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Abstract—In this paper, an accurate modeling procedure for GaAs
MESFET as active coupled transmission line is presented. This model
can consider the effect of wave propagation along the device electrodes.
In this modeling technique the active multiconductor transmission
line (AMTL) equations are obtained, which satisfy the TEM wave
propagation along the GaAs MESFET electrodes. This modeling
procedure is applied to a GaAs MESFETs by solving the AMTL
equations using Finite-Difference Time-Domain (FDTD) technique.
The scattering parameters are computed from time domain results over
a frequency range of 20–220 GHz. This model investigates the effect
of wave propagation along the transistor more accurate than the slice
model, especially at high frequencies.

1. INTRODUCTION

Due to the required increasing performance and lower cost, monolithic
microwave integrated circuits (MMICs) are evolving with a large
number of closely packed passive and active structures, several
levels of transmission lines and discontinuities on the same chip [1].
With the increasing flow of data in telecommunication world, the
high-performance electronics that are based on MMIC technologies
operating at high speeds, frequencies, and sometime over very broad
bandwidths are needed. Also by increasing the operating frequency,
devices and circuits need to more and more accurate techniques
for modeling and simulation [2]. For accurate device modeling an
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electromagnetic interaction must be taken into account, especially
when the gate width is on the order of the wavelength [2]. When
the device dimension become comparable to the wavelength the input
active transmission line, the gate electrode, has a different reactance
from the output transmission line, the drain electrode. Therefore, they
exhibit different phase velocities for the input and output signals. So
by increasing the frequency or device dimension the phase cancellation
due to the phase velocity mismatching will effect the performance of
the device [3, 4]. In such cases, wave propagation effect influences the
electrical performance of the device, so this phenomena needs to be
considered accurately in device modeling. The full wave analysis and
global modeling approach can be used to consider the wave propagation
effect along the device structure, accurately. But, this type of analysis
is time consuming and needs a huge CPU time. Although, some
efficient numerical methods have been recently proposed for simulation
time reduction [5–9], but it sounds that this analysis approach needs
more attention for implementing in simulation software. On the
other hand, device behavior in high frequencies can be well described
using semi-distributed model which can be easily implemented in
CAD routines of simulators [9–12]. But the semi-distributed model
cannot consider wave propagation effect and phase cancellation on the
electrical performance of the device [2]. In the paper, we propose a
new modeling procedure for GaAs MESFET which can consider the
effect of wave propagation along the device electrodes. In the proposed
approach, the transverse electromagnetic (TEM) wave propagation is
investigated on the electrodes of the device. In this model, the device
width is divided into infinity segments. Each segment is considered
as a combination of three coupled lines and a conventional equivalent
circuit of a GaAs MESFET. Its parameters in the MESFET model
circuit are obtained from DC and low frequency measurements (Fig. 2).
The transmission line theory is applied to a segment of transistor to
obtain the wave equation in a GaAs MESFET structure. Now this
system of differential equations (active multiconductor transmission
line (AMTL) equation) must be solved. Since a time domain analytical
solution doesn’t exist for this system, this problem is needed to
solve using a numerical technique. The Finite Difference Time
Domain (FDTD) method is widely used in solving various kinds of
electromagnetic problems, wherein lossy, nonlinear, inhomogeneous
media and transient problem can be considered [13]. This technique
is used to solve the obtained equations. By applying this modeling
technique, the scattering parameters of a sub micrometer-gate GaAs
transistor are calculated over a frequency range of 20–220 GHz. The
results achieved from this model (Fully distributed) are compared with
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slice model. It is shown, at the low frequencies, the results of semi-
distributed and fully distributed models are the same. By increasing
the frequency, the results of two models are not in a good agreement.
Because the fully distributed model is a modified version of the semi-
distributed one when the number of slices increases to the infinity and
consider the wave propagation, we expect the proposed method become
more accurate. This is confirmed by comparing the S-parameters
calculated using both models over a wide frequency band.

Figure 1. The schematic of GaAs MESFET.

2. MODEL IDENTIFICATION

A typical millimeter-wave field effect transistor is shown in Fig. 1. The
device consists of three coupled electrodes fabricated on a thin layer
of GaAs supported by a semi-insulating GaAs substrate. As operating
frequency of the microwave GaAs MESFETs increase to the millimeter
wave range, the dimensions of the electrodes become comparable to
the wavelength. In this situation the transmission line properties of
the electrodes need to be considered [22–24]. Fully distributed model
is one of the accurate models which is applied to calculate the effect of
wave propagation along the electrodes of a GaAs MESFET.

For low enough frequencies, the longitudinal EM field is very
small in magnitude as compared to the transverse field [2, 3].
Therefore we can consider quasi-TEM modes and the generalized
active multiconductor transmission line (AMTL)’ equation. This
equation can be used to describe the instantaneous voltage and current
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Figure 2. An equivalent circuit model of a differential length of a
transistor (AMTL).

relationship in the transistor. Consider an element portion of length
of a three-Active transmission line. We intend to find an equivalent
circuit for this line and derive the transistor equations. An equivalent
circuit of a portion of the transistor is shown in Fig. 2. Each
segment is represented by a 6-ports equivalent circuit which combines
a conventional MESFET small signal circuit model and another circuit
element to account the coupled transmission line effect of the electrode
structure where the all parameters are per unit length. By applying
kirchhoff’s current law to the left loop of the circuit in Fig. 2 and in
the limit as ∆z → 0, we obtain the following three equations:

∂

∂z
Id(z, t) + C1

∂

∂t
Vd(z, t) − C12

∂

∂t
Vg(z, t) − C13

∂

∂t
Vs(z, t)

+Gds(Vd(z, t) − Vs(z, t)) + GmV́g(z, t) = 0 (1)

∂

∂z
Ig(z, t) − C12

∂

∂t
Vd(z, t) + C2

∂

∂t
Vg(z, t) − C23

∂

∂t
Vs(z, t)

+Cgs
∂

∂t
V́g(z, t) = 0 (2)
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∂

∂z
Is(z, t)−C13

∂

∂t
Vd(z, t)−C23

∂

∂t
Vg(z, t)+C3

∂

∂t
Vs(z, t)−Cgs

∂

∂t
V́g(z, t)

−Gds(Vd(z, t) − Vs(z, t)) − GmV́g(z, t) = 0 (3)

Also, we can write an extra equation:

´Vg(z, t) + Vs(z, t) + RiCgs
∂

∂t
V́g(z, t) − Vg(z, t) = 0 (4)

where
C1 = Cdp + Cds + Cdsp + Cdg + Cdgp

C2 = Cgp + Cgsp + Cdg + Cdgp

C3 = Csp + Cds + Cdsp + Cgsp

C12 = Cdg + Cdgp

C13 = Cds + Cdsp

C23 = Cgsp

similarly, applying the kirchhoff’s voltage law to the main node of the
circuit and in the limit as ∆z → 0 in Fig. 2 gives:

∂

∂z
Vd(z, t) + RdId(z, t) + Ld

∂

∂t
Vd(z, t) + Mdg

∂

∂t
Vg(z, t)

+Mds
∂

∂t
Vs(z, t) = 0 (5)

∂

∂z
Vg(z, t) + RgIg(z, t) + Lg

∂

∂t
Vg(z, t) + Mdg

∂

∂t
Vd(z, t)

+Mgs
∂

∂t
Vs(z, t) = 0 (6)

∂

∂z
Vs(z, t) + RsIs(z, t) + Ls

∂

∂t
Vs(z, t) + Mds

∂

∂t
Vd(z, t)

+Mgs
∂

∂t
Vg(z, t) = 0 (7)

The above equations could be simplify in two matrix equations as
follows:

∂

∂z




Id

Ig

Is

0


 +

∂

∂t




C1 −C12 −C13 0
−C12 C2 −C23 Cgs

−C13 −C23 C3 −Cgs

0 0 0 RiCgs







Vd

Vg

Vs

V́g




+




Gds 0 −Gds Gm

0 0 0 0
−Gds 0 Gds −Gm

0 −1 1 1







Vd

Vg

Vs

V́g


 = 0 (8)
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∂

∂z

(
Vd

Vg

Vs

)
+

∂

∂t

(
Ld Mdg Mds

Mdg Lg Mgs

Mds Mgs Ls

) (
Id

Ig

Is

)

+

(
Rd 0 0
0 Rg 0
0 0 Rs

) (
Id

Ig

Is

)
= 0 (9)

where Id, Vd, Ig, Vg and Is, Vs are the drain, gate and source currents
and voltages, respectively and V́g is gate-source capacitance voltage.
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Figure 3. The relation between the spatial and temporal
discretization to achieve second-order accuracy in the discretization
of the derivatives.

3. THE FDTD SOLUTION OF THE AMTL EQUATION

The fully distributed model of a GaAs MESFET is embodied in the
AMTL equations

∂

∂z
Í(z, t) + C

∂

∂t
V́(z, t) + GV́(z, t) = 0 (10)

∂

∂z
V(z, t) + L

∂

∂t
I(z, t) + RI(z, t) = 0 (11)
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where

V(z, t) = [Vd(z, t), Vg(z, t), Vs(z, t)]T (12)

I(z, t) = [Id(z, t), Ig(z, t), Is(z, t)]T (13)
´V(z, t) = [Vd(z, t), Vg(z, t), Vs(z, t), V́g(z, t)]T (14)

Í(z, t) = [Id(z, t), Ig(z, t), Is(z, t), 0]T (15)

Now a suitable technique should be selected to solve the AMTL
equations. One of the best methods which can be used to find the
solution of AMTL equation is FDTD technique. The FDTD technique
seeks to approximate the derivatives with regard to discrete solution
points defined by the spatial and temporal cells [13–15]. The AMTL
equations are coupled, first-order partial differentional equations like
Maxwell’s equations. Applications of the FDTD method to the full-
wave solution of Maxwell’s equations have shown that accuracy and
stability of the solution is achieved if we choose the electric and
magnetic field solution points to alternate in space and be separated
by one-half the position discretization, e.g., ∆z/2 [14]. We choose the
solution times for these two equations to also be interlaced in time and
separated by ∆t/2. In order to insure stability of the discretization and
to insure second-order accuracy we interlace the Nz +1 voltage points,
V1, V2, . . . , VNz , VNz+1, and the Nz current points, I1, I2, . . . , INz , as
shown in Fig. 3 [16–19]. Each voltage and adjacent current solution
point is separated by ∆z/2. In addition, the time points are also
interlaced, and each voltage time point and adjacent current time point
are separated by ∆t/2 as illustrated in Fig. 3. With applying the finite
difference approximation to (10) and (11) gives:

V n+1
k+1 − V n+1

k

∆z
+ L

I
n+ 3

2
k − I

n+ 1
2

k

∆t
+ R

I
n+ 3

2
k + I

n+ 1
2

k

2
= 0 (16)

Ík
n+ 1

2 − ´Ik−1
n+ 1

2

∆z
+ C

V́ n+1
k − V́ n

k

∆t
+ G

V́ n+1
k + V́ n

k

2
= 0 (17)

where we denote

Vj
i ≡ V ((i − 1)∆z, j∆t) (18)

V́j
i ≡ V́((i − 1)∆z, j∆t) (19)

Ij
i ≡ I((i − 1

2
)∆z, j∆t) (20)

Íj
i ≡ Í((i − 1

2
)∆z, j∆t) (21)
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Solving these equations give the required recursion relations:

V́n+1
k =

(
C
∆t

+
G
2

)−1



(
C
∆t

− G
2

)
V́n

k −
Í
n+ 1

2
k − Í

n+ 1
2

k−1

∆z


 (22)

I
n+ 3

2
k =

(
L
∆t

+
R
2

)−1
{(

L
∆t

− R
2

)
I
n+ 1

2
k −

Vn+1
k+1 − Vn+1

k

∆z

}
(23)

The leap-frog method is used to solving the AMTL equations
because of its simplicity and accuracy. First, the solutions start with
an initially relaxed line having zero voltage and current values. Then,
voltages along the electrode of transistor are solved for a fixed time
from (22) in terms of the previous solutions and then currents are
solved for from (23) in terms of these and previous values.

3.1. Boundary Condition

The Equation (22) for k = 0 and k = Nz + 1 become

V́n+1
1 =

(
C
∆t

+
G
2

)−1



(
C
∆t

− G
2

)
V́n

1 − Í
n+ 1

2
1 − Í

n+ 1
2

0
∆z
2


 (24)

V́n+1
Nz+1=

(
C
∆t

+
G
2

)−1



(
C
∆t

− G
2

)
V́n

Nz+1 −
Í
n+ 1

2
Nz+1 − Í

n+ 1
2

Nz
∆z
2


 (25)

By considering Fig. 3 this equation requires that we replace ∆z with
∆z
2 only for k = 1 and k = Nz + 1. Referring Fig. 4 we will denote

the currents at the source point (z = 0) as I0 and at the load point
(z = L) as INz+1 . By substituting this notation in to (24) we obtain:

I◦ =
Vn

in + Vn+1
in − Vn

1 − Vn+1
1

2Rs
(26)

where

Vin =

(
Vind

Ving

Vins

)
, Gs =

1
Rs

=

(
Gsd 0 0
0 Gsg 0
0 0 Gss

)

Í◦ =
V́n

in + V́n+1
in − V́n

1 − V́n+1
1

2Ŕs

(27)
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where

V́in =




Vind

Ving

Vins

0


 , Ǵs =

1
Ŕs

=




Gsd 0 0 0
0 Gsg 0 0
0 0 Gss 0
0 0 0 0




Similarly, we impose the terminal constraint at z = L with substituting
INz+1 into (25) as follow:

INz+1 =
Vn

Nz+1 + Vn+1
Nz+1

2RL
(28)

where

GL =
1

RL
=

(
GLd 0 0
0 GLg 0
0 0 GLs

)

ÍNz+1 =
V́n

Nz+1 + V́n+1
Nz+1

2ŔL

(29)

where

ǴL =
1

ŔL

=




GLd 0 0 0
0 GLg 0 0
0 0 GLs 0
0 0 0 0




The finite difference approximation of Equation (17) can be written as
follows:
for k = 1

V́n+1
1 =

(
C
∆t

+
G
2

)−1




(
C
∆t

− G
2

)
V́n

1 − Í
n+ 1

2
1 − Í

n+ 1
2

0

∆z

2




=
(

C
∆t

+
G
2

+
1

Ŕs∆z

)−1 {(
C
∆t

− G
2

− 1
Ŕs∆z

)
V́n

1

− 2
∆z

(
Í
n+ 1

2
1 − V́n

in + V́n+1
in

2Ŕs

)}
(30)

for k = 2, 3, . . . , Nz

V́n+1
k =

(
C
∆t

+
G
2

)−1



(
C
∆t

− G
2

)
V́n

k −
Í
n+ 1

2
k − Í

n+ 1
2

k−1

∆z


 (31)
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for k = Nz + 1

V́n+1
Nz+1 =

(
C
∆t

+
G
2

)−1




(
C
∆t

− G
2

)
V́n

Nz+1 −
Í
n+ 1

2
Nz+1 − Í

n+ 1
2

Nz

∆z

2


 =

(
C
∆t

+
G
2

+
1

ŔL∆z

)−1 {(
C
∆t

− G
2

− 1
ŔL∆z

)
V́n

Nz+1+
2

∆z
ÍNz

}
(32)

and for Equation (16):
for k = 2, 3, . . . , Nz

I
n+ 3

2
k =

(
L
∆t

+
R
2

)−1
{(

L
∆t

− R
2

)
I
n+ 1

2
k −

Vn+1
k+1 − Vn+1

k

∆z

}
(33)

The voltages and currents are solved by iterating k for a fixed time
and then iterating time.

inV
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1I1V 1NzV

+

1NzI
+

NzI

Figure 4. Discretization of the terminal voltages and currents.

4. NUMERICAL RESULTS

The proposed approach is used for modeling a sub micrometer-gate
GaAs transistor. The device had a 0.3 × 560 µm gate. The input and
output nodes were connected to the beginning of the gate electrode and
the end of drain electrode. The transistor was biased at Vds = 3 v and
Ids = 10 mA. The source and load resistance are 50 Ω. Moreover, the
beginning and the end of source electrodes are grounded. A schematic
of the considered transistor is shown in Fig. 5. The element values
used in the distributed model are given in Tables 1 and 2 [10]. The
scattering parameters of this transistor are calculated over a frequency
range of 20–220 GHz using fully distributed and slice models from the
time domain analysis and are drawn in Fig. 6. It is clearly shown
that both results of the fully distributed and the slice models are the
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Table 1. Numerical values of distributed model elements for passive
part.

The distributed model elements Numerical values (per unit length)

Ld 780 nH/m

Ls 780 nH/m

Lg 161 nH/m

Mgd 360 nH/m

Mgs 360 nH/m

Mds 240 nH/m

Cgp 0.6 pF/m

Cdp 87 pF/m

Csp 148 pF/m

Cgdp 29 pF/m

Cgsp 29 pF/m

Cdsp 61 pF/m

Rd 900Ω/m

Rs 900Ω/m

Rg 34300Ω/m

Table 2. Numerical values of distributed model elements for active
part at Vds = 3 v and Ids = 10 mA.

The distributed model elements Numerical values (per unit length)

Cgs 0.771 nF/m

Cds 0.0178 nF/m

Cgd 0.1178 nF/m

Gm 146.42 S/m

Ri 0.002Ω/m

Gds 15.46mho/m

same at the low frequency (in this problem under 40 GHz) but by
increasing the frequency, the results of two models would be different.
In order to test actual predictive capabilities of the propose approach,
the model was adopted to predict the electrical behavior of two device
structures (a 0.3 × 840 µm and a 0.3 × 1120 µm). The parameters of
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Figure 5. Schematic of the simulated transistor.
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Figure 6. The scattering parameters of transistor with 560µm gate
width. “—” fully distributed model, “ × × × ” slice model. (a)
magnitude of S11, (b) magnitude of S21, (c) magnitude of S21, (d)
magnitude of S22.

these transistors is obtained using scaling method [21]. In Figs. 7 and
8 the scattering parameters obtained for two device structures using
the new approach and slice model are shown, respectively. It is obvious
that by increasing the device dimension and the frequency, difference
between fully distributed and slice model also increases. The most
obvious difference between two models are appeared for the magnitude
of S11.
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Figure 7. The scattering parameters of transistor with 840µm gate
width. “—” fully distributed model, “ × × × ” slice model. (a)
magnitude of S11, (b) magnitude of S21, (c) magnitude of S21, (d)
magnitude of S22.

As the equations show, the fully distributed model is a modify
version of slice model when the number of slices has been increased
to infinity. Therefore, the results of fully distributed model is
more accurate than the slice model, specially at the high frequency
applications and devices which their dimensions are comparable with
wavelength. It is due to this fact that fully distributed model is
based on solving the wave equation in the transistor structure while
the slice model is based on circuit modeling. Therefore, the fully
distributed model can consider the effect of wave propagation along the
device electrode more accurate than the slice model, especially when
the device dimension is comparable with the wavelength. Because
the gate electrode has a different reactance from the drain electrode,
Therefore they exhibit different phase velocities for the input and
output signals. By increasing the frequency or device dimension, the
phase cancellation phenomena due to the phase velocity mismatching
cannot be neglected. This effect can be consider in fully distributed
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Figure 8. The scattering parameters of transistor with 1120µm gate
width. “—” fully distributed model, “ × × × ” slice model. (a)
magnitude of S11, (b) magnitude of S21, (c) magnitude of S21, (d)
magnitude of S22.

model. Fig. 9 depicts the voltage gain as a function of the gate width
at 80 GHz. It is obvious that by increasing the gate width, voltage gain
decrease periodically due to the phase cancellation. The time domain
load voltage obtained from the fully distributed and slice models for
a transistor with 560µm when excited by sinusoidal source (80 GHz)
are shown in Fig. 10. The magnitude and the phase of the solution
for the fully distributed model is different from slice model. The most
important reason for this difference is the phase cancellation that is
taken account in to by the fully distributed model. Figs. 11 and
12 show the time domain variation of voltage in the beginning and
the end of drain and gate electrodes at 100 GHz frequency using fully
distributed model, respectively. Fig. 12 depicts the gate voltage at
the beginning and the end of electrode. The magnitude of voltage at
the end of the gate electrode is less than the voltage at the beginning
the gate electrode. This is mainly due to the gate ohmic resistance.
Fig. 11 shows the transistor has amplification at the end of the drain
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Figure 11. The voltage of transistor with 560µm gate width at the
beginning and end of the drain electrode.
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Figure 12. The output voltage of transistor with 560µm gate width
at the beginning and the end of the gate electrode.
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electrode. The Fig. 13. shows the distribution of the maximum value
of voltage on the drain, gate and source electrodes for a transistor with
560 micro meter gate length when the device is excited by a sinusoidal
voltage source (80 GHz).
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Figure 13. Distribution of the maximum value of the voltage on the
drain, gate and source electrodes of a transistor with 560 micro meter
gate length.

5. CONCLUSION

A new approach for analysis of microwave/mm-wave transistor has
been presented. This new method can consider the effect of wave
propagation along the device electrodes, accurately. The derived
equation (AMTL) is solved using FDTD technique. The scattering
parameters are obtained from the time domain results for 20–220 GHz
frequency band. The simulation results show that the proposed
method and the slice model have the same results at the low frequency.
But, by increasing the frequency to the mm-wave range where the
device dimensions are comparable with the wavelength, a difference
appears between the results of two models. This is due to the
consideration of the wave propagation and the phase cancellation by
the proposed model. Moreover, another advantage of this model is the
easy of its integration in to CAD optimizers.
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