for the study of the dynamics of the method.
The basic idea is to observe the close similarity between a swarm of
particles, communicating with each other through individual and social
knowledge, and a collection of material particles interacting through a
classic Newtonian field. In particular, molecular dynamics (MD) will
be studied in connection to the PSO environment. Various relations
and analogies will be established and illustrated through this article.

Particle swarm optimization (PSO) is a global search strategy that
can handle difficult optimization problems. Since its introduction at
1995 [6], the PSO algorithm was refined and extended [3–5] to enhance
its performance in many practical problems, including engineering
electromagnetics [10–12]. The method proved to work successfully with
standard test functions and practical engineering problems. It has been
claimed that the PSO represents a new trend in artificial intelligence
and soft computing, in which intelligence appears as an emergent
behavior from the social dynamic interactions between swarm members
[7]. To date, the work in [7] is still the only major study that providing
comprehensive and in-depth analysis of why and how the algorithm
works. However, the main theme introduced there is the evolutionary
perspective and the new paradigm of social psychology, in which the
individual behavior is understood through the collective interactions
level. Little has been done in investigating the possible connections
between the PSO algorithms, in its social intelligence context, with
fundamental physics, like Newtonian mechanics and quantum theory.
Of special importance is the recent work on quantum versions of the
PSO in which the laws of physics, Schrodinger’s equation in this
case, were employed directly in the formulation [13–15]. While the
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incorporation of physics in the quantum version was self-evident and
fundamental, the situation with the classical PSO algorithm looks
very different. Indeed, the laws of physics were not introduced as
indispensable means to understand how the algorithm works. Provided
that it is still possible to keep the social knowledge point of view in the
picture, an analysis of the problem, which is inspired by fundamental
physics, can reveal some hidden aspects and open the door for new
perspective in the problem of foundations of evolutionary computing.

This paper is organized as follow. First, we review the basic
procedure of the classical PSO in order to prepare for the mathematical
treatment of the next sections. Second, a formal analogy between the
PSO and MD is established by deriving the corresponding equivalent
mechanical force acting on the particle in the PSO. The resulting
equations are discretized to produce the equations of motion. Third,
based on this analogy, the thermodynamic performance of the method
is studied by defining effective macroscopic dynamic observables, like
the swarm temperature, and then investigating their behavior. Fourth,
a new acceleration technique is proposed based on the thermodynamic
analysis presented before. The new method is applied to the problem
of synthesis of linear array antennas. Fifth, a fully macroscopic
formulation of the classical PSO is proposed by constructing a diffusion
model for the particle swarm environment. Sixth, based on the
knowledge of the pdf of the particle trajectory, a generalized version
of the PSO method is proposed based on the theory of Markov chains.
Finally, conclusions and suggestions for future work are given.

2. REVIEW OF THE PSO ALGORITHM

We start with an N -dimensional vector space RN . A population of M
particles is assumed to evolve in this space such that each particle is
assigned the following position and velocity vectors, respectively

ri(t) =
[
r1(t) r2(t) . . . rN (t)

]T (1)

vi(t) =
[
v1(t) v2(t) . . . vN (t)

]T (2)

where T is the transpose operator and i ∈ {1, 2, ...,M}.
In addition to these dynamic quantities, we postulate two memory

locations encoded in the variables pi,L
n , the local best of the ith particle,

and pg
n, the global best, both for the nth dimension. The basic idea

of the classical PSO algorithm is the clever exchange of information
about the global and local best values. This exchange is accomplished
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by the following two equations

vi
n(t+ ∆t) = w vi

n(t)+c1ϕ1

[
pi,L

n − xi
n(t)

]
∆t+c2ϕ2

[
pg

n − xi
n(t)

]
∆t
(3)

rin(t+ ∆t) = rin(t) + ∆t vi
n(t) (4)

where n ∈ {1, 2, ..., N}; ∆t is the time step; c1 and c2 are the
cognitive and social factors, respectively; ϕ1 and ϕ2 are two statistically
independent random variables uniformly distributed between 0 and 1;
w is the inertia factor. More in-depth details on the PSO method can
be found in [7–9].

It has been shown in [8] that in order for the basic PSO algorithm
(w = 1) to converge, all particles must approach the location Pi given
by

P i
n =

1
ϕ1 + ϕ2

(
ϕ1p

i,L
n + ϕ2p

g
n

)
(5)

It is understood in equations (3)–(5) that for each dimension n the
random number generators of ϕ1 and ϕ2 are initialized with different
seeds. The convergence of the PSO algorithm to the location (5) can be
guaranteed by proper tuning of the cognitive and social parameters of
the algorithm [8]. To prevent explosion of the particles in the classical
PSO, a maximum velocity Vmax is introduced in each dimension to
confine swarm members inside the boundary walls of the domain of
interest. Also, the inertia factor w is decreased linearly during the
algorithm run in order to enhance the convergence performance [7].

3. MOLECULAR DYNAMICS FORMULATION

The main goal of molecular dynamics (MD) is to simulate the state
of a system consisting of very large number of molecules. A true
consideration of such systems requires applying quantum-theoretic
approach. However, the exact description of the quantum states
requires solving the governing Schrödinger’s equations, a task that is
inherently impossible for many-particle systems [16]. Alternatively,
MD provides a short cut that can lead to accurate results in spite of
the many approximations and simplifications implied in its procedure
[18].

MD is based on calculating at each time step the positions and
velocities, for all particles, by direct integration of the equations of
motions. These equations are constructed basically from a classical
Lagrangian formalism in which interactions between the particles are
assumed to follow certain potential functions. The determination of the
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specific form of these potentials depends largely on phenomenological
models and/or quantum-theoretic considerations.

Besides MD, there are in general three other methods to study the
evolution of large number of particles: Quantum mechanics, statistical
mechanics, and Mont Carlo [18]. However, MD is preferred in our
context over the other methods because it permits a direct exploitation
of the structural similarities between the discrete form of the update
equations of the PSO algorithm and the Lagrangian formalism.

3.1. Conservative PSO Environments

In order to formally construct the analogy between PSO and
Newtonian mechanics, we consider a set of M identical particles,
each with mass m, interacting with each other. We start first by a
conservative system described by a Lagrangian function given by

L
(
ri, ṙi

)
=

M∑
i=1

1
2
m ṙi · ṙi − U

(
r1, r2, · · ·, rM

)
(6)

where ri and ṙi = vi are the position and velocity of the ith particle,
respectively. U is the potential function, describing the intrinsic
strength (energy) of the spatial locations of the particle in the space.
The equations of motion can be found by searching for the critical
value for the action integral

S =
t2∫

t1

L
(
r1, r2, ..., rM ; ṙ1, ṙ2, ..., ṙM

)
dt (7)

where t1 and t2 are the initial and final times upon which the boundary
of the trajectory is specified. The solution for this “optimization”
problem is the Euler-Lagrange equation

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0 (8)

Equations (6) and (8) lead to

ai = v̇i = r̈i =
Fi

m
(9)

where Fi is the mechanical force acting on the ith particle in the
swarm and ai is its resulted acceleration. The mechanical force can
be expressed in terms of the potential function U as follows

Fi = − ∂

∂ri
U

(
r1, r2, ..., rM

)
(10)
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Equations (6)–(10) represents a complete mechanical description
of the particle swarm evolution; it is basically a system of continuous
ordinary differential equations in time. To map this continuous version
to a discrete one, like the PSO in (3) and (4), we consider the Euler-
Cauchy discretization scheme [19]. It is possible to write the equations
of motion in discrete time as

v (k∆t) = v ((k − 1) ∆t) + ∆ta (k∆t) (11)
r (k∆t) = r ((k − 1) ∆t) + ∆tv (k∆t) (12)

where �t is the time step of integration.
By comparing equation (3) and (4) to (11) and (12), it can be

concluded that the PSO algorithm corresponds exactly to a swarm of
classical particles interacting with a field of conservative force only if
w = 1, which corresponds to the basic form of the PSO algorithm
originally proposed in [6]. The acceleration is given by the following
compact vector form

ai (k∆t) = Φ̄
[
Pi − ri (k∆t)

]
(13)

where Φ̄ is a diagonal matrix with the non-zero elements drawn from a
set of mutually exclusive random variables uniformly distributed from
0 to 1.

The integer k ∈ {1, 2, ..., Nitr}, where Nitr is the total number
of iterations (generations), represents the time index of the current
iteration. Thus, the force acting on the ith particle at the kth time
step is given by

Fi (k∆t) = m Φ̄
[
Pi − ri (k∆t)

]
(14)

Equation (14) can be interpreted as Hooke’s law. In the PSO
algorithm, particles appear to be driven by a force directly proportional
to the displacement of their respective positions with respect to some
center given by (5). Thus, for each particle there exists an equivalent
mechanical spring with an anisotropic Hooke’s tensor equal to mΦ̄.
Figure 1 illustrates this analogy.

The mass of the particle appearing in equation (14) can be
considered as an extra parameter of the theory that can be chosen
freely. This is because the basic scheme of the PSO method assumes
point-like particles. Therefore, we will choose the mass m such that
the simplest form of the quantities of interest can be obtained.

3.2. Philosophical Discussion

The main idea in the proposed connection between the PSO algorithm
and the physical system descried by the Lagrangian (6) is to shift all
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Figure 1. A 3-D illustration of the mechanical analogy to the PSO.
The ith particle will experience a mechanical force identical to a spring
with one end attached to the position and the other end attached to
the particle’s itself.

of the ‘randomness’ and social intelligence (represented by p) to the
law of force acting on particles in a way identical to Newton’s law in
its discrete-time form. This is as if there exists a hypothetical Grand
Observer who is able to monitor the motion of all particles, calculates
the global and local best, average them in a way that looks random
only to other observers, and then apply this force to the particles
involved. Obviously, this violates relativity in which nothing can travel
faster than the speed of light but Newtonian mechanics is not local in
the relativistic sense. The assumption of intelligence is just the way
the mechanical force is calculated at each time instant. After that,
the system responds in its Newtonian way. There is no restriction in
classical mechanics to be imposed on the force. What makes nature
rich and diverse is the different ways in which the mechanical law of
force manifests itself in Newton’s formalism. In molecular dynamics
(MD), it is the specific (phenomenological) law of force what makes
the computation a good simulation of the quantum reality of atoms
and molecules.

However, on a deeper level, even this Grand Observer who
monitor the performance of the PSO algorithm can be described
mathematically. That is, by combining equations (10) and (14), we
get the following differential equation for the potential U

∂U

∂ri
+m Φ̄

(
Pi − ri

)
= 0 (15)

The reason why we did not attempt to solve this equation is the
fact that P , as defined in (5), is a complicated function of the positions
of all particles, which enforces on us the many-body interaction theme.
Also, the equation cannot be solved uniquely since we know only
the discrete values of P , while an interpolation/extrapolation to the
continuous limit is implicit in the connection we are drawing between
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the PSO algorithm and the physical system. Moreover, since P is not a
linear function of the interaction between particles, then equation (15)
is a complex many-body nonlinear equation. While it can be solved
in principle, the nonlinearity may produce very complicated patterns
that look random (chaos) because of the sensitivity to the precision in
the initial conditions. However, all of this does not rule out the formal
analogy between the PSO and the Lagrangian physical system, at least
on the qualitative level. In the remaining parts of this paper, we will
take U to represents some potential function with an explicit form that
is not known to us, and actually not very important in relation to the
conclusions and results presented here.

Regarding to the appearance of random number generators in the
law of force (13), few remarks are given here. It should be clear that
a Newtonian particle moves in a deterministic motion because of our
infinite-precision knowledge of the external force acting on it, its mass,
and the initial conditions. According to F = ma, if m is known
precisely, but F is random (let us say because of some ignorance in
the observer state), then the resulting trajectory will look random.
However, and this is the key point, the particle does not cease to be
Newtonian at all! What is Newtonian, anyhow, is the dynamical law
of motion, not the superficial, observer-dependent, judgment that the
motion looks random or deterministic with respect to his knowledge.

This can be employed to reflect philosophically on the nature
of the term ‘intelligence.’ We think that any decision-making must
involve some sort of ignorance or state of lack of knowledge. Otherwise,
AI can be formulated as a purely computational system (eventually
by a universal Turing machine). However, the controversial view
that such automata can ultimately describe the human mind was
evacuated from our discussion at the beginning by pushing the social
intelligence P to the details of the external mechanical force law, and
then following the consequences that can be derived by considering that
the particles respond in a Newtonian fashion. We are fully aware that
no proof about the nature of intelligence was given here in the rigorous
mathematical sense, although something similar has been attempted
in literature [21].

To summarize, the social and cognitive knowledge are buried in
the displacement origin Pi, from which the entire swarm will develop
its intelligent behavior and search for the global optimum within the
fitness landscape. The difficulty in providing full analysis of the PSO
stems from the fact that the displacement center Pi is varying with
each time step and for every particle according to the information of
the entire swarm, rendering the PSO inherently a many-body problem
in which each particle interacts with all the others.
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3.3. Nonconservative (Dissipative) PSO Environments

It is important to state that for the transformation between the PSO
and MD, as presented by equation (13), to be exact, the inertia factor w
was assumed to be unity. However, as we pointed out in Section 2, for
satisfactory performance of the PSO algorithm in real problems one
usually reverts to the strategy of linearly decreasing w to a certain
lower value. In this section, we will study in details the physical
meaning of this linear variation.

The velocity equation for the PSO is given by

vi (k∆t) = wvi ((k − 1) ∆t) + Φ̄
[
Pi ((k − 1) ∆t) − xi ((k − 1) ∆t)

]
∆t

(16)
Thus, by rearranging terms we can write

vi (k∆t) − vi ((k − 1) ∆t)
∆t

= −1 − w (t)
∆t

vi ((k − 1) ∆t)

+Φ̄
[
Pi ((k − 1) ∆t) − xi ((k − 1) ∆t)

] (17)

Here w = w(t) refers to a general function of time (linear variation is
one common example in the PSO community). By taking the limit
when ∆t −→ 0 we find

ai (t) = βvi (t) + Φ̄
[
Pi (t) − xi (t)

]
(18)

where
β = lim

∆t→0

w (t) − 1
∆t

(19)

Comparing equation (13) with (18), it is clear that the
conservative Lagrangian in (6) cannot admit a derivation of the PSO
equation of motion when w is different from unity; there exists a term
proportional to velocity that does not fit with Newton’s second law as
stated in (9).

This problem can be solved by considering the physical meaning
of the extra terms. For a typical variation of w starting at unity and
ending at some smaller value (typically in the range 0.2–0.4, depending
on the objective function), then we find from (19) that β is negative.
That is, since the total force is given by the product of the acceleration
ai in (18) and the mass m, then it seems that the term βvi counts for
“friction” in the system that tends to lower the absolute value of the
velocity as the particles evolve in time. In other words, w amounts
to a dissipation in the system with strength given by the factor β.
This explains why the conservative Lagrangian failed to produce the
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equations of motion in this particular case since the system is actually
nonconservative.

Fortunately, it is still possible to employ a modified version
of the Lagrangian formalism to include the dissipative case in our
general analogy to physical systems. To accomplish this, we split
the Lagrangian into two parts. The first is L′, which represents the
conservative part and consists of the difference between kinetic and
potential energy as in (6) and repeated here for convenience

L′ =
1
2

∑
i

m ẋi · ẋi − U (20)

where the potential energy is function of the positions only.
The second part, L′′, accounts for the nonconservative or

dissipative contribution to the system. Following [22], we write

L′′ =
1
2

∑
i

βiẋi · ẋi +
1
2

∑
i

γiẍi · ẍi (21)

Here βi represents the Rayleigh losses in the system and is similar
to friction or viscosity. The second term that contains γi accounts
for radiation losses in the system. For example, if the particles
are electrically charged, then any nonzero acceleration will force the
particle to radiate an electromagnetic wave that carries away part of
the total mechanical energy of the system, producing irreversible losses
and therefore dissipation. Both ofm and γ are assumed to be constants
independent of time but this is not necessary for βi. Moreover, the
conservative Lagrangian L′ has the dimensions of energy while the
nonconservative part L′′ has the units of power.

The equation of motion for the modified Lagrangian is given by
[22] {

∂L′′

∂ẋi
− d

dt

∂L′′

∂ẍi

}
−

{
∂L′

∂xi
− d

dt

∂L′

∂ẋi

}
= 0 (22)

By substituting (20) and (21) to (22), we get

−γi
d

dt
ẍi +mẍi + βiẋi = − ∂U

∂xi
(23)

Comparing (23) with (18), we immediately find

γi = 0 (24)

and
βi = −mβ = m lim

∆t→0

1 − w (t)
∆t

(25)
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where equation (15) has been used.
The result (24) means that there is no electromagnetic radiation

in the PSO environment. One can say that the idealized particles in
the PSO algorithm do not carry electric charge. However, it is always
possible to modify the basic PSO to introduce new parameters. One
of the main advantages of constructing a physical theory is to have
an intuitive understanding of the meaning of tuning parameters in the
algorithm. We suggest considering the idea of adding an electric charge
to the particles in the algorithm and investigate whether this may lead
to an improvement in the performance or not.

Equation (25) amounts to a connection between the physical
parameter β, the Rayleigh constant of friction, and a tuning parameter
in the PSO algorithm, w. This motivates the idea behind slowly
decreasing the inertia w during convergence. As w(t) decreases, β(t)
increases, which means that the dissipation of the environment will
increase leading to faster convergence. From this discussion we see
that the common name attributed to w is slightly misleading. From
the mechanical point of view, inertia is related to the mass m while
w controls the dissipation or the friction of the system. We suggest
then calling w the ‘friction constant’ or the ‘dissipation constant’ of
the PSO algorithm.

The fact that the system is dissipative when w is less than
unity may lead to some theoretical problems in the next sections,
especially those related to thermodynamic equilibrium. However, a
careful analysis of the relative magnitudes of the ‘friction force’ and the
‘PSO force’ in (23) shows that for a typical linear variation of w from
0.9 to 0.2, the friction becomes maximum at the final iteration, most
probably when the algorithm has already converged to some result.
At the beginning of the run, the friction is minimum while particles
are expected to be ‘reasonably’ away from the local and global bests;
that is, the difference ϕ(x − p) is large compared to βv. This means
that as the algorithm evolves to search for the nontrivial optima, the
friction is not very significant. It becomes so only at the final iterations
when β in (19) is already large compared to the PSO force (14).
This explains why we have to be careful in choosing w; specifically,
if the dissipation is increasing faster than the “intelligent” PSO force,
immature convergence will occur and the algorithm will not be able
to catch the global optimum. Based on this discussion, we will always
assume that w(t) is chosen to vary with time “wisely” (i.e., by insuring
that immature convergence is avoided). Therefore, we will ignore the
effect of dissipation and treat the PSO as a collection of perfectly
Newtonian particles interacting in conservative environment. Further
results and studies in the remaining sections confirm this assumption.
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4. EXTRACTION OF INFORMATION FROM SWARM
DYNAMICS

The dynamic history of a swarm of particles is completely defined either
by the system of equations (3) and (4) for the PSO, or (6)–(13) for
MD. The two representations are equivalent, where the transformation
between one to the other is obtained by the mapping in (13). After
finishing the simulation, we will end up with a set of M trajectories,
each describing the successive velocities (momentums) and positions of
one particle during the course of time. Any trajectory is assumed to be
one-dimensional surface in an abstract 2MN -dimensional vector space.
We assume that this space forms a manifold through the adopted
coordinate system and call it the phase space of the swarm system.

Let us write the trajectory of the ith particle as

Γi (t) =
{(

ri (t) ,pi
m (t)

)
, ∀t ∈ It

}
(26)

in the continuous form and

Γi (k) =
{(

ri (k∆t) ,pi
m (k∆t)

)}Nitr

k=1
(27)

for the discrete case. Here It is the continuous time interval of the
simulation and Nitr is the number of iterations. The swarm dynamic
history of either the MD or the PSO can be defined as the set of all
particles trajectories obtained after finishing the simulation

Γ̄ (t) =
{
Γi (t)

}M

i=1
(28)

One of the main objectives of this article is to provide new
insight on how the classical PSO algorithm works by studying different
quantities of interest. We define any dynamic observable of the swarm
dynamics to be a smooth function of the swarm dynamic history Γ̄ (t).
That is, the general form of a dynamic property (observable) will be
written as

AΦ (t) = ΦΓ̄ (t) (29)

where Φ is a sufficiently smooth operator.
The PSO is inherently a stochastic process as can be inferred

from the basic equations (3) and (4). Moreover, we will show later
that a true description of MD must rely on statistical mechanical
considerations where the particle’s trajectory is postulated as a
stochastic process. Therefore, single evaluation of a dynamic property,
as defined in (29), cannot reflect the qualitative performance of interest.
Instead, some sort of averaging is required in order to get reasonable
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results. We introduce here two types of averages. The first one is the
time average defined as

〈AΦ〉 = lim
T→∞

1
T

t0+T∫
t0

AΦ (t) dt (30)

and

〈AΦ〉 =
1
Nitr

Nitr∑
k=1

AΦ (k) (31)

for continues and discrete systems, respectively. An important
assumption usually invoked in MD simulations is that an average over
finite interval should estimate the infinite integration/summation of
(31) [16]. Obviously, this is because any actual simulation interval
must be finite. The validity of this assumption can be justified on
the basis that the number of time steps in MD simulations is large.
However, no such restriction can be imposed in the PSO solutions
because in engineering applications, especially real-time systems, the
number of iterations must be kept as small as possible to facilitate
good performance in short time intervals. Therefore, instead of time
averages, we will invoke the ensemble average, originally introduced
in statistical mechanics. We denote the ensemble average, or expected
value, of a dynamic observable AΦ as E[AΦ]. It is based on the fact that
our phase space is endowed with a probability measure so meaningful
probabilities can be assigned to outcomes of experiments performed in
this space. Moreover, if the system that produced the swarm dynamics
in (28) is ergodic, then we can equate the time average with ensemble
average. In other words, under the ergodic hypothesis we can write
[16, 20]

〈AΦ〉 = E [AΦ] (32)

Therefore, by assuming that the ergodicity hypothesis is satisfied,
one can always perform ensemble average whenever a time average
is required. Such assumption is widely used in MD and statistical
physics [16, 18]. However, in the remaining parts of this paper we
employ ensemble average, avoiding therefore the controversial opinion
of whether all versions of the PSO algorithm are strictly ergodic or
not. Moreover, the use of ensemble average is more convenient when
the system under consideration is dissipative.
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5. THERMODYNAMIC ANALYSIS OF THE PSO
ENVIRONMENT

5.1. Thermal Equilibrium

Thermal equilibrium can be defined as the state of a system of
molecules in which no change of the macroscopic quantities occurs
with time. This means that either all molecules have reached a
complete halt status (absolute zero temperature), or that averages
of the macroscopic variables of interest don’t change with time. To
start studying the thermal equilibrium of a swarm of particles, we will
employ the previous formal analogy between the PSO and classical
Newtonian particle environments to define some quantities of interest,
which will characterize and enhance our understanding of the basic
mechanism behind the PSO.

In physics, the temperature of a group of interacting particles is
defined as the average of the kinetic energies of all particles. Based
on kinetic theory, the following expression for the temperature can be
used [16]

T (t) =
1
M

m

NkB

M∑
i=1

|vi (t)|2 (33)

where kB is Boltzmann’s constant and for the conventional 3-
dimensional space we have N = 3. Analogously, we define the particle
swarm temperature as

T (t) = E

[
1
M

M∑
i=1

|vi (t)|2
]

(34)

where without any loss of generality the particle’s mass is assumed to
be

m = NkB (35)

Since there is no exact a priori knowledge of the statistical
distribution of particles at the off-equilibrium state, the expected value
in (34) must be estimated numerically. We employ the following
estimation here

T (t) =
1
MB

B∑
j=1

M∑
i=1

∣∣∣vj
i (t)

∣∣∣2 (36)

where B is the number of repeated experiment. In the j th run, the
velocities vj

i (t), i = 1, 2, ..,M, are recorded and added to the sum.
The total result is then averaged over the number of runs. The
initial positions and velocities of the particles in the PSO usually
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follow a uniformly random distribution. At the beginning of the PSO
simulation, the particles positions and velocities are assigned random
values. From the kinetic theory of gases point of view, this means
that the initial swarm is not at the thermal equilibrium. The reason
is that for thermal equilibrium to occur, particles velocities should be
distributed according to Maxwell’s distribution [16], which is, strictly
speaking, a Gaussian probability distribution. However, since there
is in general no prior knowledge about the location of the optimum
solution, it is customary to employ the uniformly random initialization.

In general, monitoring how the temperature evolves is not enough
to determine if the system had reached an equilibrium state. For
isolated systems, a sufficient condition to decide whether the system
has reached macroscopically the thermal equilibrium state is to achieve
maximum entropy. However, the calculation of entropy is difficult
in MD [16]. Usually MD simulations produce automatically many
macroscopic quantities of interest; by monitoring all of them, it is
possible to decide whether the system had reached equilibrium or
not. However, in the basic PSO algorithm there are no corresponding
quantities of interest. What we need is really one or two auxiliary
quantities that can decide, with high reliably, if the system has
converged to the steady thermal state. Fortunately, such a measure
is available in literature in a form called the α-factor. We employ the
following thermal index [17]

α (t) =
1
B

B∑
j=1

1
M

M∑
i=1

∥∥∥vj
i

∥∥∥4

[
1
M

M∑
i=1

∥∥∥vj
i

∥∥∥2
]2 (37)

where the usual definition of the Euclidean norm for a vector v with
length N is given by

‖v‖ =

√√√√ N∑
n=1

v2
n (38)

Here, vj
i is the velocity of the ith particle at the j th experiment.

At equilibrium, the index above should be around 5/3 at isothermal
equilibrium [17].

5.2. Primary Study Using Benchmark Test Functions

In order to study the qualitative behavior of the swarm thermody-
namics, we consider the problem of finding the global minimum of the
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following N -dimensional standard test functions

f1 (x) =
N∑

n=1

x2
n (39)

f2 (x) =
N∑

n=1

[
x2

n − 10 cos (2πxn) + 10
]

(40)

f3 (x) =
N−1∑
n=1

[
100

(
xn+1 − x2

n

)2
+ (xn − 1)2

]
(41)

The sphere function in (39) has a single minimum located at the
origin. The function defined in (40) is known as Rastigrin function with
a global minimum located at the origin. This is a hard multimodal
optimization problem because the global minimum is surrounded by
a large number of local minima. Therefore, reaching the global peak
without being stuck at one of these local minima is extremely difficult.
The problem in (41), known as Rosenbrock function, is characterized
by a long narrow valley in its landscape with global minimum at the
location [1, 1, ..., 1]T . The value of the global minimum in all of the
previous functions is zero.

Figure 2 shows the cost evolution together with the time history
of the swarm temperature obtained from the PSO simulation of the
three test functions (39)–(41). A swarm of 20 particles searching
in a 10-dimensional space is considered for each case. Figure 2(a)
indicates that only the sphere function has successfully converged to
the global optimum. On the other hand, by examining the thermal
behavior of the system as indicated by Figure 2(b), it is clear that
the swarm temperature drops rapidly, suggesting that the swarm is
“cooling” while evolving with time. Eventually, the temperature goes
to zero, indicating that the swarm has reached the state of thermal
equilibrium. Notice that in thermodynamics zero temperature is only
a special case. Convergence to a constant non-zero temperature can
also be characterized as thermal equilibriums.

It is interesting to observe from Figure 2 that the thermal
behaviors of the three solutions look indistinguishable. This is the
case although the convergence curves of Figure 2(a) shows that only
the sphere function has converged to its global optimum. This
demonstrates that convergence to thermal equilibrium does not mean
that convergence to the global optimum has been achieved. Rather,
convergence to a local optimum will lead to thermal equilibrium. The
swarm temperature cannot be used then to judge the success or failure
of the PSO algorithm.
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Figure 2. Cost function and temperature evolution for a swarm of 20
particles searching for the minimum in a 10-dimensional space. The
parameters of the PSO algorithm are c1 = c2 = 2.0, and w is decreased
linearly from 0.9 to 0.2. The search space for all the dimensions is
the interval [−10, 10]. A maximum velocity clipping criterion was used
with Vmax = 10. The algorithm was run 100 times and averaged results
are reported as (a) Convergence curves. (b) Temperature evolution.
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The conclusion above seems to be in direct contrast to the results
presented in [23]. This work introduced a quantity called average
velocity defined as the average of the absolute values of the velocities
in the PSO. Although the authors in [23] did not present a physical
analogy between MD and PSO in the way we provided in Section 3,
the average velocity will qualitatively reflect the behavior of the swarm
temperature as defined in (36). The main observation in [23] was that
convergence of the ‘average velocity’ (temperature) to zero indicates
global convergence. Based on this, they suggested an adaptive
algorithm that forces the PSO to decrease the average velocity in order
to guarantee successful convergence to global optimum. However, it
is clear from the results of Figure 2 that this strategy is incorrect.
Actually, it may lead the algorithm to be trapped in a local optimum.

A better perspective on the thermal behavior of the system can be
obtained by studying the evolution of the α-index. Figure 3 illustrates
an average of 1000 run of the experiments of Figure 2. Careful study of
the results reveals a different conclusion compared with that obtained
from Figure 2(b). It is clear from Figure 2(a) that the PSO solutions
applied to the three different functions converge to a steady-state
value at different number of iterations. The sphere function, Rastigrin
function, and Rosenbrock valley converge roughly at around 400, 300,
and 350 iterations, respectively. By examining the time histories of the
α-index in Figure 3, it is seen that the sphere function’s index is the

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

 Iterations 

 
  

Sphere

Rosenbrock

Rastigrin

Figure 3. The time evolution of the α-index for the problem of
Figure 2. The PSO algorithm was run 1000 times and averaged results
are reported.
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fastest in approaching its theoretical limit at the number of iterations
where convergence of the cost function has been achieved. For example,
the thermal index of the Rastigrin case continued to rise after the
300th iteration until the 385th iteration where it starts to fall. Based
on numerous other experiments conducted by the authors, it seems
more likely that the α-index can be considered an indicator to decide
if the PSO algorithm has converged to the global optimum or not. It
looks that convergence to global optimum in general corresponds to the
fastest convergence to thermal equilibrium as indicated by our studies
of the associated α-index. Moreover, it is even possible to consider
that the return of the α-index to some steady state value, i.e., forming
a peak, as a signal that convergence has been achieved. However,
we should warn the reader that more intensive work with many other
objective functions is required to study the role of the α-index as a
candidate for global optimum convergence criterion.

The fact that the α-index is not converging exactly to 5/3 can
be attributed to three factors. First, very large number of particles is
usually required in MD simulations to guarantee that averaged results
will correspond to their theoretical values. Considering that to reduce
the optimization cost we usually run the PSO algorithm with small
number of particles, the obtained curves for the α-index will have
noticeable fluctuations, causing deviations from the theoretical limit.
Second, it was pointed out in Section 4 that because of the presence
of an inertia factor w in the basic PSO equations with values different
from unity, the analogy between the PSO and MD is not exact. These
small deviations from the ideal Newtonian case will slightly change
the theoretical limit of the α-index. Our experience indicates that
the new value of α at thermal equilibrium is around 1.5. Third,
the theoretical value of 5/3 for the α-index is based on the typical
Maxwell’s distribution at the final thermal equilibrium state. However,
the derivation of this distribution assumes weakly interacting particles
in the thermodynamic limit. It is evident, however, from the discussion
of Section 3 that the PSO force is many-body global interaction that
does not resemble the situation encountered with rarefied gases, in
which the kinetic theory of Maxwell applies very well. This observation
forces us to be careful in drawing quantitative conclusions based on the
formal analogy between the PSO and the physical system of interacting
particles.

5.3. Energy Consideration

Beside the basic update equations (3), (4), (11), and (12), it should
be clear how to specify the particles behavior when they hit the
boundaries of the swarm domain. Assume that the PSO system under
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consideration is conservative. If we start with a swarm total energy
E, the law of conservation of energy states that the energy will stay
constant as long as no energy exchange is allowed at the boundary.
From the MD point of view, there are two possible types of boundary
conditions (BC), dissipative and non-dissipative. Dissipative boundary
conditions refer to the situation when the special treatment of the
particles hitting the wall leads to a drop in the total energy of the
swarm. An example of this type is the absorbing boundary condition
(ABC), in which the velocity of a particle hitting the wall is set to zero
[16, 18]. This means that the kinetic energy of a particle touching one
of the forbidden walls is instantaneously “killed.” If a large number
of particles hit the wall, which is the case in many practical problems,
there might be a considerable loss of energy in the total swarm, which
in turns limits the capabilities of the PSO to find the optimum solution
for several problems. The reflection boundary condition (RBC) is
an example of non-dissipative BCs. However, for this to hold true
reflections must be perfectly elastic; that is, when a particle hits the
wall, only the sign of its vector velocity is reversed [16, 18]. This
will keep the kinetic energy of the particle unchanged, leading to a
conservation of the total energy of the swarm.

In the latter case, it is interesting to have a closer look to the
energy balance of the PSO. From equation (6), we consider the total
mechanical energy

E = K + U (42)

where K and U are the total kinetic and potential energies,
respectively. It is possible to show that this energy is always constant
for the conservative Lagrangian defined in (6) [22].

According to the thermodynamic analysis of Subsection 5.1, when
particles converge to the global optimum, the temperature drops
rapidly. This means that when the swarm evolves, its kinetic energy
decreases. Since the total energy is conserved, this means that
convergence in the PSO can be interpreted as a process in which the
kinetic energy is continually converted to potential energy. The final
thermodynamic state of the swarm at the global optimum represents,
therefore, a unique spatial configuration in which the particles achieve
the highest possible potential energy in the searched region in the
configuration space. This conclusion applies only approximately to
the case when the boundary condition is dissipative since the energy
loss at the wall is small compared to the total energy of the swarm
(provided that large number of particles is used).
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5.4. Dynamic Properties

Autocorrelation functions measure the relations between the values of
certain property at different times. We define here a collective velocity
autocorrelation function in the following way

Ψ (t) =

〈
1
M

M∑
i=1

vi (t0) · vi (t0 + t)

〉
〈

1
M

M∑
i=1

vi (t0) · vi (t0)

〉 (43)

where t0 is the time reference. The time average in (43) can be
estimated by invoking the ergodicity hypothesis in the expected value
operator in (29). The final expression will be

Ψ (t) =
1
B

B∑
j=1




M∑
i=1

vj
i (t0) · vj

i (t0 + t)

M∑
i=1

vj
i (t0) · vj

i (t0)




(44)

where B is the number of experiments.
Figure 4(a) illustrates the calculations of the autocorrelation

function in (44) with the time reference t0 = 0. The behavior of
this curve has a very strong resemblance to curves usually obtained
through MD simulations. Such curves may provide a lot of information
about the underlying dynamics of the swarm environment. First, at
the beginning of the simulation there are strong interactions between
particles, indicating that the velocity of each particle will change
as compared to the reference point. This is because, according to
Newton’s first law, if there are no forces acting on a particle the velocity
will stay the same. However, in solids each molecule is attached to
a certain spatial location. For this, it is hard to move a molecule
far away from its fixed position. What happens then is that the
particle will oscillate around its initial position. This explains the
strong oscillations of Ψ(t) in Figure 4(a), which suggest that the PSO
environment resembles a solid state. The oscillations will not be of
equal magnitude, however, but decay in time, because there are still
perturbative forces acting on the atoms to disrupt the perfection of
their oscillatory motion. So what we see is a function resembling a
damped harmonic motion.

In liquids, because there are no fixed positions for the molecules,
oscillations cannot be generated. Thus, what should be obtained is
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Figure 4. The velocity autocorrelation function for the problem of
Figure 2 with B = 100 (a) Time domain results (b) Frequency domain
results with frequency given in terms of 1/∆t.
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a dammed sinusoid with one minimum. For gases, all what can be
observed is a strong decay following an exponential law.

The observation that for the three different cost functions we get
very similar early time response reflects probably that the randomly
uniform initialization of the PSO algorithm construct a similar crystal-
like solid structures, making early interactions of the particles similar.
However, after 20 iterations the responses become different, as we
expect, since particles start to develop different inter-molecular forces
according to the fitness landscape encountered.

Another way to look into the dynamics of the PSO is to calculate
the Fourier spectrum of the time autocorrelation function as defined
in (43). This gives some information about the underlying resonant
frequencies of the structure. Figure 4(b) illustrates the calculated
spectrum. The shape looks very similar to results obtained for solid
materials in MD [18] where a profound single peak is apparent. The
Fourier transform of (43) is also called the generalized phonon density
of state [18].

We conducted numerous experiments with several test functions
where it seems that the classification of the PSO environment into
gas, liquid, solid is strongly dependent on the boundary conditions,
population size, and number of dimensions. Table 1 summarizes the
shape of the velocity autocorrelation function corresponding to the
three cases.

Table 1. Velocity autocorrelation function corresponding to different
states for the PSO environment.

State Velocity Autocorrelation
Gas Damped exponential

Liquid One period damped sinusoid with single minimum
Solid Damped sinusoid with possibly multiple-oscillations

6. ACCELERATION TECHNIQUE FOR THE PSO
ALGORITHM

In this section, we will provide an application for the thermodynamic
analysis of Section 4. The idea is to employ the natural definition
of temperature, as given by equation (36), in a technique similar to
the simulated annealing. The idea is the observation that the decay
of temperature is a necessary condition for convergence to the global
optimum. This means that if the PSO has enough recourse to search
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Figure 5. Block diagram representation of the linear array
synthesis problem. Here the particles are xi ∈ {0 ≤ xi ≤ 1,
i = 1, 2, ..., 2N}. Amplitudes and phases are ranged as Ai ∈
{Amin ≤ Ai ≤ Amax, i = 1, 2, ..., N} and θi ∈ {0 ≤ θi ≤ 2π, i =
1, 2, ..., N}, respectively.

for the best solution, then temperature decay may be enhanced by
artificially controlling the thermal behavior of the system. We employ
a technique used in some MD simulations to push the swarm to
equilibrium. Mainly, the velocity of each particle is modified according
to the following formula

vi (k + 1) =

√
T0

T (k)
vi (k) (45)

where T0 is a user-defined target temperature. The meaning of (45)
is that while the swarm is moving toward the thermal equilibrium of
the global optimum, the velocities are pushed artificially to produce a
swarm with a pre-specified target temperature. In simulated annealing,
the artificial cooling of the algorithm is obtained by a rather more
complicated method, in which the probability is calculated for each
iteration, to decide how to update the particles. Moreover, there
the biggest obstacle is the appearance of new control parameters, the
temperature, which has no clear meaning. This adds more burdens
on the user in choosing the suitable value for the tuning parameters.
However, it seems that the technique in (45) may provide an easier
alternative.

The proposed acceleration technique will be demonstrated with a
practical application from electromagnetics. We consider the design of
linear array antenna to meet certain pre-defined goal. Suppose that
there is an N -elements linear array with uniform separation between
the elements of d. The normalized array factor is given by [24]

AF (u) =
1

maxu {|AF (u)|}
N∑

n=1

Ine
j2πndu/λ (46)

where In, n = 1, 2, ..., N, are the current distribution (generally
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Figure 6. Convergence curves for the synthesis of symmetric pattern
by using a linear array of 14 elements. The population size is 8
particles. The inertia factor w is decreased linearly from 0.9 to 0.2.
c1 = c2 = 2.0.

complex); u = sin θ, where θ is the angle from the normal to the
array axis; d = λ/2.

The “Don’t exceed criterion” is utilized in the formulation of
the objective function. That is, an error will be reported only if
the obtained array factor exceeds the desired sidelobe level. The
information about the amplitudes and phases are encoded in the
coordinates of the particle, which are normalized between 0 and 1.
Figure 5 illustrates the relation between the abstract PSO optimization
process and the physical problem.

The PSO algorithm is applied to synthesize an array antenna
with a tapered side lobe mask that decreases linearly from −25 dB
to −30 dB. The beamwidth of the array pattern is 9◦. The total
number of sampling points is 201. Figure 6 illustrates the convergence
curves results where it is clear that the proposed artificial cooling
can successfully accelerate the convergence of the method. The final
obtained radiation pattern for T0 = 0.05 is shown in Figure 7.

7. DIFFUSION MODEL FOR THE PSO ALGORITHM

The development of the PSO algorithm presented so far was based on
drawing a formal analogy between MD and the swarm environment.
This means that a microscopic physical treatment is employed in
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Figure 7. Radiation pattern of the linear array antenna corresponding
to best case of Figure 6 (T0 = 0.05).

modeling the PSO. In this section we develop an alternative view that is
based on macroscopic approach. This new analogy can be constructed
by postulating that particles in the PSO environment follow a diffusion
model. The use of diffusion models is now central in solid-state physics
and molecular dynamics since the pioneering works of Boltzmann and
Einstein more than one hundred year ago. Moreover, since Einstein
work on the origin of Brownian motion, the diffusion equation is used
routinely as a theoretical basis for the description of the underlying
stochastic dynamics of molecular processes.

The justification of the Diffusion model can be stated as follow.
From (18), we can write the equation of motion of a particle in the
PSO algorithm as

ẍ(t) = βv (t) + Γ(t) (47)

where Γ(t) = Φ̄ [P (t) − x (t)]. From the definition of P in (5), one
can see that even in the continuous limit ∆t → 0 the term Γ(t) can
be discontinuous because of the sudden update of the global and local
positions. Thus, Γ(t) can be easily interpreted as a random fluctuations
term that arises in the PSO environment in a way qualitatively similar
to random collision. Notice that the particles in the PSO are originally
thought of as soft spheres (i.e., there is no model for physical contacts
between them leading to collisions). This interpretation brings the
PSO immediately to the realm of the Brownian motion, where the
dynamics is described by an equation similar to (47).
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We start from the basic diffusion equation [16]

∂Ñ (x, t)
∂t

= D∇2Ñ (x, t) (48)

where Ñ is the concentration function of the molecules, x is the position
of the particle, and D is the diffusion constant.

Einstein obtained (48) in his 1905 paper on Brownian motion
[25]. Direct utilization of this equation leads to solutions for the
concentration of particles as functions of time and space. However,
a revolutionary step taken by Einstein was to give the particle
concentration different interpretations, deviating strongly from the
classical treatment. To illustrate this, let us consider a one-dimensional
diffusion equation as given below

∂Ñ

∂t
= D

∂2Ñ

∂x2
(49)

Einstein’s interpretation of the physical meaning of the concen-
tration function, Ñ , started by considering a short time interval, ∆t,
in which the position changes from x to x+dx. A very important step
was to refer each particle to its center of gravity [25]. Here, we propose
to refer each particle to the location pi

n , as defined in (5), where we
consider this to be the natural center of gravity for particles in the
PSO environment. Therefore, it is possible to define the new position
variable

ri,nk = xi,n
k − pi,n

k−1 (50)

where we have modified the notation to allow for the iteration index
k to appear as the subscript in (50) while the indices of the particle
number i and the dimension n are the superscripts.

Clearly, the diffusion equation (49) is invariant under the linear
transformation (50). During the short time interval ∆t, particle
locations will change according to a specific probability low. This
means that particles trajectories are not continuous deterministic
motions, but a stochastic path reflecting the irregular motion of
particles in noisy environments. Therefore, the re-interpretation of
the diffusion equation in (48) is that it gives us the probability density
function (pdf) of the motion, not the classical density. Assuming the
following boundary conditions

Ñ (r, 0) = δ(r), lim
r→∞ Ñ (r, t) = 0,

∞∫
−∞

Ñ (r, t) dx = M (51)
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the solution of (49) can be written as

Ñ (r, t) =
M√
4πD

e−
r2

4Dt√
t

(52)

where this can be easily verified by substituting (52) back into (49).
Equation (52), which represents a Gaussian distribution for

the particle’s positions, was observed empirically before [26]. The
development of this section presents, therefore, a theoretical derivation
for the pdf of particles moving in the PSO algorithms that matches the
experimentally observed results. However, the standard interpretation
of (52) in the theory of diffusion equations is that it represents
the Green’s function of the medium. That is, depending on what
is the boundary-condition imposed on the initial swarm different
distributions will result.

It is very important for the subsequent developments of this paper
to recognize that (52) should be interpreted as a conditional pdf. This
can be inferred from the fact that the time variable appearing in (52)
is referenced to the origin. As we mentioned above about Einstein’s
analysis of the particles trajectory, the total motion can be expressed
as a succession of short intervals of time. This means that if we start
at a time instant tk−1, then the conditional pdf can be expressed as

f
(
xi,n

k , tk|x
i,n
k−1, tk−1

)
=

1√
4πD (tk − tk−1)

exp


−

(
xi,n

k − pi,n
k−1

)2

4D (tk − tk−1)




(53)
where f stands now for the pdf of the particles position. This final
form is valid at arbitrary time instants.

It remains to see how the diffusion constant in (53) can be
estimated. Here, we come to the main contribution of Einstein’s
paper in which he introduced the first connection between the
macroscopic representation of the diffusion model and the microscopic
representation of MD. Basically, the following relation was derived in
[25]

D = lim
t→∞

〈
[r (t) − r (0)]2

〉
6t

(54)

Clearly, this expression can be easily evaluated from the MD or
PSO simulation. Therefore, it is possible to get the conditional pdf
of particles motion by calculating the diffusion constant as given in
(54). It should be mentioned that the pdf is in general different for
varying boundary conditions. The well-established theory of diffusion
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equations can be employed in solving for the exact pdf of PSO under
these different boundary modes.

Few general remarks on the diffusion approach to the PSO is
needed her. First, as we have just mentioned, the diffusion equation
is subject to various boundary conditions that govern the constraints
on the swarm evolution. The Gaussian pdf in (52) was stated only as
a particular solution under some general conditions (51). If the PSO
can be modeled as an evolution of particles under certain boundary
modes, then one needs to construct the appropriate diffusion model
and solve the boundary value problem. The formal implementation of
this program requires further theoretical investigations and numerical
studies, which are beyond the scope of the current work. The theory of
diffusion is very rich and mature in theoretical physics; our sole purpose
is to invite mathematically-oriented researchers in the optimization
community to consider learning from physicists in that regard.

8. MARKOV MODEL FOR SWARM OPTIMIZATION
TECHNIQUES

8.1. Introduction

In this section, a unified approach to the PSO techniques presented
in this paper will be proposed based on the theory of Markov chains.
One can visualize the Markov process as a hidden (deeper) layer in the
description of dynamic problems. It does not present new behavior
in the phenomenon under study, but may provide better insight on
the way we write down the equations of motion. Since algorithms are
sensitive to the various mathematical schemes used to implement them
(e.g., some models are computationally more efficient), it is possible
to gain new advantages, theoretical and conceptual, by investigating
other deeper layers like Markov chains.

We start from the observation that the Gaussian pdf of particle
positions lead to the possibility of eliminating the velocity from the
algorithm and developing, instead, position-only update equations [26].
The recently introduced quantum version of the PSO has naturally
no velocity terms [13–15]. This is because in quantum mechanics,
according to Heisenberg’s principle of uncertainty, it is not possible to
determine both the position and the velocity with the same precision.
It can be shown that all quantum mechanical calculations will produce
a natural conditional pdf for the positions in the swarm environment as
solutions of the governing Schrödinger’s equation [15]. Therefore, one
way to unify both the quantum and classical approaches is to consider
their common theme: The existence of certain conditional probability
distributions underlying the stochastic dynamics of the problem. Since
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this pdf can be obtained either by solving the diffusion equation for
the classical PSO, or Schrödinger’s equation for the quantum PSO,
then the update equation can be directly derived from the pdf without
using any further physical argument. An example will be given in the
next section.

8.2. Derivation of the Update Equations Using Probability
Theory

The diffusion equation and Schrödinger’s equation can be considered
as “sources” for various probability density functions that govern the
stochastic behavior of moving particles. Now, since the pdf of the
particle at the kth iteration is known, we will simulate the trajectory
by transforming a uniformly distributed random variable into another
random variable with the desired pdf. Let the required transformation
that can accomplish this be denoted as y = h(x). Then, the cumulative
density function (cdf) of both X and Y will be FX(x) and FY (y),
respectively. It is easy to show that for the transformation h to produce
the distribution FY (y), starting from the uniform distribution FX(x),
one must have [20]

y = F−1
Y (x) (55)

As an example, consider the Laplace distribution that was
obtained from the delta potential well version of the quantum PSO
algorithm [13–15]. The pdf of the particle trajectory can be written as

f
(
ri,nk

∣∣∣ ri,nk−1

)
=
g ln

√
2∣∣∣ri,nk−1

∣∣∣ exp


−2g ln

√
2

∣∣∣ri,nk

∣∣∣∣∣∣ri,nk−1

∣∣∣

 (56)

where ri,nk is defined as in (50) and g is the only control parameter
in the quantum PSO. By solving (55), denoting the uniform random
variable by u, and the position r by y, one obtains

xi,n
k =



pi,n

k−1 +

∣∣∣xi,n
k−1 − p

i,n
k−2

∣∣∣
2

ln (2u) 0 < u ≤ 1
2

pi,n
k−1 +

∣∣∣xi,n
k−1 − p

i,n
k−2

∣∣∣
2

ln
1

2 (1 − u)
1
2
< u ≤ 1

(57)

This alternative derivation of the update equations was
accomplished without reference to any argument in physics; the
concept of collapsing the wave function, as presented in [15], has not
been mentioned at all; only probability theory is needed in arriving
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to (57). Moreover, notice that the control parameter g cancels out
in the last expression. The new update equations above were tested
numerically and demonstrated a performance as good as the original
quantum PSO.

8.3. Markov Chain Model

A Markov process is defined as a stochastic process whose past has no
influence on the future if its present is specified [20]. Mathematically,
we state this definition as follow

P {xn ≤ xn|xn−1,xn−2, ....,x1,x0} = P {xn ≤ xn|xn−1} (58)

where xk, k = 1, 2, ..., n, is a sequence of random variables defined over
a time index k and P is the probability operator. It is understood that
the sequence starts at the initial time k = 0, which can be considered
the cause, and then “propagates” the effect through certain stochastic
rules. Equation (58) tells us that the effect at a certain time instance
k is dependent only on the information of the previous time step k−1.
If we define the information of the sequence at k to be the state at
that time instant, then it is possible to describe the Markov chain as a
stochastic process in which the system can remember only the previous
state.

From the analysis presented at the previous parts of this article,
we have found that the PSO algorithm, being classic or quantum,
involves a conditional pdf in which information about the current
position depends only on information coming from the previous time
step. In other words, by examining some of the distributions presented
here, such as (53) and (56), it is clear that only the previous state
(iteration) will be involved in the evaluation of the probability of the
next iteration. Therefore, we classify all of the possible versions of the
PSO algorithm, being classic or quantum, as stochastic Markov chains.

It is clear that the functional form of the conditional pdf does
depend on the time index k. This is because the new center of gravity
pi,n

k [see equation (50)] varies from iteration to iteration. A Markov
process that satisfies such a property is called inhomogeneous Markov
process [20].

From the chain rule in probability theory, one can write [20]

f (xk,xk−1, .....,x1,x0)=f (xk|xk−1) f (xk−1|xk−2)···f (x2|x1) f (x0)
(59)

where f stands for the pdf of the random variables presented at its
argument.

Equation (59) implies that the joint statistics of all the positions,
evaluated at all iterations up to the present time, can be expressed



Progress In Electromagnetics Research, PIER 75, 2007 203

in terms of the conditional pdf, at various previous times, plus the
initial distribution at the first iteration f(x0). This initial condition
is independent of the algorithm and must be chosen by the user. It is
customary in evolutionary methods to select the starting population
as a uniform random distribution over the range of interest.

Of special importance in Markov chains is the following result,
known as Chapman-Kolmogorov equation [20]

f (xn|xk) =
∞∫

−∞
dNxm f (xn|xm) f (xm|xk) (60)

where n > m > k. Here dNxm stands for the volume element (scalar)
in the abstract N -dimensional space RN . Equation (60) can be used
to establish a causal link between any combinations of three iterations
that need not to be successive.

For the general case of k successive steps, it easy to calculate the
marginal pdf of the kth state as follows

f (xk) =
∫

xk−1

∫
xk−2

....

∫
x0

dNxk−1 d
Nxk−2... d

Nx0 f (xk,xk−1, .....,x1,x0)

(61)
By substituting (60) into (61) we get

f (xk) =
∫

xk−1

∫
xk−2

....

∫
x0

dNxk−1 d
Nxk−2... d

Nx2 d
Nx0 f (xk|xk−1)

· · · f (xk−1|xk−2) f (x2|x1) f (x0) (62)

This gives the pdf of the future kth iteration by causally
accumulating causally the effects of all previous states (iterations) as
originated from an initial distribution.

8.4. Generalized PSO Algorithm

It is clear from equation (62) that knowledge of the conditional pdf
of the sequence of positions, together with the pdf of the initial
distribution, is enough to give an exact characterization of the total pdf
for any future iteration. Based on these facts, we propose a generalized
PSO algorithm summarized as follow

(i) Specify an initial distribution with known pdf f(x0).
(ii) Derive the conditional pdf f (xk|xk−1), for arbitrary k, by solving

the diffusion equation (classic PSO) or Schrödinger’s equation
(quantum PSO).
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(iii) Calculate the marginal pdf f(xk) using equation (62).
(iv) Update the position by realizing the random number generator

with the pdf f(xk) (for example, the method presented in
Subsection 8.2).

The generalized PSO algorithm, as presented above, has the
following advantages over the traditional classical or quantum versions

(i) The velocity terms are canceled. If the derived update equations
of the position are not complicated, then this may considerably
reduce the computational complexity of the new algorithm.

(ii) The algorithm is purely stochastic. The rich literature on stability
and time evolution of stochastic processes can be applied to
provide a deeper understanding of the convergence of the PSO
algorithm.

(iii) The generalized PSO algorithm eliminates the variations in the
physics behind the method; it shows that all PSO methods are
special classes within the wider group of Markov chains.

8.5. Prospectus and Some Speculations

In particular, it can be inferred from the overall discussion of this
section that the Markov approach unifies the classical and the quantum
versions of the swarm mechanics, a problem that is fundamental in
theoretical physics. It is interesting to refer to the work proposed, yet
in a different context, by Nelson in 1966 [27]. The idea was to derive
quantum mechanics from a classical model starting from the stochastic
diffusion equation. Even though not all physicists have accepted the
idea, very recently a general approach based on stochastic dynamics
was proposed to provide a theoretical derivation of quantum mechanics
by formulating the problem as a stochastic dynamical system obeying
some reasonable energy-related principles [28]. If quantum mechanics
can be derived from the diffusion equation, then the diffusion theory
of Section 7 and the Markov model of this section are enough to
theoretically derive any possible PSO algorithm that can be mapped
to existing physical theory. A general approach to establish physical
theory for natural selection was formulated by Lee Smolin [29] where
it can be seen that evolution, as described in biology, could be linked,
on the fundamental level, to the Standard Model of particle physics.
Similar ideas, beside the approach presented in our work, are in
conformity with each other and strongly suggest that the foundations of
the swarm intelligence methods could be rooted ultimately in physics,
rather than biology.
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9. CONCLUSIONS

In this paper, establishing a formal analogy between the PSO
environment and the motion of a collection of particles under
Newtonian laws provided a new insight on the PSO algorithm. In
particular, the well-established branch of physics molecular dynamics
was exploited to study the thermodynamic behavior of the swarm.
The thermodynamic analysis provided a new global criterion to
decide whether a convergence of the algorithm is successful or not.
A new acceleration technique for the classical PSO algorithm was
proposed based on thermodynamic theory. The new technique was
employed successfully in improving the convergence performance with
the practical problem of synthesis of linear array antennas. A diffusion
model for the PSO environment was proposed. Upon solving the
corresponding diffusion equation, the familiar Gaussian distribution,
observed only empirically before, was obtained. The new diffusion
model was integrated with the quantum model, developed in other
works, to propose a unified scheme using the theory of Markov chains.
The generalized algorithm has several advantages, like the possibility
of reducing the computational complexity and opening the door for
plenty of stability analysis techniques to be applied for the study of
the basic PSO algorithm.
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