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Abstract—A new computationally efficient algorithm for reconstruc-
tion of lossy and inhomogeneous 1-D media by using inverse scattering
method in time domain is proposed. In this algorithm, cosine Fourier
series expansion is utilized in conjunction with finite difference time do-
main (FDTD) and particle swarm optimization (PSO) methods. The
performance of the proposed algorithm is studied for several 1-D per-
mittivity and conductivity profile reconstruction cases. Various types
of regularization terms are examined and compared with each other in
the presented method. It is shown that the number of unknowns in
optimization routine is reduced to about 1/3 as compared with conven-
tional methods which leads to a considerable reduction in the amount
of computations, while the precision of the solutions would not be
affected significantly. Another advantage of the proposed expansion
method is that, since only a limited number of terms are taken in the
expansion, the divergence of the algorithm is far less likely to occur.
Sensitivity analysis of the suggested method to the number of expan-
sion terms in the algorithm is studied, as well.

1. INTRODUCTION

The aim of inverse scattering problems in electromagnetics is to extract
the unknown parameters of a medium from measured back scattered
fields of an incident wave illuminating the target. The unknowns to be
extracted could be any parameter affecting the propagation of waves
in the medium.

Inverse scattering has found vast applications in different branches
of science such as medical tomography, non-destructive testing, object
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detection, geophysics, and optics [1–7].
From a mathematical point of view, three main topics must

be preliminary addressed in an inverse scattering problem; the non-
uniqueness, the ill-posedness, and the intrinsic nonlinearity [8–10].
Generally speaking, the non-uniqueness and the ill-posedness of the
inverse problems are due to the limited amount of information that can
be collected. In fact, the amount of independent data achievable from
the measurements of the scattered fields in some observation points is
essentially limited. Hence, only a finite number of parameters can be
accurately retrieved. Other reasons such as noisy data, unreachable
observation data, and inexact measurement methods increase the ill-
posedness of such problems. Also, increasing the number of unknown
parameters leads to the more ill-posedness and as a consequence, the
divergence is more likely to occur. To stabilize the inverse problems,
based on a priori information about desired parameters, usually various
kinds of regularizations are used [11–14]. For example, the solution
may be required to stay close to an a priori known value or by
penalizing local variations. On the other hand, due to the multiple
scattering phenomena, the inverse scattering problem is nonlinear in
nature. Therefore, when multiple scattering effects are not negligible,
the use of nonlinear methodologies is mandatory.

Recently, inverse scattering problems are considered in global
optimization-based procedures. The unknown parameters of each cell
of the medium grid would be directly considered as the optimization
parameters and several types of regularizations are used to overcome
the ill-posedness. All of these regularization terms commonly use
a priori information to confine the range of mathematically possible
solutions to a physically acceptable one.

In this case, the general form of cost function for optimization
routine is expressed as
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where �Esim and �Hsim are the simulated fields obtained by the FDTD
method [15] in each optimization iteration. �Emeas and �Hmeas are
measured fields, I and J are the number of transmitters and receivers,
respectively and T is the total time of measurement. R (εr, σ, µ) is the
regularization term and λ is the regularization factor.

In this paper, we have used and compared Tikhonov energy
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regularization [16], second order Sobolev regularization [17], and total
variation (TV) regularization [18] to overcome the ill-posedness of the
inverse problem. If we consider a permittivity profile as shown in Fig. 1,
the Tikhonov energy regularization is represented as

R (εr) =
∫ x=a

x=0
|εr(x)| dx (2)

which is justified by the fact that the physically acceptable solutions
must have limited energy. The second order Sobolev regularization is
defined by

R (εr) =
∫ x=a

x=0

∣∣ε′′r (x)∣∣ dx (3)

which uses the second-order derivative of permittivity and requires the
object to be reasonably smooth, and finally, the TV regularization is
presented by

R (εr) =
∫ x=a

x=0
|∇εr(x)| dx (4)

where ∇ denotes the gradient operator. TV regularization is
particularly useful when reconstruction of profiles with discontinuities
or step gradients is considered.

Unfortunately, the conventional optimization-based methods
suffer from two main drawbacks. The first is the huge number of
the unknowns especially for 2-D and 3-D cases which increases not
only the amount of computations, but also the degree of ill-posedness.
Another disadvantage is the determination of regularization factor
which is not straightforward at all. Therefore, proposing an algorithm
which reduces the amount of computations along with the sensitivity
of the problems to the regularization term and initial guess of the
optimization routine would be desirable.

In this paper, we propose an algorithm for computationally
efficient reconstruction. The general form of the problem and our
proposed method in which cosine Fourier series expansion is used in
conjunction with FDTD and PSO, are introduced in Section 2. In
Section 3, the mathematical formulations of the algorithm are derived
in detail. The results of this section help us to direct the optimization
routine for having faster convergence. Three inhomogeneous and
lossless or lossy test cases are considered in Section 4 and the efficiency
of the method is studied for all of them. Finally in Section 5, sensitivity
considerations and an important issue regarding the ill-posedness in the
expansion method for inverse scattering problems, are addressed.
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2. COSINE FOURIER SERIES EXPANSION METHOD

We consider the permittivity and conductivity profiles reconstruction
of a lossy and inhomogeneous 1-D medium as shown in Fig. 1.

0=x ax =

( ) ( )/r x and or xε σ

0 , 0ε σ =0 , 0ε σ =

x

Figure 1. General form of the problem. Reconstruction of the
permittivity and conductivity profiles of a lossy and inhomogeneous 1-
D medium surrounded by known media (here free space) is considered.

Instead of direct optimization of the unknowns, we expand them
in terms of a complete set of orthogonal basis functions and optimize
the coefficients of this expansion in a global optimization routine like
PSO [19–21]. In a general 3-D structure, the relative permittivity could
be expressed as

εr(x, y, z) =
N∑

n=0

dnfn(x, y, z) (5)

where fn is the nth term of the complete orthogonal basis functions.
It is clear that in order to expand any profile into this set, the

basis functions must be complete. On the other hand, orthogonality
is favourable because with this condition, a finite series will always
represent the object with the best possible accuracy and coefficients
will remain unchanged while increasing the number of expansion
functions [22].

Because of the straightforward relation to the measured data and
its simple boundary conditions, using harmonic functions over other
orthogonal sets of basis functions is preferable. On the other hand,
cosine basis functions have simpler mean value relation in comparison
with sine basis functions which is an important condition in our
algorithm. It is known that any real and positive function can be
extended into an even periodic function and this periodic function if
satisfies the Dirichlet conditions, can be represented by a cosine (even)
Fourier series expansion. If cosine basis functions are used in one-
dimensional cases, the expansion of the permittivity profile along x
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which is homogeneous along the transverse plane is

εr(x) =
N∑

n=0

dn cos
(
nπx

a

)
(6)

where a is the dimension of the problem in the x direction and
the coefficients, dn, are to be optimized. In this case, the number
of optimization parameters is N in comparison with conventional
methods in which this number is equal to the number of grid points.
This results in a considerable reduction in the amount of computations.
The proposed algorithm is shown in Fig. 2.
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Figure 2. Proposed algorithm for reconstruction by expansion
method. We use FDTD as a forward solver in time domain and PSO
as a global optimization routine in inverse problem.

According to Fig. 2, based on an initial guess for a set of expansion
coefficients, dn, for a lossless case, the permittivity is calculated
according to (6). Then, the FDTD code computes a trial electric and
magnetic simulation fields. Here we use a Gaussian pulse for plane
wave excitation and magic time-step (∆x = c ∗ 2∆t) [15] for easy
truncation of the problem space in FDTD simulations. ∆x and ∆t
are the grid length and time step, respectively. In our study, because
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of the lack of real measurement data, the measured fields are also
obtained by an FDTD simulation. At each iteration of optimization
routine, the cost function is calculated according to (1). Then PSO as a
global optimizer is used to minimize this cost function by changing the
coefficients of permittivity and conductivity profiles expansions. The
modified value of expansion coefficient, dn, is computed for each of the
N + 1 dimensions of the unknown vector according to the following
equation

dn = dn + ∆t ∗ vn (7)
where N + 1 is the number of expansion terms in (6) and vn is the
velocity of the particle in the nth dimension which may be expressed
as

vn = w ∗ vn + c1 ∗ rand() ∗ (pbest,n − dn)
+c2 ∗ rand() ∗ (gbest,n − dn) (8)

in which w is weighting factor, c1 and c2 are acceleration factors, rand()
is the random number uniformly distributed within the interval [0,1],
and pbest,n, gbest,n are personal best position of each particle and global
best position of all the particles in the nth dimension, respectively [19].

It is obvious that the performance of this expansion method
directly depends on the value of N . Larger N , results in a more precise
reconstruction at the expense of higher degree of ill-posedness. On the
other hand, decreasing N leads to a less accurate solution with higher
probability of convergence of the inverse algorithm. Therefore, suitable
selection of N has a notable impact on the convergence speed of the
algorithm.

3. MATHEMATICAL CONSIDERATIONS

As mentioned before, inverse problems are non-unique and ill-posed.
Thus, a priori information must be applied for stabilizing the
algorithm as much as possible which is quite straightforward in direct
optimization method. In this case, all the information can be applied
directly on the medium parameters which are the same as optimization
parameters. In the expansion algorithm, however, the optimization
parameters are the Fourier series expansion coefficients and a priori
information could not be considered directly. Hence, a useful indirect
routine is vital to overcome this difficulty.

There are two main assumptions about the parameters of an
unknown medium. We may assume first that the relative permittivity
and conductivity have limited ranges of variation, i.e.,

1 ≤ εr(x) ≤M (9)
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and
0 ≤ σ(x) ≤ P (10)

The second assumption is that the permittivity and conductivity
profiles may not have severe fluctuations or oscillations. These two
important conditions must be transformed in such a way to be
applicable on the expansion coefficients in the initial guess and during
the optimization process.

It is known that average of a function with known limited range
is located within that limit, that is if

L1 ≤ g(x) ≤ L2, a ≤ x ≤ b (11)

Then

L1 ≤ 1
b− a

∫ b

a
g(x)dx ≤ L2 (12)

Thus, for permittivity profile expansion we have

1 ≤ d0 ≤M (13)

For x = 0, (6) reduces to

εr(0) =
N∑

n=0

dn ⇒ 1 ≤
N∑

n=0

dn ≤M (14)

and for x = a, we have

εr(a) =
N∑

n=0

(−1)ndn ⇒ 1 ≤
N∑

n=0

(−1)ndn ≤M (15)

Using Parseval theorem, another relation between expansion coeffi-
cients and upper bound of permittivity may be written. Assuming
that g(x) is periodic with period T , we have

1
T

∫
T
|g(x)|2dx =

∞∑
n=0

|dn|2 (16)

Based on (6), (16) may be simplified to

1 ≤
N∑

n=0

|dn|2 ≤M2 (17)

By using (13), (14), (15), and (17) in the initial guess of the
expansion coefficients and as the damping boundary condition [19]
during the optimization, the routine converges in a considerable faster
rate. Similar conditions can be used for conductivity profiles in lossy
cases.
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4. SIMULATION RESULTS

Proposed method stated above is utilized for three different cases. In
each case, the direct optimization method and the proposed expansion
method are compared in terms of the number of unknowns and
reconstruction precision by using different types of regularization
introduced in Section 1. In the simulations of all test cases, one
transmitter and two receivers are used around the medium as shown
in Fig. 3.
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Figure 3. Geometrical configuration of the problem. One transmitter
and two receivers are used in all test cases.

Test case #1: In the first sample case, we consider an
inhomogeneous and lossless medium consisting 20 cells. Therefore,
only the permittivity profile reconstruction is considered. The number
of cells for the whole computational domain is 200. The unknown
medium is between cells 90 and 110. The source of Gaussian pulse is
located in cell number 5 and the receivers are placed in cells number 50
and 140. The center of Gaussian pulse is at 60∆t and the width of it is
set to 11∆t. In the expansion method, the number of expansion terms
N , is set to 7. Hence, we have only 7 unknowns in expansion method
instead of 20 unknowns in direct optimization method. It means the
reduction in unknowns in about 2/3 which results in lower number
of particles and necessary number of iterations in the optimization
routine. The population in PSO algorithm is chosen equal to 50 and
the maximum iteration is considered to be 200.

The exact profile and reconstructed profiles with both direct and
expansion methods in several optimization iterations with the aid of
Tikhonov energy regularization are shown in Fig. 4. It must be noted
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that the initial permittivity profile in the direct method is assumed to
be like free space (εr = 1) in all the grid points, whereas a random
initial expansion coefficients make a really drastic initial guess of
permittivity profile according to Fig. 4(a).

The cost function (1) with the aid of Tikhonov energy
regularization is plotted versus the iteration number in Fig. 5.
According to this figure, the PSO as a powerful global optimization
method reduces the cost function quickly in this 7-dimensional case.
It is to be noted that due to drastic variations of cost function at the
beginning iterations which cause the unrealizable changes in remaining
iterations, the cost function is plotted from 30th iteration.

Table 1. Cosine Fourier series expansion coefficients for permittivity
reconstruction of test case #1 by using different kinds of regulariza-
tions.

d0 d1 d2 d3 d4 d5 d6

Tikhonov
Regularization

0.2467 0.2046 0.0763 0.0577 0.027 0.0279 0.0107

Sobolev
Regularization

0.249 0.2044 0.0627 0.0489 0.0157 0.0161 0.002

TV
Regularization

0.2446 0.1996 0.0736 0.052 0.0206 0.0133 0.0021

Any other regularization terms could be used for this reconstruc-
tion. Fig. 6 shows the reconstruction of this sample case using second
order Sobolev and TV regularizations after 200 iterations with the
number of particles set to 50. The optimized Fourier series expansion
coefficients for reconstructions by using the above regularization terms
are depicted in Table 1 for comparison. It is seen that the coefficients
of expansion with the help of all three kinds of regularizations are very
close to each other especially in lower frequencies.

It is noted from the above reconstruction results that in spite
of a valuable reduction in the amount of computations in the
proposed expansion method, the reconstructed profiles by using all
the introduced regularizations have quite acceptable precisions.

Test case #2: In the second example, another lossless and
inhomogeneous medium with 30 cell length is considered. The number
of cells for the whole computational domain is 100. The unknown
medium is between cells 40 and 70. The source of Gaussian pulse is
located in cell number 5 and the receivers are placed in cells number
30 and 90. The center of Gaussian pulse is at 60∆t and the width
of it is set to 11∆t. In the expansion method, N is chosen equal to
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10. Therefore the number of unknowns is again reduced to one-third.
The population in PSO algorithm is considered equal to 50 and the
maximum iteration of optimization is set to 200. The reconstructed
profiles by using different types of regularizations are shown in Fig. 7.
The Fourier expansion coefficients for these cases are represented in
Table 2.

Test case #3: In this case, a lossy and inhomogeneous medium
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Figure 4. Comparison of permittivity profile reconstructions of test
case #1 by using direct and expansion methods with the help of
Tikhonov energy regularization. (a) Initial guess, (b) Reconstruction
after 30 iterations, (c) Reconstruction after 100 iterations, and (d)
Reconstruction after 200 iterations.
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Figure 5. Cost function of test case #1 with the help of Tikhonov
energy regularization. PSO as a global optimizer reduces the cost
function during the optimization routine. 7 expansion terms are
considered for reconstruction and number of particles and iterations
are equal to 50 and 200, respectively.

with 12 cell length is considered. The number of cells for the whole
computational domain is 200. The unknown medium is between cells
95 and 107. The source of Gaussian pulse is located in cell number 5
and the receivers are placed in cells number 50 and 150. The center
of Gaussian pulse is at 40∆t and the width of it is set to 7∆t. In
the expansion method for both permittivity and conductivity profiles
expansion, N is chosen equal to 6. The population in PSO algorithm
is considered equal to 50 and the maximum iteration of optimization is
set to 200. The reconstructed profiles of permittivity and conductivity
by using Tikhonov energy regularization are shown in Fig. 8. The
Fourier series expansion coefficients for this case for both permittivity
and conductivity profiles expansions are represented in Table 3.

The results for all three cases which are generally inhomogeneous
and lossy or lossless media show that the proposed expansion method
can tolerably reconstruct the unknown media with a considerable
reduction in the amount of computations as compared to the direct
optimization of the unknowns.
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Figure 6. Comparison of permittivity profile reconstructions of test
case #1 by using direct and expansion methods after 200 iterations
with the aid of (a) second order Sobolev regularization and (b) TV
regularization.
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5. SENSITIVITY CONSIDERATIONS

Regarding sensitivity of the algorithm, there are two important issues
we would like to address. First, how the optimum number of expansion
terms, N , should be chosen. Small values of N reduce the accuracy
of the reconstructed result, while large values for N cause oscillatory
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Figure 7. Comparison of permittivity profile reconstructions of
test case #2 by using direct and expansion methods with the help
of (a) Tikhonov energy regularization, (b) second order Sobolev
regularization, and (c) TV regularization.

Table 2. Cosine Fourier series expansion coefficients for permittivity
reconstruction of test case #2 by using different kinds of regulariza-
tions.

d0 d1 d2 d3 d4 d5

Tikhonov

Regularization
0.2039 0.1232 0.0142 0.0771 0.0073 0.0108

Sobolev

Regularization
0.2024 0.1194 0.0104 0.0735 0.0056 0.0052

TV

Regularization
0.2033 0.1257 0.0175 0.0742 0.0092 0.0104

d6 d7 d8 d9

Tikhonov

Regularization
0.0134 0.0281 0.0242 -0.0081

Sobolev

Regularization
0.0107 0.015 0.0129 0.0004

TV

Regularization
0.009 0.0143 0.01 -0.0054
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Figure 8. Permittivity and conductivity profiles reconstructions of
test case #3 by using both direct and expansion methods with the
help of Tikhonov energy regularization. (a) Permittivity profile and
(b) Conductivity profile.
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Figure 9. Comparison of reconstructions by the expansion method
with different number of cosine Fourier series expansion terms. (a) test
case #1 and (b) test case #2.
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Table 3. Cosine Fourier series expansion coefficients for permittivity
and conductivity reconstructions of test case #3 by using Tikhonov
energy regularization.

d0 d1 d2 d3 d4 d5

Permittivity 0.3532 0.2477 0.0579 0.0584 0.0294 0.0254

Conductivity 0.0041 0.0018 -0.0014 -0.0008 -0.0012 -0.0005

response or even divergence of the algorithm. The reconstructed
profiles for different values of N are shown in Figs. 9(a), (b) for
test case #1 and #2, respectively. Our experiences in studying
various permittivity and conductivity profiles reconstructions show
that choosing N between 7 and 10 may be suitable for most of
the practical 1-D reconstruction problems. However, this is not a
limitation of the algorithm and generally speaking, one can choose N
arbitrarily based on the considerations discussed in this section. The
results shown in Fig. 9, confirm this idea for our two sample cases.

The second important issue is that although the degree of ill-
posedness is reduced by limiting the number of expansion terms,
using the regularization terms is mandatory. Without utilizing the
regularization, the algorithm may not converge.

6. CONCLUSION

A novel inverse scattering method in time domain based on
combination of the cosine Fourier series expansion, the FDTD and the
PSO algorithms has been proposed. The mathematical formulations
of the method have been derived completely and the algorithm has
been examined for reconstruction of several inhomogeneous lossless
and lossy one-dimensional cases with the aid of various regularization
terms. With a considerable decrease in the number of the unknowns
(in about 2/3) and consequently the amount of computations as
compared with conventional inverse scattering methods, the relative
permittivity and conductivity profiles of three 1-D media have been
reconstructed successfully. Finally, it has been shown by sensitivity
analysis that for obtaining accurate reconstruction and well-posedness
of the algorithm simultaneously, the number of expansion terms must
be chosen intelligently.
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