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Abstract—In this paper a novel intelligent method to identify an
unknown medium (type of apodization and chirping) is developed.
Our consideration is concentrated on complex fiber Bragg Gratings.
For realization of the idea the Genetic Algorithms (GAs) is used. So,
GAs is used to solve inverse scattering problem for reconstruction
of nonuniform or complex fiber Brag gratings. In this method,
the reflection coefficient measured in practice is inserted to a
suitable algorithm. According to the proposed method, first
medium discrimination is performed between predefined large classes
of mediums and then the whole and necessary parameters for
reconstruction of the medium are extracted. Full numerical method
is used for compare of the results obtained from the presented
algorithm. Our simulation shows good agreement between them. So, a
novel method for identification and discrimination of optical mediums
especially complex Bragg Gratings is presented. Finally the presented
method can be used to identify optical mediums and complex Bragg
Gratings systems.

1. INTRODUCTION

The problem of synthesizing or reconstructing a nonuniform fiber
Bragg gratings (FBG) and complex structures from its corresponding
reflection response is extremely important and efficient in practice for
introducing efficient design rules. Usually, in optical communication
systems and devices the complex Bragg Gratings including chirped,
Apodized and simultaneously chirped and apodized cases are used
and these elements have critical applications. For example optical
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filters used in dense wavelength division multiplexing (DWDM)
system, multiplexing/demultiplexing (MUX/Demux) and many other
interesting applications are realized by these devices. Optical sensors
such as temperature, ultrasound signal detection, pressure detectors
and many other sensory applications need complex Bragg Gratings.
Also, these structures have important role in stable single mode and
single frequency laser design [1–5]. Several experimental techniques
have been demonstrated to fabricate nonuniform gratings, permitting
an accurate control of both the local grating pitch and the apodization
profile along the structure [6, 7]. These techniques give substantial
flexibility to the grating design process. For presentation of high
quality devices and systems, identification of implemented elements
is critical, which in these cases the inverse problem should be solved.

Inverse scattering techniques [8] offer a great variety of possibilities
for the design of gratings. For weak gratings, the synthesis problem of
fiber gratings reduces to an inverse Fourier transform of the reflection
coefficient. This is known as the first-order Born-approximation,
and applies only for gratings including small reflectivity. Several
modifications made for improving the method to consider high
reflectivity [9, 10]. For example the Fourier transform technique
has been extended by Winick and Roman [4] yielding a better
approximation and enabling the design of practical fiber grating filters.
However, this synthesis procedure is approximate in nature and,
consequently, not reliable for the design of very complex filters.

An exact solution of this inverse scattering problem was found
by Song and shin [8] and they solved the coupled Gel’fand-
Levitan-Marchenko (GLM) integral equations that appear in quantum
mechanics. Their method is exact, but it is restricted to the
reflection coefficient that can be expressed as a rational function.
However, approximating the desired spectral response by rational
functions is difficult (generally) and also can give some inaccuracies.
To overcome this limitation, an iterative solution of the Gel’fand-
Levitan-Marchenko (GLM) system was proposed by Peral to synthesize
arbitrary spectral responses [2, 11]. Some fiber grating designs
calculated with this method have already been fabricated, proving
the usefulness of the method [12]. The iterative solution of the GLM
equations [13] has some weaknesses.

However, the solution is approximate due to the finite number
of iterations computed, which translates into considering only a
limited number of reflections within the medium. This is particularly
noticeable for strong gratings with discontinuities in the coupling
function. Also, when specifying ideal filter responses, it is desirable
to have a weighting mechanism, which makes it easier to weight the
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different requirements. The iterative GLM method does not support
such a mechanism in a satisfactory way.

Another group of exact inverse scattering algorithms called
differential or direct methods [14–17]. These techniques, developed
by geophysicists like Robinson and Goupillaud [14, 15], exploit fully
the physical properties and structure of the layered media in which
the waves propagates. The methods are based again on causality
arguments and identify the medium recursively layer by layer. For
this reason, they are sometimes called layer-peeling or dynamic
deconvolution algorithms.

Also, there are some other published papers which were discussed
about different aspects of Bragg Gratings [18–27].

Recently, several heuristic approaches have been developed for the
solution of the inverse problem with the goal of designing gratings as
filters for telecommunication applications. Skaar, Risvik and Cormier
et al. developed genetic algorithms (GA) for extraction of the physical
parameters of the Bragg gratings from the measured reflected intensity
spectrum [28, 29]. Skaar and Risvik encoded the grating coupling
coefficient using a real number formulation and they applied the
Runge-Kutta algorithm to calculate the spectral response of the grating
[28]. Cormier et al. instead reduced the spectral response calculation
time using the Transfer Matrix (T -matrix) formulation [29]. This
formulation is based on approximating the coupling coefficients of
grating as a piecewise constant function along the grating. Cormier et
al. characterized the Bragg gratings in terms of three distinguishable
parameters such as the Grating length, period and amplitude of the
modulated index of refraction [29].

In all previous works the apodization functions of the gratings
are assumed to be known before reconstruction but in this paper
we demonstrate a new technique for discrimination of the kind of
apodization or chirp function and then the identification of the
parameters is done. Our algorithm is based on GAs. First medium
discrimination is performed between a large classes of predefine types
and then using GAs medium parameters are extracted precisely.
Genetic algorithm was applied to similar electromagnetic problems too
[30–34].

The organization of the paper is as follows.
In Section 2 the mathematical background for modeling of the

complex Fiber Bragg Grating is presented. Also, in this section the
Transfer Matrix method is discussed. The genetic algorithm and
it application to inverse problem is investigated in Section 3. The
simulation results and discussion will be presented in Section 4. Finally
the paper ends with a conclusion.
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2. MATHEMATICAL FORMALISM FOR MODELING OF
FIBER BRAGG GRATING

A fiber Bragg grating is a periodic perturbation structure of the
refractive index in a waveguide. The Apodized and chirped index of
refraction for the fiber Bragg gratings can be written as follows [35].

n(x, y, z) = n0 + δn0 + g(z)δn(z) cos
[
2π
Λ
z + Φ(z)

]
, (1)

where the average refractive index n is represented as n0 + δn0 and
n0 ≥ δn0. In Eq. (1) n0, δn0, δn(z),Φ(z),Λ, g(z) are the refractive
index of the core without perturbation, the average index modulation
(DC change), the small amplitude of the index modulation, the position
dependent phase of the grating, the Bragg period and the apodization
function respectively.

In most fiber gratings, the induced index change is approximately
uniform across the core, and there are no propagation modes outside
the core of the fiber. In terms of this supposition, the cladding modes
in the fiber are neglected in this paper. If we neglect the cladding
modes, the electric field of the grating can be simplified only to the
superposition of the forward and backward fundamental mode in the
core. The electric field distribution along the core of the fiber can be
expressed in terms of two counter-propagating modes under the two-
mode approximation [36].

E(x, y, z) = [A+(z) exp(−iβz) +A−(z) exp(iβz)]et(x, y) (2)

where A+(z) and A−(z) are slowly varying amplitudes of the forward
and backward traveling waves along the core of the fiber respectively.
The E(x, y, z) can be substituted into coupled-mode equations [37].
The coupled-mode equations can be simplified into two modes, which
are described as

dR(z)
dz

= iσ̂(z)R(z) + ik(z)S(z)

dS(z)
dz

= −iσ̂(z)R(z) − ik∗(z)R(z)
, (3)

where R(z) and S(z) are the forward and backward modes respectively
and they represent slowly varying mode envelope functions. The σ̂
and k(z) are self-coupling coefficient [37] that is called local detuning
and the ac coupling coefficient [37] (called local grating strength [38])
respectively.

The simplified coupled-mode equation (Eq. (3)) is used in the
simulation of the spectral response of the Bragg grating. The coupling
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coefficient k(z) and the local detuning σ̂ are two important parameters
in the couple-mode equations (3). They are fundamental parameters
in the calculation of the spectral response of the fiber Bragg gratings.
The notations of these two parameters are different, depending on the
different authors in literature.

The general self-coupling coefficient can be represented by

σ̂ = δ + σ − 1
2
dΦ
dz
, (4)

where dΦ
dz is describes possible chirp of the grating period [37]. The

detuning δ can be represented by

δ = β − π

Λ
= β − βD = 2πneff

(
1
λ
− 1
λD

)
, (5)

where λD = 2neffΛ is the design wavelength for Bragg reflectance.

σ =
2π
λ
δneff , (6)

where δneff is the background refractive index change. The coupling
coefficient can be represented by

k(z) =
π

λ
δn(z)g(z). (7)

The coupling coefficient is proportional to the modulation depth of the
refractive index ∆n(z) = δn(z)g(z).

For obtaining the reflection coefficient of a fiber Bragg grating
we used the transfer matrix method as follows. The transfer matrix
method can be used to solve non-uniform gratings. This method is
effective in the analysis of the almost-periodic grating. A non-uniform
fiber Bragg grating can be divided into many uniform sections along
the fiber. The incident light wave propagated through each uniform
section i can be described by a transfer matrix Fi. For the structure
of the fiber Bragg grating, the matrix Fi can be written as [37].

Fi =


cosh(γB∆z)−i σ̂
γB

sinh(γB∆n(z)) −i k
γB

sinh(γB∆z)

i
k

γB
sinh(γB∆z) cosh(γB∆z)+i

σ̂

γB
sinh(γB∆n(z))


,
(8)
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where γB is denoted as

γB =
√
k2 − σ̂2. (9)

The whole grating can be represented in matrix form as[
R(L)
S(L)

]
= FMFM−1 · · ·Fi · · ·F1

[
R(0)
S(0)

]
, (10)

where L is the length of the medium. The amplitude of the reflection
coefficient can be written as

ρ =
S(0)
R(0)

. (11)

3. GENETIC ALGORITHM AND INVERSE PROBLEM

A genetic algorithm [39, 40] belongs to a class of evolutionary
computation techniques [41–43] based on models of biological
evolution. These methods have proved useful in domains that are
not well understood or for search spaces, which are too large to be
efficiently searched by standard methods. The GAs paradigm uses
selection and recombination in various formulations to sample the
search space. Solutions based on GAs approach to the problems
are coded to mimic the genetic make up of biological organisms.
Each individual in the population represents a possible solution to
the problem. A fitness value, derived from the problem’s objective
function is assigned to each member of the population. Individuals
that represent better solutions are awarded higher fitness values,
thus enabling them to survive more generations. The GAs searches
for better solutions by letting the fitter individuals take over the
population through a combined stochastic process of selection and
recombination. Although the main operators that influence the GAs
performance are only three (i.e., selection, crossover and mutation)
and their interaction is highly complex and slight variations in their
implementations results in a variety of models. The different models
depend on factors such as:

1. Selection method and mechanism,
2. Parent replacement method,
3. Crossover and mutation method,
4. Serial or parallel implementation,
5. Type of problem to be solved, whether a unimodal or multimodal

objective function is expected.
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The GAs model to be used is chosen after a careful analysis of the
problem to be solved.

A standard genetic algorithm scheme is shown in Fig. 1. Operation
of the method is as follows.

Figure 1. General scheme of the genetic algorithm.

In this method it is assumed that N is the number of first
generation (individuals). Also, in the selection part, between all
individuals in the current population are chose those, who will continue
and by means of crossover and mutation will produce offspring
population. At this stage the best n individuals are directly transferred
to the next generation. The theoretical basis of the genetic algorithm
and the role of its various operators are well treated in [39, 40, 44].
The application of this algorithm to the reconstruction of Fiber Bragg
Gratings is described in the following.

In our approach, the GAs is used to discriminate the kind
of Apodization and Chirped functions. After discriminating each
function, the GAs algorithm search to calculate the parameters of the
identified grating. In this paper, five mediums are considered and a
GAs based method is applied to discriminate among them.

In the first stage and second stage of the proposed methodology,
the following scheme is used for discrimination and identification.
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This new methodology is elaborated more precisely below and the
function of each block in the Fig. 2 is investigated.

Figure 2. The scheme of inverse scattering with GA.

a) Experimental Reflection Spectrum- In our case instead of the
reflection spectrum, we simulated the coupled wave equations using
Transfer Matrix Method (TMM) and inserted into GAs algorithm.

b) Discrimination of the Medium- For explaining the operation
of this block Fig. 3 should be considered. There is different GAs
blocks (all possibilities) associated with each medium and denoted
in presented block diagram as GA1, . . . , GAq, where q is the total
number of type of the considered mediums. Then the GAs search to
minimize the fitness function for each medium illustrated in the block
diagram respectively. After running a few iterations of GAs for each
block (medium), a vector including error between the experimental
values and the calculated ones is computed. The number of iterations
is so important in this case for precise determination of type of the
medium. In otherwise the GAs will find wrong medium type. In this
work two iterations for simulation are considered. We expect that
the corresponding medium to the given reflection spectrum has the



Progress In Electromagnetics Research, PIER 75, 2007 337

Figure 3. The scheme of discriminator and identification blocks with
GAS.

minimum value in this vector. So, using the obtained error vector,
the minimum value corresponds to the type of suitable medium for
identification and approximation. The measured reflection coefficient
should be sampled precisely to obtain high resolution and more
difference between computed errors for different blocks and type of
mediums.

c) Identification of the Medium parameters- After discriminat-
ing the parameters of identified medium can be evaluated. To do that
the measured reflection coefficient is considered as the input for the
GAs block. Then the GAs searches to minimize the fitness function to
obtain the parameters of the medium. In this case we considered 50
iterations for optimization.

d) The GA blocks- The GA blocks in this algorithm for both
discrimination and identification are the same. In this section, we
describe in details these blocks as follows. This procedure consists of
several steps as presented in Fig. 4.

1. The trial values for medium parameters according to physical
limitations are chosen.

2. The reflection coefficient for the proposed parameters in first step
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Figure 4. The scheme showing the GAS block (steps of optimization).

is calculated by using the transfer matrix method (ρth(λ)).
3. By use of the computed reflection spectrum in second step

(ρth(λ)), the bandwidth and maximum reflection coefficient
(BWth(λ), ρth max(λ)) can be extracted. These extracted
parameters and similar cases from experimental data are used to
make the fitness function (Eq. (13)).

4. For all of the initial population the fitness function is evaluated
and then according to GAs operators (selection, crossover and
mutation) for minimizing the fitness function, the next population
is formatted and after that the next iteration is generated. The
GAs run until the required criterion is eventually fulfilled.

After applying the mentioned above algorithm, the unknown medium
parameters can be obtained.

e) Initial Population- The initial population for each block of
GAs depends on the necessary unknown parameters of the medium
according to physical model for the complex Bragg gratings.

Therefore we consider a Np ×M matrix as follows.

U = [u1 u2 · · · um]Np×M , (12)

where Np and M denote the number of population for each variable
and the number of variables respectively. In this paper, we consider
Np = 50.
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f) Fitness Function- The choice of the fitness function is
fundamental in order that a correct and efficient search of the solution
is carried out by the algorithm. In our problem the fitness is
a function that measures the distance between the theoretical and
the experimental reflection coefficient, bandwidth, and the maximum
reflection, which should be minimized. In this paper the fitness
function is proposed to be as

E =
ns∑
j

|ρexp(λj)−ρth(λj)|+|BWexp(λ)−BWth(λ)|+|ρexp(λ)−ρth(λ)|

(13)
where λj and ns are the sampled wavelengths of the reflection
coefficient and the number of samples respectively.

g) Operators- In this section we consider three most important
operators as
1. Selection- Selection options specify how the genetic algorithms
choose parents for the next generation. We choose this function
stochastically uniform. The selection function, stochastic uniform, lays
out a line in which each parent corresponds to a section of the line of
length proportional to its scaled value. The algorithm moves along
the line in steps of equal size. At each step, the algorithm allocates a
parent from the section it lands on. The first step is a uniform random
number less than the step size.
2. Crossover- Crossover options specify how the genetic algorithm
combines two individuals, or parents, to form a crossover child for
the next generation. Crossover function specifies the function that
performs the crossover. We used the two point function for crossover.
Two-point function selects two random integer m and n between 1 and
Number of variables.

The function selects
- Vector entries numbered less than or equal to m from the first

parent.
- Vector entries numbered from m+1 to n, inclusive, from the second

parent.
- Vector entries numbered greater than n from the first parent.

The algorithm then concatenates these genes to form a single gene.
For example, if p1 and p2 are the parents p1 = [a b c d e f g h], p2 =
[1 2 3 4 5 6 7 8] and the crossover points are 3 and 6, the function
returns the following child.

Child = [a b c 4 5 6 g h].
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3. Mutation- Mutation options specify how the genetic algorithm
makes small random changes in the individuals in the population to
create mutation children. Mutation provides genetic diversity and
enables the genetic algorithm to search a broader space. We choose
the Gaussian function as the mutation operator.

4. SIMULATION RESULTS AND DISCUSSION

In this section several examples are used to demonstrate the previously
described algorithm. For simulation we consider five mediums.

1- Gaussian apodization profile
2- Rise-cosine apodization profile
3- Sinc apodization profile
4- Linear chirped profile
5- Gaussian apodization and linear chirped profile

After discrimination of the medium by first part of the proposed
approach, the algorithm starts to identify the unknown parameters.
For uniform FBG the following values are considered.

1. The length of grating (L) = 10 mm,
2. The period of grating (Λ) = 0.5356µm,
3. The effective refractive index (neff ) = 1.447.

For the all of histogram figures (Current best individual versus number
of variables), the parameters are normalized as follows.

For example, δn(z) = 8 × 10−4 and α = 0.5 × L are shown with
only 8 and 5 respectively.

4.1. Gaussian Apodization Profile

In this case the Gaussian profile for apodization (g(z)) is considered.
So, the modulation depth of the index of refraction (∆n(z)) is as
follows.

∆n(z) = δn(z) exp
[
−20

(
z − 0.5L

α

)]
(14)

For this Apodization the amplitude of the index modulation (δn(z))
and the Gaussian parameter (α) are important and affect the FBG
characteristics strongly. Fig. 5 shows effect of the parameters on
the reflection coefficient and apodization profile respectively. For
illustration of these effects three following cases are considered.

1- δn(z) = 8 × 10−4, α = 0.5 × L (Solid line)
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Figure 5. The modulation depth of the refractive index and the
corresponding reflection coefficient for three considered cases.

2- δn(z) = 4 × 10−4, α = 0.9 × L (Dash line)
3- δn(z) = 2 × 10−4, α = 0.2 × L (Dash-dot line)

For this case the initial population for individuals considered as

U =
[
δn(z) α

]
50×2

(15)

The measured reflection coefficient for Gaussian apodization corre-
sponds to the full numerical simulation for α = 0.5 × L, δn(z) =
8 × 10−4, and the reconstructed medium parameters using our pro-
posed approach are α = 0.499666 × L and δn(z) = 7.99885 × 10−4.
As it is shown the reconstructed values are so close to input measured
values.

Fig. 6 shows the evaluated fitness function in each generation as
well as the calculated parameters.

To illustrate the ability of the reconstruction of the medium,
we show the coupling coefficient of the medium in both real and
reconstructed parameters in Fig. 7. As it is illustrated the curve
corresponding to the real parameters (solid line) and reconstructed
parameters (dot line) are so close together and this shows the ability
of the proposed approach.



342 Rostami and Yazdanpanah-Goharrizi

Figure 6. The evaluated fitness function and the calculated
parameters.
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Figure 7. The coupling coefficient for real parameters (solid lines)
and reconstructed ones (dot lines).
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Figure 8. The modulation depth of the refractive index and the
corresponding reflection coefficient for three considered cases.

4.2. Rise-Cosine Apodization Profile

In this case the Rise-Cosine profile for apodization (g(z)) is considered.
So, the modulation depth of the index of refraction (∆n(z)) is as
follows.

∆n(z) = δn(z) cosn
(

0.5π
[
2 × (z − 0.5L)

L

])
(16)

In this apodization the amplitude of the index modulation (δn(z)) and
the power degree (n) are important and affect the FBG characteristics
strongly. Fig. 8 shows the effect of the parameters on the reflection
coefficient and apodization profile respectively. For illustration of these
effects three following cases are considered.

1- δn(z) = 4 × 10−4, n = 1.5 (Solid line)
2- δn(z) = 6 × 10−4, n = 5 (Dash line)
3- δn(z) = 9 × 10−4, n = 10 (Dash-dot line)

For this case the initial population for individuals considered as

U =
[
δn(z) n

]
50×2

(17)

The measured reflection coefficient for Rise-Cosine apodization
corresponds to the full numerical simulation for n = 1.5, δn(z) =
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4×10−4, and the reconstructed medium parameters using our proposed
approach are n = 1.49584 and δn(z) = 3.99949× 10−4. As it is shown
the reconstructed values are so close to input measured values.

Fig. 9 shows the evaluated fitness function in each generation as
well as the calculated parameters.
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Figure 9. The evaluated fitness function and the calculated
parameters.

To illustrate the ability of the reconstruction of the medium,
we show the coupling coefficient of the medium in both real and
reconstructed parameters in Fig. 10. As it is illustrated the curve
corresponding to the real parameters (solid line) and reconstructed
parameters (dot line) are so close together and this shows the ability
of the proposed approach.

4.3. Sinc Apodization Profile

In this case the Sinc profile for apodization (g(z)) is considered. So,
the modulation depth of the index of refraction (∆n(z)) is as follows.

∆n(z) = δn(z) sin cn
(

2π
[
(z − 0.5L)

L

])
(18)
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Figure 10. The coupling coefficient for real parameters (solid lines)
and reconstructed ones (dot lines).
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Figure 11. The modulation depth of the refractive index and the
corresponding reflection coefficient for three considered cases.

In this apodization the amplitude of the index modulation (δn(z)) and
the power degree (n) are important and affect the FBG characteristics
strongly. Fig. 11 shows the effect of the parameters on the reflection
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coefficient and apodization profile respectively. For illustration of these
effects three following cases are considered.

1- δn(z) = 6 × 10−4, n = 2 (Solid line)
2- δn(z) = 3 × 10−4, n = 5 (Dash line)
3- δn(z) = 9 × 10−4, n = 10 (Dash-dot line)

For this case the initial population for individuals considered as

U =
[
δn(z) n

]
50×2

(19)

The measured reflection coefficient for Sinc Apodization corresponds
to the full numerical simulation for n = 2, δn(z) = 6 × 10−4, and
the reconstructed medium parameters using our proposed approach
are n = 2.00259 and δn(z) = 5.9938 × 10−4. As it is shown the
reconstructed values are so close to input measured values.

Fig. 12 shows the evaluated fitness function in each generation as
well as the calculated parameters.
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Figure 12. The evaluated fitness function and the calculated
parameters.

To illustrate the ability of the reconstruction of the medium,
we show the coupling coefficient of the medium in both real and
reconstructed parameters in Fig. 13. As it is illustrated the curve
corresponding to the real parameters (solid line) and reconstructed
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Figure 13. The coupling coefficient for real parameters (solid lines)
and reconstructed ones (dot lines).

parameters (dot line) are so close together and this shows the ability
of the proposed approach.

4.4. Linear Chirp Profile

In this case linear chirped is considered. According to linear chirp
function the following relation is defined [28].

1
2
dΦ
dz

= F
z

L2
, (20)

where F is the chirp parameter and defined as

F =
L2

z2
Φ(z) = −4πneff

L2

λ2
D

dλD

dz
, (21)

where dλD
dz is the rate of the chirp in the complex Bragg grating.

1- δn(z) = 8 × 10−4, dλD
dz = 3 × 10−7 (Solid line)

2- δn(z) = 2 × 10−4, dλD
dz = 2 × 10−7 (Dash line)

3- δn(z) = 4 × 10−4, dλD
dz = 4 × 10−7 (Dash-dot line)
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Figure 14. The Chirp function and the corresponding reflection
coefficient for three considered cases.

For this case the initial population for individuals considered as

U =
[
δn(z)

dλD

dz

]
50×2

(22)

The measured reflection coefficient for Linear Chirped function
corresponds to the full numerical simulation for dλD

dz = 3 ×
10−7, δn(z) = 8 × 10−4, and the reconstructed medium parameters
using our proposed approach are dλD

dz = 2.99884 × 10−7 and δn(z) =
7.9955 × 10−4. As it is shown the reconstructed values are so close to
input measured values.

Fig. 15 shows the evaluated fitness function in each generation as
well as the calculated parameters.

To illustrate the ability of the reconstruction of the medium,
we show the coupling coefficient of the medium in both real and
reconstructed parameters in Fig. 16. As it is illustrated the curve
corresponding to the real parameters (solid Line) and reconstructed
parameters (dot Line) are so close together and this shows the ability
of the proposed approach.
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Figure 15. The evaluated fitness function and the calculated
parameters.

0 2000 4000 6000 8000 10000
2.5

2

1.5

1

0.5

0
x 10

6

position(micrometre)

C
hi

rp
 f

un
ct

io
n

Linear chirp

−

−

−

−

−

Figure 16. The Chirp function for real parameters (solid lines) and
reconstructed ones (dot lines).
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Figure 17. The coupling coefficient, Chirp function and the reflection
coefficient.

4.5. Gaussian Apodization and Linear Chirped Profile

In this case, we consider simultaneously the Gaussian Apodization and
Linear chirp function for investigating. For this case the following data
are used.

1- δn(z) = 5 × 10−4, dλD
dz = 2 × 10−7, α = 0.9 × L (Solid line)

2- δn(z) = 6 × 10−4, dλD
dz = 3 × 10−7, α = 0.6 × L (Dash line)

3- δn(z) = 9 × 10−4, dλD
dz = 5 × 10−7, α = 0.3 × L (Dash-dot line)

For this case the initial population for individuals considered as

U =
[
δn(z)

dλD

dz
α

]
50×3

(23)

The measured reflection coefficient for simultaneous Gaussian
apodization and Linear Chirped function corresponds to the full
numerical simulation for dλD

dz = 2 × 10−7, δn(z) = 5 × 10−4, α =
0.9×L, and the reconstructed medium parameters using our proposed
approach are dλD

dz = 2.00013 × 10−7, α = 0.894597 × L and δn(z) =
4.99864× 10−4. As it is shown the reconstructed values are so close to
input measured values.

Fig. 18 shows the evaluated fitness function in each generation as
well as the calculated parameters.
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Figure 18. The evaluated fitness function and the calculated
parameters.
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for real parameters (solid lines) and reconstructed ones (dot lines).
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To illustrate the ability of the reconstruction of the medium,
we show the coupling coefficient of the medium in both real and
reconstructed parameters in Fig. 19. As it is illustrated the curve
corresponding to the real parameters (solid line) and reconstructed
parameters (dot line) are so close together and this shows the ability
of the proposed approach.

5. CONCLUSION

In this paper a novel method for discrimination and identification of
the complex Bragg Gratings has been developed. For this purpose the
Genetic Algorithm was used. The proposed method has been applied
to five interesting cases. In all cases, the presented method had good
compatibility with full numerical simulations. The presented method
is new and able to identify so complex mediums.
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