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Abstract—One of the methods developed for accelerating the
convergence speed of infinite series is the Watson transformation. It is a
technique with an interesting theoretical background which is applied
in a restricted number of cases due to its complexity. Most of the
papers using this method do not extensively analyze every step of
implementation. In this work we apply Watson transformation in a
simple case and we focus on each aspect of the procedure.

1. INTRODUCTION

A basic principle in set theory is that a complete set of functions has
infinite population. For this reason, the description of an unknown
quantity is made usually through an arbitrarily weighted infinite sum.
A common problem in mathematics and physics is the low convergence
speed of these series and many techniques have been developed to
overcome such a hindrance. Extrapolation methods convert the general
term of the series into an equivalent one with greater convergence speed
employing nonlinear operations. In [1] the Shanks transformation is
used for accelerating the MoM solution for the current on a cylindrical
antenna. The results are physically verified but it is remarked that
the series are highly susceptible to noise and roudoff errors. In [2],
the author presents the Euler transformation which is suitable for
alternating series. It is pointed out that when the transformation is
applied to a series with rounded coefficients, its behavior can differ
substantially from that predicted theoretically. In [3] a multiport
network is analyzed by utilizing fast multipole method. In order to
avoid the relative convergence problem of other techniques based on
mode matching, an alternative port treatment is used. Also in [4], the
authors make use of the Kummer’s method and Ewald’s approach to
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accelerate the series defining the Green’s function in a parallel-plate
waveguide. It is noted that the second technique is better than the
first one because it leads to smaller error not only for the quantity
itself but for its derivative as well.

Another interesting method, mainly applicable to electrically large
scattering problems is the so-called “Watson transformation” [5–7]. It
is named after G. N. Watson who used a technique to compute the
electric fields in the presence of the earth, back in the beginning of
the previous century [8]. The basic characteristic of this approach
is the conversion of the slowly converging “canonical” series to a
rapidly converging “Watson” series which is defined as a sum of
residues corresponding to an integrand’s complex poles. In [9], the
transformation is used for the treatment of an acoustic scattering
problem where the surface waves, the phase velocities and the
attenuations become easily computable. The Watson transformation
is originating from mathematics and it is commonly applied in many
variables for the manipulation of certain hypergeometric series [10].
A novel analysis of expanding the diffraction field in Watson series
by using orthogonality relations is presented in [11]. The optimal
coefficients are derived by approximate minimization of the square
mean and by utilizing product expansions involving in the complex
poles. Finally, in [12] the transformation is used to obtain an
integral representation for the potential in an electrostatic problem.
This integral is asymptotically evaluated in the far field and certain
observations about its exponentially decaying behavior are made.

In the majority of the published works concerning Watson
transformation, the technique is described properly except for the way
of detecting the integrand’s complex poles. It is certainly referred
that the initial guesses for the integrand singularities are given from
a simplified equation but the explicit process of this reduction is
commonly omitted. For example in [13], the numerical procedure for
determining the position of the poles is not indicated clearly and in
[14] the explicit values of them are taken as precalculated without
additional comments. It should be stated that this operation is not
simple or straightforward as it contains a large amount of nontrivial
approximations and assumptions. In the present work we apply the
Watson transformation for the simple case of a perfectly conducting
sphere (with electrically large radius) which scatters the field produced
by an infinitesimal magnetic dipole located on its surface. The contour
integrations on the complex plane are depicted in figures and the
pole detection technique is extensively analyzed. All the intermediate
steps are studied in detail and explanations are provided where it
is necessary. The formulas are validated by comparison with the
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slow canonical solution which requires many dozens of terms for
convergence. On the contrary, in case of the Watson series the first
one or two terms are sufficient for the most investigated cases.

2. CANONICAL SOLUTION OF THE PROBLEM

Consider a spherical perfect electric conductor (PEC) of radius a placed
inside vacuum area with wavenumber k0 and intrinsic impedance
ζ0. An infinitesimal magnetic dipole of magnitude A measured in
V/m is located slightly above the conducting surface (inside vacuum)
and excites the spherical structure as shown in Fig. 1. Both the
coordinate systems: cartesian (x, y, z) and spherical (r, θ, φ) can be
used interchangeably and their origin coincides with the center of the
sphere. The dipole is x-polarized, posed on the z axis, while the
scatterer is electrically large (k0a � 1). A time dependence of the
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Figure 1. The physical configuration of the examined structure. A
perfectly conducting (PEC), electrically large sphere of radius a is
excited by a magnetic dipole located on its surface.
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form e−iωt is adopted and suppressed throughout the analysis. The
magnetic dipole excitation current K(θ, φ) at r = a+ is expressed as
follows:

K(θ, φ) = x̂
A

sin θ
δ(θ − 0+)δ(φ) (1)

where δ(z) is the Dirac delta function. With use of the spherical
eigenfunctions and their orthogonality properties specified in [15], the
expansions for each component of the surface current (1) are obtained.

Kθ(θ, φ) = − A

4π

+∞∑
n=1

2n + 1
n(n + 1)

(
P d

n(θ) +
Pn(θ)
sin θ

)
cosφ (2)

Kφ(θ, φ) =
A

4π

+∞∑
n=1

2n + 1
n(n + 1)

(
P d

n(θ) +
Pn(θ)
sin θ

)
sinφ (3)

The Legendre function of argument cos θ, degree n and unitary order
is denoted by Pn(θ). Its derivative with respect to θ is symbolized as
P d

n(θ).
If one employs the vectorial solutions to the homogeneous

Helmholtz equation in spherical coordinates and exploits the
expansions (2), (3), the primary field in the absence of the scatterer
is derived. Imposing the boundary condition for vanishing tangential
electric field on the PEC sphere, leads to the canonical solution of the
problem. The components of the total electric field are given below.

Er(r, θ, φ) = − A

4π
a

r

+∞∑
n=1

(2n + 1)
hn(k0r)
hd

n(k0a)
Pn(θ) sinφ (4)

Eθ(r, θ, φ) = − A

4π
·

+∞∑
n=1

2n + 1
n(n + 1)

[
a

r

hd
n(k0r)

hd
n(k0a)

P d
n(θ) +

hn(k0r)
hn(k0a)

Pn(θ)
sin θ

]
sinφ (5)

Eφ(r, θ, φ) = − A

4π
·

+∞∑
n=1

2n + 1
n(n + 1)

[
hn(k0r)
hn(k0a)

P d
n(θ) +

a

r

hd
n(k0r)

hd
n(k0a)

Pn(θ)
sin θ

]
cosφ (6)

The components of the total magnetic field are given below.

Hr(r, θ, φ) = − iA

4πk0rζ0

+∞∑
n=1

(2n + 1)
hn(k0r)
hn(k0a)

Pn(θ) cosφ (7)
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Hθ(r, θ, φ) = − iA

4πk0rζ0
·

+∞∑
n=1

2n + 1
n(n + 1)

[
hd

n(k0r)
hn(k0a)

P d
n(θ) − k2

0ar
hn(k0r)
hd

n(k0a)
Pn(θ)
sin θ

]
cosφ (8)

Hφ(r, θ, φ) = − iA

4πk0rζ0
·

+∞∑
n=1

2n + 1
n(n + 1)

[
k2

0ar
hn(k0r)
hd

n(k0a)
P d

n(θ) − hd
n(k0r)

hn(k0a)
Pn(θ)
sin θ

]
sinφ (9)

where hn(z) is the spherical Hankel function of first type, order n
and argument z. The Riccati-Hankel function is defined as hd

n(z) =
[zhn(z)]′, where the prime denotes the derivative with respect to z.
One can observe that for r = a the functions Eθ(r, θ, φ), Eφ(r, θ, φ) are
not vanishing despite the inflicted requirement. That makes no wonder
because the formulas (4)–(9) are valid for the area outside the source
(r > a). On the contrary, the boundary condition is verified by the
related expressions for r = a (solution branch corresponding to the
infinitesimal area between the PEC sphere and r = a+ surface).

We are mainly interested in evaluating these field quantities within
the near region but not too close to the scatterer because both primary
(dipole singularity) and secondary (surface currents) sources exist on
its boundary. We confine our analysis to observation points of the
lower half space (π/2 < θ < π) where the response of the electrically
large sphere is the dominant component of the measured quantity. The
infinite series (4)–(9) are computed by truncation of the first N terms
with a maximum permissible error of 0.001%. In Fig. 2 we present
N as function of the normalized radial distance r/a for various k0a.
One can observe that the greater the electrical radius gets, the more
substantial is the necessary N in order to achieve convergence. The
polar and the azimuthal angles (θ, φ) do not affect significantly the
truncation limit (at least within the investigated region). In addition,
the essential number of terms remains almost the same regardless of
the field component that is calculated. Once the observation point
gets distant from the spherical scatterer, less terms are required for
a reliable evaluation, but they are still too many when k0a � 1.
Therefore, the direct summation of the canonical solution terms is
not computationally efficient and another approach should be adopted
instead.
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Figure 2. The required number of terms N which are necessary to
achieve convergence as function of the normalized radial distance r/a
for various electrical radii of the sphere k0a. The canonical series is
the used formula.

3. APPLICATION OF THE WATSON TRANSFORM

The Watson transformation is a technique of accelerating slowly
convergent series by writing the infinite sum as an integral with
complex integration path. It is an inspired method with theoretical
completion and effective results even though it possesses a variety
of difficulties in application. The purpose of this study is to
implement this technique for a simple case and to explain in detail
all the intermediate steps, a procedure not commonly appeared in
bibliography. Each of the ten series defined in (4)–(9) (the transverse
field components are written as sums of two series) owns the following
form:

F =
+∞∑
n=1

f(n) (10)

where the geometrical parameters (r, θ, φ) are suppressed. In every
case the function f(n) contains a factor of a Legendre-type quantity
(Pn(θ) or P d

n(θ)) and a Hankel-type component (hn(k0a) or hd
n(k0a)) as

denominator. The variable F can be written in terms of an unknown
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Figure 3. The integration paths: (a) the initial integration path (IW )
of the Watson integral tightly surrounds the positive real axis of the
complex ν plane, (b) the modified integration path (IC) of the Watson
integral which occupies the upper half of the complex ν plane.

function g(ν) as below:

F =
∫
(IW )

γ(ν)dν =
∫
(IW )

g(ν)
2πi sin(νπ)

dν (11)

The integration path (IW ) encloses the positive semi axis of the
complex ν plane as shown in Fig. 3(a). The curve is traced out
in a positive direction and into the defined contour the integrand
γ(ν) exhibits simple singularities only at the positive integer points
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ν = n > 0. Through the residue theorem, the following relation is
derived:

F =
+∞∑
n=1

(−1)ng(n) (12)

In order to apply the Watson method, a complex function g(ν) with
f(n) = g(n)(−1)n for each integer n should be found. By taking into
account the following relation concerning Legendre-type functions [16,
eq. (8.2.3), p. 333]

Pn(π − θ) = −(−1)nPn(θ) P d
n(π − θ) = (−1)nP d

n(θ) (13)

it is made obvious that each quantity g(ν) could be received by
replacing Pν(θ) with −Pν(π − θ) and P d

ν (θ) with P d
ν (π − θ) in the

formula of the corresponding f(ν).
A deformation of the integration path (IW ) is possible if the

symmetry of the integrands with respect to ν = −1/2 is exploited.
The functions (2ν + 1), ν(ν + 1), sin(νπ) are odd, even and even (in
the order given) with respect to ν = −1/2. Consequently, with use of
the following properties of the utilized special functions [16, eq. (8.2.1),
p. 333]

h−ν−1(z) = = eiνπhν(z) hd
−ν−1(z) = eiνπhd

ν(z) (14)

P−ν−1(z) = Pν(z) P d
−ν−1(z) = P d

ν (z) (15)

a symmetry relation for all the integrands γ(ν) is derived:

γ(−ν − 1) = −γ(ν) (16)

It is well-known that the Legendre functions are vanishing by definition
when the integer degree is smaller than the integer order, therefore
P0(θ) = P d

0 (θ) = 0. Accordingly, the integration path (IW ) can be
expanded to include the singular point ν = 0, as its residue equals
zero. The new path passes through the symmetry point ν = −1/2
and thus the integral along the lower branch equals the integral along
the symmetric route traced out in the opposite direction as shown
in Fig. 3(b). In this way, the integration path of the integral is
now a straight line slightly above the real axis denoted by (IC). In
order to obtain a close contour integral the asymptotic behavior of the
integrands γ(ν) for large complex ν → ∞ shall be extracted. In this
attempt the approximate formulas below are useful [16, eq. (8.10.7),
p. 336]:

Pν(θ), P d
ν (θ) = O

[
sin

((
ν +

1
2

)
θ +

π

4

)]
, ν → ∞ (17)
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hν(k0r)
hν(k0a)

,
hd

ν(k0r)
hν(k0a)

,
hν(k0r)
hd

ν(k0a)
,
hd

ν(k0r)
hd

ν(k0a)
= O

[(
r

a

)ν]
, ν → ∞ (18)

By combining the aforementioned equations, the asymptotic expression
for the magnitude of each integrand is received:

|γ(ν)| = O
[
e−(�[ν] ln(r/a)+|�[ν]|θ)

]
, ν → ∞ (19)

It exhibits exponentially decaying behavior along the upper semicircle
of the complex ν plane (�[ν] > 0) and this is the route via which the
path (IC) is closed as shown in Fig. 3(b).

The participating functions in the formulas of γ(ν) are entire for
complex ν and thus the integrand singularities inside the contour (IC)
are exclusively owed to the roots of the denominators:

hν(k0a) = 0 hd
ν(k0a) = 0 (20)

Suppose the exact values of ν verifying the transcendental equations
above are denoted by νm and νd

m respectively for each positive integer
m. By implementing the residue theorem again, an alternative series
is obtained:

F =
∫
(IC)

g(ν)
2πi sin(νπ)

dν = −
+∞∑
m=1

G(κm)
sin(κmπ)

(21)

where G(ν) is the integrand γ(ν) if one replaces the denominators
hν(k0a), hd

ν(k0a) by their derivatives with respect to the order ν
∂hν(k0a)

∂ν , ∂hd
ν(k0a)
∂ν . The parameters κm equal νm or νd

m according to
the denominator.

4. POLES ON THE COMPLEX ORDER PLANE

The purpose of this section is to solve approximately the following
equations with respect to complex ν:

Hν(z) = 0 H ′
ν(z) = 0 (22)

where Hν(z) is the cylindrical Hankel function of the first kind and
the prime denotes the derivative with respect to z. If one solves the
Equations (22), it can easily find suitable initial guesses for the roots
of (20). To manipulate the Hankel-type functions, it is necessary
to introduce asymptotic expressions which are mainly available for
three cases. When the order’s magnitude |ν| is much greater than
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the absolute value of the argument |z|, the Hankel-type functions can
be approximated by the following [16, eq. (9.3.1), p. 365]:

Hν(z) ∼




−i

(
2
πν

)1/2 (
ez

2ν

)−ν

, �[ν] > 0, |z| 	 |ν|

−ieiνπ

(
− 2
πν

)1/2 (
− ez

2ν

)ν

, �[ν] < 0, |z| 	 |ν|
(23)

H ′
ν(z) ∼




ν

z
i

(
2
πν

)1/2 (
ez

2ν

)−ν

, �[ν] > 0, |z| 	 |ν|

−i
ν

z
eiνπ

(
− 2
πν

)1/2 (
− ez

2ν

)ν

, �[ν] < 0, |z| 	 |ν|
(24)

It is apparent that the aforementioned expressions do not vanish on
the complex ν plane. When the magnitude of the argument |z| is very
larger than the order’s magnitude |ν|, then the Hankel-type functions
possess the asymptotic expansions below:

Hν(z) ∼
(

2
πz

)1/2

eiz−iνπ/2−iπ/4, |ν| 	 |z| (25)

H ′
ν(z) ∼

i

z

(
2
πz

)1/2

eiz−iνπ/2−iπ/4, |ν| 	 |z| (26)

Again the quantities are nonzero for each finite complex ν. For this
reason, we utilize a more sophisticated asymptotic formula covering
cases that both the order’s and argument’s magnitudes are large and
not very different. As far as the Hankel function Hν(z) is concerned,
we duplicate from [16, eq. (9.3.37), p. 368]:

Hν(z) ∼ 2
ν1/3

e−iπ/3

(
4ν2ξ(ν, z)
ν2 − z2

)1/4[
Ai(e2πi/3ν2/3ξ(ν, z))

+∞∑
k=0

ak(ν, z)
ν2k

+ e2πi/3Ai′(e2πi/3ν2/3ξ(ν, z))
+∞∑
k=0

bk(ν, z)
ν2k+4/3

]
, |ν| ∼= |z| → +∞

(27)

where the function ξ(ν, z) is defined through the interlaced relation

2
3

(−ξ(ν, z))3/2 =

((
z

ν

)2

− 1

)1/2

− arccos
(
ν

z

)
(28)

and the series coefficients are given by

ak(ν, z) =
2k∑

s=0

µs (ξ(ν, z))−3s/2 u2k−s

(
ν

(ν2 − z2)1/2

)
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bk(ν, z) = −
2k+1∑
s=0

λs (ξ(ν, z))−3s/2−1/2 u2k−s+1

(
ν

(ν2 − z2)1/2

)
(29)

The parameters µs, λs are specific real numbers and the functions uk(t)
are polynomials with degree 3k. The Airy function and its derivative
are denoted by Ai(z), Ai′(z) respectively.

The asymptotic formula (27) is valid for |ν| ∼= |z| → +∞ but we
are going to modify some of the participating quantities by supposing
that ν is close to z as complex number, not simply as magnitude.
This assumption is a significant one but we support that it cannot
damage the effectiveness of the approximation due to the complexity
and robustness of (27). With use of the following Taylor expansion:

(x2 − 1)1/2 − arccos
(

1
x

)
∼ 23/2

3
(x− 1)3/2, x ∼= 1 (30)

the complicated Equation (28) can be simplified to give:

ξ(ν, z) ∼ 21/3 ν − z

z
, ν ∼= z → ∞ (31)

With reference to the polynomials uk(t) the term with maximum
degree (3k) will be dominant, due to their large argument (ν → ∞).
The behavior of the series coefficients can be estimated by taking into
account this fact

ak(ν, z) = O

[(
ν

ν − z

)3k 1
23k

2k∑
s=0

µs

2−s

]
, ν ∼= z → ∞

bk(ν, z) = O

[(
ν

ν − z

)3k+2 1
23k

2k+1∑
s=0

λs

2−s

]
, ν ∼= z → ∞ (32)

After carrying out straightforward algebra, one can produce the
limiting relation connecting the two series in (27) as appeared below:

+∞∑
k=0

bk(ν, z)
ν2k+4/3

= O

[
1

ν2/3(ν − z)

] +∞∑
k=0

ak(ν, z)
ν2k

, ν ∼= z → ∞ (33)

Although ν and z are close each other on the complex plane, they never
become equal (the difference between them can be also substantial
given the fact that both numbers tend to infinite). As |ν| takes very
large values, it is sensible that the term proportional to the Airy
function will be of much larger magnitude than the term proportional
to the Airy prime function in (27). Considering that the two functions
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have values of the same order, the roots of the first equation of (22)
are close to the ones of the following

Ai
(
e2πi/3ν2/3ξ(ν, z)

)
= 0 (34)

As far as the Hankel derivative is concerned, a similar to (27)
asymptotic expansion is available [16, eq. (9.3.45), p. 369] and given
by:

H ′
ν(z) ∼ 4

zν2/3
e2iπ/3

(
4ν2ξ(ν, z)
ν2 − z2

)−1/4[
Ai(e2πi/3ν2/3ξ(ν, z))

+∞∑
k=0

ck(ν, z)
ν2k+2/3

+ e2πi/3Ai′(e2πi/3ν2/3ξ(ν, z))
+∞∑
k=0

dk(ν, z)
ν2k

]
, |ν| ∼= |z| → +∞

(35)

where

ck(ν, z) = −
2k∑

s=0

µs (ξ(ν, z))−3s/2+1/2 v2k−s+1

(
ν

(ν2 − z2)1/2

)

dk(ν, z) =
2k+1∑
s=0

λs (ξ(ν, z))−3s/2 v2k−s

(
ν

(ν2 − z2)1/2

)
(36)

The functions vk(t) are polynomials with degree (3k). In a similar way
the roots of the second equation of (22) are found to be close to the
ones of the following:

Ai′
(
e2πi/3ν2/3ξ(ν, z)

)
= 0 (37)

This information is sufficient for estimating the solution of the equation
hd

ν(z) = 0. That is because the spherical Hankel function and its
derivative possess similar magnitudes and therefore the derivative is
the dominant quantity because it is multiplied by the large complex
number z.

5. NUMERICAL IMPLEMENTATION

The well-known roots of the Airy function and its derivative are
negative, denoted by τm and τ ′m respectively where m is positive integer
increasing with the distance of the root from the origin. Consequently,
by equalizing these parameters with the arguments of (34) and (37)
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we can find initial guesses ν̃m and ν̃d
m close to the exact roots νm and

νd
m of (20). If one takes into account the assumption ν ∼= z and the

result of (31), the approximations for the positions of the singularities
belonging on the upper half of the complex plane are readily derived:

ν̃m = −1
2

+ k0a +
(
k0a

2

)1/3

e−2πi/3τm (38)

ν̃d
m = −1

2
+ k0a +

(
k0a

2

)1/3

e−2πi/3τ ′m (39)

With this input, a numerical solver will determine the actual
roots νm, νd

m provided the fact that it can compute Hankel and
Legendre functions with complex order and degree respectively. The
numerical examples are implemented in the computing environment
MATHEMATICA with use of its build-in routine FindRoot. In
Fig. 4 we depict a contour plot of the quantity 1/|hν(10)| on the

Figure 4. The contour plot of the quantity 1/|hν(10)| on the complex
ν plane. The white areas correspond to large values and the dark
regions to small ones. The small crosses correspond to the exact
positions of the poles, while the large dots represent the initial guesses.
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complex ν plane. The large values are represented by white color
(root regions) and the small ones by black color (shadowed area). The
small crosses symbolize the exact positions νm of the denominator
singularities, while the large dots represent the approximations ν̃m

of (38). The numbering m is increasing towards the upper right
direction, starting with m = 1 (lower leftmost root). It is observed
that for small m, when the corresponding residue terms have a large
contribution to the Watson sum (21), the estimations are closer to the
exact roots. Mind that the roots lie exclusively on the first quadrant,
whereas the dominant first singularity is close to the positive argument
z = k0a = 10 a fact that verifies our assumption (ν ∼= z).

After the detection of each integrand’s poles, the evaluation of
the series (21) is possible as the differentiations of the denominators
with respect to the complex order are carried out numerically (the
corresponding functions are entire with respect to ν). In Fig. 5 we
present the required number of terms M to achieve convergence for
(21) with a maximum tolerance of 0.001%. We examine the same cases
as in Fig. 2 and it is surprising that just the first term is adequate
for computing the field quantities for several radial distances and
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Figure 5. The required number of terms M which are necessary to
achieve convergence as function of the normalized radial distance r/a
for various electrical radii of the sphere k0a. The Watson series is the
used formula.
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scatterer sizes. This is an impressive result concluding in a closed-form
expression with observation points into the investigated region. One
notices that the required number of terms is increasing with increasing
r/a and with decreasing electrical radius of the sphere. This behavior
is opposite compared to the one of the canonical series.

6. CONCLUSIONS

The Watson transformation is implemented for the simple case of the
scattering of a spherical wave by a spherical scatterer. The procedure
of determining the complex poles of the integrand is fully described.
Numerical tests verify the achieved acceleration in convergence of the
series defining the total field.
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