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Abstract—The ambiguity functions of a kind of direct chaotic radar
system are investigated. In this radar system, a microwave chaotic
Colpitts oscillator is employed to generate the source signal that is
directly transmitted through a wideband antenna without modulation.
The auto-ambiguity function of this radar system shows many sidelobes
which makes the unambiguous detection difficult. It is because the
spectrum of the chaotic signal is not very flat and smooth, with
pulsation peaks in it. The cross-ambiguity functions of the direct
radar system have also been investigated to evaluate the electronic
counter countermeasure (ECCM) performance and the “multi-user”
characteristic. It is shown that rather excellent ECCM capability can
be achieved in this radar system with transmitting chaotic signals
generated by circuits with same parameters but at different time or
with slightly different circuit parameters. In addition, several possible
methods to reshape the spectrum of the chaotic signal from microwave
Colpitts oscillators to improve the unambiguous detection performance
are suggested at the end of this paper.



2 Shi et al.

1. INTRODUCTION

Radar has gone through a history for more than 100 years. In
recent years, new techniques are continuously applied in various radar
systems [1–5]. Among various kinds of radars, the random signal radar
(RSR) refers to radars whose transmitted waveforms are random or
random-like in contrast to conventional pulse, continuous wave (CW),
frequency-modulation (FM) or FM/CW radars [6]. Because of the
random transmitted signal, RSRs posses good ECCM capability, very
low probability of intercept (LPI), and counter electronic support
measure capability. In contrast, the ultra wide band (UWB) [7]
radars have the merits of high range resolution, enhanced clutter-
suppression capability, good penetration detection, anti-jamming and
etc. [8]. Combining both the merits of RSR radar and UWB radar, an
UWB RSR radar is of great importance to both military and civilian
applications. However, in this type of radar system, how to generate
the UWB random signal is regarded as a rather difficult problem.

Chaos is a kind of phenomena in deterministic nonlinear
dynamical system, which is aperiodic and sensitively depends on its
initial value. Traditionally, most of the applications for chaos study
are restricted in communication fields, such as secure communications
or broadband communications. In recent years, with their noise-like
property in time domain and broadband characteristic in frequency
domain, possibilities of exploiting chaotic signals in RSRs have been
studied by some researchers. In year 1998, ambiguity functions of a
chaotic phase modulated radar are investigated, which is probably the
first work incorporating the concept of chaos into radar [9]. In year
2000, the authors in Ref. [10] raised the concept of “chaotic radar
systems” for the first time. Performances of chaotic FM, amplitude-
modulation (AM), phase-modulation (PM) and pulse modulation
radars have been reported and these radar systems have been applied
to vehicular collision-avoidance, through-the-wall imaging, homeland
security and so on [9, 11–14]. In most of the above works, chaotic
signals were generated by discrete map and employed into radar
systems as baseband signal for modulation such as FM, PM, etc. As a
result, the bandwidth of transmitting radar signals is limited to several
MHz level, which can not meet the requirements of UWB RSR.

To utilize the unique merits of UWB RSR, one can employ chaotic
signals generated in microwave band or laser band. Chaos can be
generated in laser band rather easily, and the laser based chaotic
radar system, along with its ambiguity functions, has been exploited
[8, 15, 16]. Regarding the microwave chaotic signals, it is not until
recent years that chaotic circuits with fundamental frequency more
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than 1 GHz were implemented [17–19], where the Colpitts oscillator
is the major candidate due to its simple circuit structure. Details of
design and implementation of microwave chaotic Colpitts oscillator and
possibility of using the generated signal to design a direct chaotic radar
have been discussed in [18, 20].

By using the microwave chaotic signals generated from Colpitts
oscillator, besides the merits of UWB RSR, the direct chaotic radar has
advantages over those with FM/AM/PM chaos modulation since the
system structure can be simplified when no modulation/demodulation
is required. Another possible advantage of the direct chaotic radar
is, by varying the operating condition, the dynamics in a Colpitts
oscillator can be easily switched among different states, and the
corresponding diverse waveforms with different characteristics are
highly desirable, since it provides the property of “multi-user”, which
is required when large number of radars with same scheme co-exist,
in applications such as anti-collision vehicle-borne radars. When
compared with laser-based chaotic radar, the direct chaotic radar
employing Colpitts oscillator has the advantages of simple circuit
structure and low fabrication cost.

Generally, ambiguity function is used to describe the detection
property of a radar system in both the range and range rate domains.
The purpose of this paper is to study the ambiguity functions of the
direct chaotic radar employing a microwave Colpitts oscillator to see
the feasibility of such system. We borrowed the research method
from [8] to study the auto-ambiguity function and cross-ambiguity
function. The direct radar structure is described in Section 2, and
ambiguity functions will be analyzed in Section 3. Section 4 presents
discussions and conclusions.

2. DIRECT CHAOTIC RADAR

The direct chaotic radar employing a microwave chaotic oscillation
source is shown in Fig. 1. Chaotic signal from the oscillation source
is split into two channels, the signal and the reference. The signal
waveform is isolated and driven by a buffer amplifier, and then directly
radiated by a transmitter antenna after a power amplifier. If there is
a target in air, the backscattered signal (echo) will be received by the
receiver antenna, and after going through a low noise amplifier and an
adaptive filter, the chaotic signal with noise and delay reaches the chaos
synchronization circuit, as illustrated in [20], where a delayed copy of
the source chaotic signal will be re-generated. Then the delayed version
of chaotic signal and the reference waveform will be processed by a
signal processing unit, where target detection and localization can be
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Figure 1. Architecture of the direct chaotic radar.

accomplished. The signal from the microwave chaotic oscillation source
can be used as the transmitting signal without further modulation, and
directly radiated to free space with wideband antenna, which has been
proved feasible in [21].

In this paper, we study the ambiguity functions of the direct
chaotic radar system shown in Fig. 1, where a chaotic Colpitts
oscillator is used as the microwave chaotic oscillation source. The
basic configuration of a Colpitts oscillator is shown in Fig. 2. It
contains a bipolar junction transistor (BJT) as the gain element and
a resonant network consisting of an inductor and a pair of capacitors
[22]. The transistor is modelled with a voltage-controlled nonlinear
resistor RE and a linear current-controlled current source, neglecting
the base current. The driving-point characteristics of the nonlinear
resistor RE can be expressed as:

IE = f(VBE) = Is

(
exp

(
VBE

VT
− 1

))
(1)

where Is is the inverse saturation current and VT � 26 mV at room
temperature. The state equations for the Colpitts oscillator shown in
Fig. 1 are:

C1
dVC1

dt
= −f(−VC2) + IL

C2
dVC2

dt
= IL − VC1 + V ee

Re
(2)
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Figure 2. (a) Colpitts oscillator and (b) equivalent circuit model of
the BJT in (a).

The modelling, nonlinear dynamics of the Chaotic Colpitts
oscillator have been studied in detail [22], and the design and
implementation of microwave chaotic oscillators have been discussed
by several researchers [17–19, 23]. The randomness characteristic
of chaotic signal from microwave Colpitts oscillator has also been
investigated [24]. It has been verified that chaotic signal with
fundamental frequency more than 1 GHz can be generated by
fabricated circuit and the experimental results agree well with the
circuit simulation in Advanced Design System (ADS) simulator. Since
it is difficult to sample the chaotic signal with fundamental frequency
more than 1 GHz, we use the simulated waveform from ADS to conduct
the ambiguity function research of the direct chaotic radar system.

The BJT used in the Colpitts oscillator in Fig. 2 is Philips
BFG425W, whose threshold frequency is 25 GHz. The parameters of
circuit components, namely the resistance R, Re, the inductance L,
the capacitance C1, C2, the voltage source V cc and V ee, are critical
because they determine whether the chaotic oscillation can be achieved
and the fundamental frequency of the oscillation. These parameters
can be selected under the guidance of Ref. [24], given the prescribed
fundamental frequency. In our simulations, the circuit parameters
are listed as follows: V cc = 10 V, V ee = −10 V, R = 25 Ohm,
Re = 1.6 kOhm, L = 4.5 nH, C1 = 4 pF, C2 = 4 pF. Simulations of
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Figure 3. (a) Time domain waveform of VC2 , (b) attractor in VC2-VC1

plane and (c) spectrum of signal VC2 .

circuit by using ADS are plotted in Fig. 3.
Fig. 3(a) shows the time-domain waveform of one of the voltage

node VC2 , which is a noise-like signal. Fig. 3(b) plots the projection
of the attractor in the phase space into the VC2-VC1 plane. This is
a typical chaotic attractor of Colpitts oscillator. Fig. 3(c) shows the
broadband continuous spectrum of the signal VC2 .
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3. AMBIGUITY FUNCTION ANALYSIS

In the direct chaotic radar system employing a microwave Colpitts
oscillator, as shown in Fig. 2, the broadband microwave chaotic
waveforms are transmitted and received as baseband signal. Without
modulating the baseband signal with a carrier as in conventional
radars, the Doppler effect will cause only the compression or stretch of
the transmitted signals when the targets are moving. The delay rate
for a point target is defined as α = 2v/(c − v) � 2v/c, where v is the
constant velocity and c is the speed of light. As in [8], the ambiguity
function is defined as:

〈χ(τ, α, T )〉 =
∫ t+T

t
ur(t)us((1 + α)t − τ)dt (3)

where ur and us are the reference and the signal waveforms, τ is the
relative delay time between the reference and the signal waveforms,
and T is the correlation interval.

Figure 4. Auto-ambiguity function of the direct chaotic radar
employing a microwave Colpitts oscillator.

Fig. 4 shows the auto-ambiguity function of the direct chaotic
radar employing the chaotic Colpitts oscillator for waveform
generation. The auto-ambiguity function is obtained by auto-
correlating the chaotic waveforms shown in Fig. 3(a) with a correlation
interval T of 10 us. As can be seen, the auto-ambiguity function shown
in Fig. 4 has many sidelobes that make unambiguous detection difficult.
Fig. 5 shows the contours of the auto-ambiguity function shown in
Fig. 4. It can be seen that many islands are found along the zero delay
rate axis in the contour of the ambiguity function.
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Figure 5. Contours of the auto-ambiguity function of the direct
chaotic radar employing a microwave Colpitts oscillator.

The information in Fig. 4 and Fig. 5 is somewhat contrary to
one’s intuition that the direct chaotic radar should has an ideal
thumbtack-like ambiguity function. The reason for this can be
interpreted as follows. Theoretically, ideal thumbtack-like auto-
ambiguity function can only be obtained if the transmitted signal is
strictly random, characterized by a very smooth and flat spectrum with
broad bandwidth. From the spectrum of chaotic signal of the Colpitts
oscillator shown in Fig. 3(b), it can been seen that the spectrum is not
very flat and smooth, on the contrary, it is spiky with a major pulsation
frequency at around 1.3 GHz. The 1.3 GHz is generally referred as the
fundamental frequency f0 of the chaotic Colpitts oscillator. If we define
the quasi-period of the oscillator as τ0, the rough relationship between
the quasi-period and the fundamental frequency is:

τ0 = 1/f0 (4)

For f0 = 1.3 GHz, it is easily obtained that τ0 = 0.77 ns. From
the time-domain chaotic signal shown in Fig. 3(a), similarity between
signals with a time distance of τ0 can be easily found. Here the
similarity means that both the signals have positive or negative values
when the DC components are removed. When the time distance is
about 2τ0, 3τ0, ..., nτ0, similarity also exists but will decay with the
increment of time distance. It is exactly this similarity that results in
the sidelobes along the zero delay rate axis in the ambiguity function
shown in Fig. 4.

To our knowledge, for most kinds of analog chaotic circuits, there
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will be pulsation peaks in the continuous but not very smooth and flat
spectrum, and this may cause the difficulty of unambiguity detection
when using them as the transmitted signal in direct chaotic radar
systems. To improve the performance of the auto-ambiguity function
in such systems, the spectrum of output chaotic signals should be
optimized.

The above analysis can be confirmed by the research in [8],
where two kinds of chaotic optical signals generated by OEF and
OI schemes were used in the CRADAR system and the ambiguity
functions were studied. The chaotic waveform generated by the OI
scheme has a rather flat and smooth broadband spectrum and better
ambiguity function plot while the chaotic waveform from the OEF
scheme has a spiky spectrum and thus it has many sideslobes in the
auto-ambiguity function. In addition, in [9, 12], since the chaotic
signals generated by digital chaotic circuit have rather smooth and
flat spectrum, the corresponding ambiguity functions can have ideal
thumbtack-like shapes.

Note that the island in Fig. 5 is skewed along the same direction.
The skewness in the direct chaotic radar system is caused by the
coupling between the delay time τ and the delay rate α as shown
in Equation (3). This is different from the ridges seen in linear FM
and stepped frequency radar systems which are due to the coupling
between the Doppler frequency shift and the modulation frequency
generated. The skewness characteristic results in that the radar has a
slightly better unambiguity detection performance in the second and
fourth quadrants of the delay-delay rate plane than in the first and the
third quadrants.

In modern radar systems, besides considering the unambiguous
detection performance, another very important performance parameter
is the ECCM capability. Specifically, when anti-collision vehicle-borne
radars is considered, it has to be co-existent with a number of radars
with the same schemes, or it should be with the property of “multi-
user”, similar to a large-volume wireless communication system, such
as a cellular system. Chaotic signals are noise-like, however, they are
not real white noise and not necessarily uncorrelated with each other
for a given time interval. Actually, they strongly depend on their
complexity and predictability, which are mainly determined by the
largest positive Lyapunov exponent.

To study the ECCM capability and the “multi-user” property
of the direct chaotic radar employing microwave chaotic Colpitts
oscillator, Figs. 6(a) and (b) plot the cross-ambiguity functions of
chaotic waveforms with same and slightly different circuit parameters.
Fig. 6(a) is obtained by cross-correlating the chaotic signal shown in
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Figure 6. (a) Cross-ambiguity function with same circuit parameters
and (b) Cross-ambiguity function with slightly different circuit
parameters.

Fig. 3(a) with the same circuit parameters but at a different time with
a correlation interval of T = 10 us. Fig. 6(b) is obtained using the
same method but from two Colpitts oscillators with slightly different
parameters. One circuit has the same parameters as listed above,
but the other changes the value of R (R = 27 Ohm). The above
simulations were conducted to understand the situations that one such
direct chaotic radar is interfered with another similar scheme radar
system.

From Fig. 6, it can be seen that only very small ripples appear
on the surfaces and there are no discernible peaks. The rather
excellent cross-ambiguity functions indicate that the chaotic signals
generated by circuits with same parameters but at large different time
or with slightly different circuit parameters has non-repetitive random
features. Since they are not repetitive, they barely correlated with each
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other. Thus, rather excellent ECCM capability can be achieved in the
direct chaotic radar systems. This is similar to the case in laser-based
chaotic radar in [8].

4. DISCUSSIONS AND CONCLUSIONS

In this paper, the ambiguity functions of a kind of direct chaotic radar
system, which incorporates a microwave chaotic Colpitts oscillator,
have been studied. The time-domain, frequency domain chaotic
signal and chaotic attractor of the Colpitts oscillator are presented
for illustration. The auto-ambiguity function of direct chaotic radar
system using chaotic signal from the Colpitts oscillator shows many
sidelobes which makes the unambiguous detection difficult. It is
because that the spectrum of the chaotic signals is not very flat
and smooth, with pulsation peaks in it. From the time-domain
view, the chaotic signals with time distance of τ0, 2τ0, ..., nτ0 (n is
small) have similarities which result in the sidelobes. To improve the
unambiguous detection performance, the spectrum of chaotic signal
from the microwave Colpitts oscillator has to be optimized, that is,
the randomness characteristics of the microwave chaotic signal still
need improvement.

The cross-ambiguity functions of the direct radar system have
also been investigated to evaluate the ECCM performance and the
“multi-user” characteristic when the radar system is used as anti-
collision vehicle-borne radar. Rather excellent ECCM capability can be
achieved in the direct chaotic radar system with transmitting chaotic
signals generated by circuits with same parameters but at different
time or with slightly different circuit parameters.

To improve the unambiguous detection of the direct chaotic radar
system, the following possible methods are suggested to optimize
the spectrum of chaotic signals generated by the microwave Colpitts
oscillator. The most direct and intuitive way is to adjust the circuit
parameters of the microwave Colpitts oscillator. In the different
parts of the bifurcation diagram of Colpitts oscillator, the dynamic
characteristics are different, especially when they belong to different
types of chaos region, namely the Feigenbaum chaos or the Shil’nikov
chaos region [22]. Finding operating condition with more abound
dynamic characteristics can help improve the signal spectrum.

The second method is to use analog filter to reshape the spectrum
and make it more flat and smooth. The feasibility of this method has
been suggested and confirmed by [25]. The third way is to introduce
one or more passive devices into suitable positions in the Colpitts
oscillator to improve the nonlinear dynamics, as suggested in [26].
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