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Abstract—An approximate perturbative technique for the analysis
of electromagnetic scattering from dielectric bodies of arbitrary shape
containing dielectric inclusions, illuminated by an arbitrarily polarized
incident plane wave, is investigated. The perturbative approach
here presented allows for the efficient computation of the scattering
properties of a given body as the inclusions vary, with a formulation
solving only for the inclusion bound field component.

1. INTRODUCTION

In the past few years many efforts have been done in studying
and realizing artificial structures to develop composite materials that
present new response functions which do not occur in nature. Example
of materials which show interesting electromagnetic behaviour in the
visible region are plasmonic materials [1]. This is due to the presence of
electric resonances in the microscopic molecular domain that induce an
overall negative electric permittivity for the bulk medium [2]. Recently,
by mimicking the molecular functions that cause these anomalous
resonances in a larger scale, metamaterials with non standard values of
their constitutive parameters have been proposed and synthesized by
properly embedding suitably shaped inclusions in a given host medium.
Examples of such engineered materials are double negative, DNG,
materials which are artificial materials showing simultaneous negative
real permittivity and permeability properties [3–7].

In [8] a composite medium consisting of insulating magneto-
dielectric spherical particles embedded in a background matrix has
been studied to show that such a material behaves as an effective
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DNG. In that work it is shown that the properties of an array of
spherical particles can be efficiently exploited to obtain electromagnetic
characteristics similar to that ones of an array of more complicated
conducting scatterers. A typical geometry of a composite structure
consists of a background medium embedding spherical inclusions. The
diameter of these magneto-dielectric “atoms” and their spacing are
typically large compared to molecular dimensions, but still small with
respect to the wavelength in the host material. The electromagnetic
behaviour of this composite structures can be investigated by means
of an homogenized model with proper effective constitutive parameters
[9]. The parameters of the homogenized model depend on those ones
characterizing both the inclusions and the host medium, as well as on
geometry and spacing of the inclusions [10].

By using the homogenization equation presented in [10], the
electromagnetic behaviour of an arbitrary shaped inhomogeneous
magneto-dielectric body can be studied by using its homogeneous
equivalent. In this case the electromagnetic scattering can be efficiently
evaluated by means of a standard Method of Moments, MoM, for the
solution of a Surface Integral Equation (SIE) on the surface of the
body. If the homogenized model does not provide sufficiently accurate
results, one have to characterize the actual body and the numerical
procedure becomes very onerous.

A full-wave numerical procedure to determine the electromagnetic
field induced inside arbitrary shaped dielectric bodies illuminated by
an incident plane wave propagating in arbitrary direction and with
arbitrary polarization has been presented in [11]. In that paper the
Method of Moments technique is exploited to solve a Volumetric
Integral Equation (VIE) within the inhomogeneous material. It is well
known that the Method of Moments is very accurate but becomes very
onerous especially when it is applied to the solution of a VIE relevant to
a body whose dimensions are not small with respect to the wavelength.

On the other hand in [12] an accurate and efficient hybrid
technique for the analysis of electromagnetic scattering from an
infinite periodic structure containing an impurity is presented. In
that contribution a 2D problem is analysed by means of a two-step
approach. In the first step the periodic structure is considered without
the impurity using a hybrid technique which combines a finite element
method (FEM) and a Floquet modes analysis. In the second step the
presence of the impurity is taken into account by applying a Method
of Moments for the solution of a SIE in a broad region of the lattice
containing the impurity and solving for a corrective term to be added
to the field of the original problem.

In this contribution an approximate perturbative technique for
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the analysis of electromagnetic scattering from dielectric bodies of
arbitrary shape containing dielectric inclusions is investigated. The
perturbative approach here presented has the advantage to efficiently
analyse the scattering properties of a dielectric body with different
types of inclusions, exploiting the same numerical tool used to
characterize the homogeneous bulk.

The paper is organized as follows: the geometry and the
mathematical derivation of the problem are described in Section II;
then, the iterative numerical procedure is described in detail in Section
III. Section IV describes some numerical results obtained through the
application of the technique proposed. Finally some conclusions are
drawn in Section V.

2. FORMULATION

The problem under investigation consists of a host dielectric medium of
arbitrary shape and dielectric constant embedding material inclusions
as sketched in Fig. 1. The composite material is illuminated by
an incident plane wave propagating in an arbitrary direction and
arbitrarily polarized. The medium is assumed to be linear and isotropic
with dielectric constant as follows:

εr(r′) =
{

εh if r′ ∈ V1\V2

εi if r′ ∈ V2
(1)
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Figure 1. Geometry of the problem under consideration. An
arbitrary dielectric bulk contains material inclusions exhibiting a
different dielectric constant with respect to the host medium.
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where

V1 is the volume of the host dielectric body;
V2 is the sub-volume occupied by the inclusion;
εh is the dielectric constant of the host dielectric body;
εi is the dielectric constant of the inclusions.

The electric field scattered from the overall structure with the
inclusions, Es, can be recovered by applying the following numerical
scheme. The scattered field Es at an arbitrary observation point can
be written, by means of the volume equivalence theorem, in terms of
the electric polarization current J inside the composite material:

Es(r) = L{J(r′)} (2)

with
J(r′) = τ(r′)Etot(r′) (3)

where τ(r′) = jωε0[εr(r′) − 1] and the linear integro-differential
operator L{·} in (2) has the following expression, [11]:

L{·} = −
∫

V1

jωµ0{·}
[
e−jk0R

4πR
+

1
k2

0

∇∇ · e−jk0R

4πR

]
dV ′ (4)

In the framework of a perturbative technique, [13], the following series
expansion for the total electric field inside the volume can be assumed

Etot = E(0) +
K∑

k=1

E(k) (5)

where E(0) is the total electric field inside the volume for the
homogeneous bulk (non perturbed field) and E(k) are the contributions
to the total field which originate from the presence of the inclusions
(perturbative contributions); (k) represents the field order, being K
the maximum order.

As a basic step of the solution the field E(0) inside the bulk can be
evaluated in the hypothesis that there are no inclusions (homogeneous
non perturbed problem). A VIE is imposed inside the volume of the
homogeneous medium:

L
{
τhE(0)

}
− E(0) = −Ei (6)

where τh = jωε0[εh − 1] is relevant to the homogeneous dielectric body
without inclusions and Ei is the incident field.
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Introducing the total field due to the presence of the inclusions
and exploiting the linearity of the field operator the new VIE for the
composite material can be written as:

L
{
τhE(0)

}
+

K∑
k=1

L{τhE(k)} + L′{(τ − τh)E(0)} +

+
K∑

k=1

L′{(τ − τh)E(k)} − E(0) −
K∑

k=1

E(k) = −Ei (7)

where L′{·} represents the perturbed linear operator whose integration
is limited to the smaller volume V2.

Decomposing the two series and exploiting the knowledge of the
non perturbed problem, (5), in the hypothesis that the series in (4) is
convergent, it is possible to develop an iterative procedure to evaluate
every perturbative contribution from the previous one. At k-th step
of iteration the perturbative field of k-th order, 1 ≤ k ≤ K, is the
solution of the approximate VIE

L
{
τhE(k)

}
− E(k) = −L′{(τ − τh)E(k−1)} (8)

where the term L′{(τ − τh)E(k)} is neglected.
It is worth notice that the convergence of the series in (4) occurs

in all practical problems where the volume of the inclusions is small
compared to that one of the host material, as in the case of DNG
materials realized by embedding small ”atoms” in a large background
medium. If the volume of the inclusions is comparable to that one of
the host medium, the series in (4) does not converge and the iterative
procedure fails.

3. NUMERICAL PROCEDURE

The volumetric integral equation (6) can be solved via a standard
Method of Moments technique with pulse basis functions defined on
N cuboid discretization cells and point matching procedure. In the
matrix representation of the VIE, [G][E(0)] = −[Ei], [G] is a 3N × 3N
matrix with the following structure:




[Gxx] [Gxy] [Gxz]
[Gyx] [Gyy] [Gyz]
[Gzx] [Gzy] [Gzz]







[E(0)
x ]

[E(0)
y ]

[E(0)
z ]


 = −




[Ei
x]

[Ei
y]

[Ei
z]


 (9)
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while [E(0)] and [Ei] have dimension 3N and take the form:

[E(0)] =


 [E(0)

x ]
[E(0)

y ]
[E(0)

z ]


 [Ei] =




[Ei
x]

[Ei
y]

[Ei
z]


 (10)

For the evaluation of the [G] matrix elements see (20) and (22) of [11].
The solution [E(0)] can be determined by inverting [G].

The integral equation (8) is of the same form of (6) but differs for
the forcing term −L′{(τ − τh)E(k−1)}, thus its matrix representation
is formally the same of (9)

[G][E(k)] = −[B] (11)

where the forcing terms vector is now:

[B] =




[Bx]
[By]
[Bz]


 (12)

[Bx] =




B1
x

B2
x

...
Bm

x
...

BN
x




[By] =




B1
y

B2
y
...

Bm
y
...

BN
y




[Bz] =




B1
z

B2
z
...

Bm
z
...

BN
z




(13)

being Bm
x the x component of the scattered electric field in the m-th

cell, m = 1, ..N , due to the electric field contribution of order (k − 1)
in all the cells belonging to V2:

Bm
x =

N∑
n=1

{
[Em

x (Jn
x )](k−1) +

[
Em

x (Jn
y )

](k−1)
+ [Em

x (Jn
z )](k−1)

}
(14)

4. NUMERICAL RESULTS

The procedure presented above has been applied to a simple test case.
The structure under consideration is a dielectric cube embedding a
spherical inclusion, illuminated by an incident z-polarized plane wave
propagating in −x̂ direction at 1 GHz, Fig. 2.
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Figure 2. Geometry of the problem under consideration. A dielectric
cube embedding a concentric spherical inclusion, illuminated by an
incident plane wave.

The side of the cube is 0.7λ0 in length while the radius of the
sphere is 0.2λ0, being λ0 the wavelength of the free space. The
constitutive parameters of the composite material are εh = 4 and
εi = 6. In Fig. 3 the amplitude of the electric field contributions
in (5) averaged over the N cells of the mesh is reported up to the 5-th
order of iteration, to clearly show the convergence of the solution.

Table 1. Computation times.

εi MoM [s] Pert [s]

(0) (1) (2) (3) (4) (5) (6)

6 91 91 96 111 116 121 126 131

7 91 - 5 10 15 20 25 30

8 91 - 5 10 15 20 25 30

9 91 - 5 10 15 20 25 30

10 91 - 5 10 15 20 25 30

11 91 - 5 10 15 20 25 30

Total 546 91 121 161 191 221 251 281

Numerical results in Fig. 4 are relevant to the co-polar component
of the electric scattered far field on the vertical cut φ = 0. The reference
solution as computed via the Method of Moments is compared to the
approximate solution provided by the iterative perturbative procedure
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Figure 3. Mean value of the total electric field contributions at
different step of iteration.
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Figure 4. Co-polar scattered electric far field on plane φ = 0◦
evaluated by a standard MoM and by the perturbative procedure.

previously discussed. It is evident that the accuracy of the solution
improves at each step of iteration and that a good convergence is
reached at the 5-th order of approximation.

In Table 1 comparison between computation times relevant to
a standard MoM analysis procedure and the perturbative technique
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presented above is shown. The EM analysis has been performed
for the host material of the previous case with six different types of
spherical inclusions. For each type of inclusion computation times
are reported both for MoM and the perturbative technique up to six
order of approximation. It is worth noticing that we can solve the
0-th order problem once and then we can exploit the perturbative
approach to compute the correction terms which characterize different
inclusions. The last row of the table shows total computation times
required for the analysis of all the six configurations, by using MoM
and the perturbative technique with different order of approximation.

5. CONCLUSIONS

An approximate MoM based perturbative technique for the evaluation
of the electric field induced inside a composite dielectric material
and to characterize its scattering behaviour has been presented. The
perturbative approach has been exploited for the iterative solution of
a volumetric integral equation in the framework of a point-matching,
pulse function based Method of Moments technique.

The procedure is particularly advantageous in the aim of
investigating the electromagnetic behaviour of a specific host dielectric
medium with different types of inclusions. The solution of the
volumetric integral equation at each step of iteration actually requires
the evaluation of a forcing term which involves integrals over the small
volume V2, while the onerous task of filling and inverting the [G] matrix
can be performed only once, exploiting the same numerical tool used
for the solution of the non perturbed problem.

The numerical technique here presented provides accurate results
for all practical problems where the volume of the inclusions is small
with respect to the volume of the host medium. If this is not the case
the perturbative approach is not suitable and the iterative procedure
may fail.

REFERENCES

1. Liaw, J.-W., M.-K. Kuo, and C. N. Liao, “Plasmon resonances
of spherical and ellipsoidal nanoparticles,” Journal of Electromag-
netic Wave and Applications, Vol. 19, No. 13, 1787–1794, 2005.
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