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Abstract—A rigorous semi-analytical solution is presented for
electromagnetic scattering from an array of parallel-coated circular
cylinders of arbitrary radii and positions due to an obliquely incident
TMz plane wave excitation. In order to check the validity of this
technique, the radar cross-section of a single coated cylinder, a
linear array of cylinders, and an arbitrary position array of cylinders
are calculated and compared with available data in the literature.
Furthermore, the near field is calculated to prove the validity of the
boundary conditions on the surface of any cylinder with obliquely
incidence wave. As an application, circular metamaterial cylinders are
used to show the effect of metamaterial characteristics in altering the
forward and backward scattering and in focusing the near field around
the objects.
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1. INTRODUCTION

The scattering of electromagnetic plane wave from single and array of
cylinders for both normal [1–9] and oblique [10, 11] incidence had been
studied for many years. In a previous work [12], the principle of equal
volume model was used to model any two-dimensional dielectric object
of arbitrary cross section by an array of dielectric circular cylinders.
A detailed derivation for the problem of scattering of a plane wave
from an array of parallel dielectric circular cylinders in case of oblique
incidence was presented in [12]. The electromagnetic scattering by
metamaterial cylinders was presented in [13, 14], where the scattering
of normally incident TMz plane wave by circular-cylindrical conductor
objects coated by metamaterial is only considered. In this paper, the
scattering of an obliquely incident plane wave on an array of parallel-
coated circular cylinders is considered. The core cylinders and the
coating layers can be any of three materials; metamaterial, dielectric,
perfect electric conductor or a combination of two of them. The
analysis begins by representing each field component by an infinite
series of cylindrical harmonic functions with unknown coefficients.
Then equations based on the boundary conditions applied on the
surface of both the core cylinders and the outer surface of the cylinders
are used to deduce the values of the unknown coefficients. To prove
the validity of the results, numerical examples are given to compare
the scattered RCS based on the deduced coefficients and that based on
results reported in [13, 14] for the special case of normal incidence.
The emphasis of this paper is to investigate the effect of oblique
incidence condition and the metamaterial coating. The developed
semi-analytical solution for an array either metamaterial or conductor
coated with metamaterial cylinders will be used to show the effect of
metamaterial in focusing the field in either the forward or the backward
direction.

2. FORMULATION

The scattering from an obliquely incident E-polarized TMz plane wave
from an array of M parallel-coated circular cylinders parallel to each
other and to the z-axis is considered in a global coordinate system (ρ,
φ, z). The incident electric field of a plane wave on cylinder “i” is
expressed in the (ρi, φi, z) cylindrical coordinate system for ejωt time
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dependence as

Einc
zi

(ρi, φi, z)

=E′
0e

jk0z cos θ0ejk0ρi sin θ0 cos(φi−φ0)ejk0ρ′i sin θ0 cos(φ′
i−φ0)

=E′
0e

jk0z cos θ0ejk0ρ′i sin θ0 cos(φ′
i−φ0)

∞∑
n=−∞

jnJn (k0ρi sin θ0)ejn(φi−φ0), (1)

where E′
0 = E0 sin θ0, θ0 is the oblique incident angle as shown in Fig. 1,

and E0 is the amplitude of the incident electric field component. The
parameter k0 is the free space wave number, φ0 is the angle of incidence
of the plane wave in the x-y plane with respect to the negative x-axis,
and Jn(ξ) is the Bessel function of order n and argument ξ. The second
expression of the incident field component is in terms of the cylindrical
coordinate of the ith cylinder, whose center is located at (ρ′i, φ

′
i, z) of

the global coordinate (ρ, φ, z).
The resulting z component of the scattered electric field from the
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Figure 1. The parameters describing the obliquely incident TMz

plane wave on a coated cylinder, (a) 3D Geometry, (b) x-y, 2D cross-
sectional geometry.
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ith cylinder can be expressed as

Es
zi

(ρi, φi, z) = E′
0e

jk0z cos θ0

∞∑
n=−∞

AinH
(2)
n (k0ρi sin θ0) ejn(φi−φ0). (2)

where H(2)
n (ξ) is the Hankel function of the second type of order n and

argument ξ. The transmitted z component of the field inside the core
cylinders and the coating layers can be expressed, respectively, as

Ed1
zi

(ρi, φi, z)=E′
0e

jk0z cos θ0

∞∑
n=−∞

DinJn

(
k0ρi

√
k2

d1

k2
0

−cos2 θ0

)
ejn(φi−φ0),(3)

Ed2
zi

(ρi, φi, z)=E′
0e

jk0z cos θ0

∞∑
n=−∞

[
BinJn

(
k0ρi

√
k2

d2

k2
0

− cos2 θ0

)

+CinNn

(
k0ρi

√
k2

d2

k2
0

− cos2 θ0

)]
ejn(φi−φ0), (4)

where Nn(ξ) is the Neumann function of order n and argument ξ, kd1 is
the wave number inside the core cylinders, and kd2 is the wave number
inside the coating layer material. The corresponding magnetic field
components are given as

Hs
zi

(ρi, φi, z)=E′
0e

jk0z cos θ0

∞∑
n=−∞

A′
inH

(2)
n (k0ρi sin θ0) ejn(φi−φ0), (5)

Hd1
zi

(ρi, φi, z)=E′
0e

jk0z cos θ0

∞∑
n=−∞

D′
inJn

(
k0ρi

√
k2

d1

k2
0

−cos2 θ0

)
ejn(φi−φ0),(6)

Hd2
zi

(ρi, φi, z)=E′
0e

jk0z cos θ0

∞∑
n=−∞

[
B′

inJn

(
k0ρi

√
k2

d2

k2
0

− cos2 θ0

)

+C ′
inNn

(
k0ρi

√
k2

d2

k2
0

− cos2 θ0

)]
ejn(φi−φ0). (7)

In this work, we consider only double negative (DNG)
metamaterial with negative permittivity and permeability [15, 16]. To
show the effect of metamaterial, the wave number and the intrinsic
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impedance for the ith layer can be expressed as

ki = k0nri,

nri =
√
µriεri for dielectric,

nri = −√
µriεri for metematerial,

ηi = η0

√
µri/εri.

(8)

The coefficients Ain, Bin, Cin, Din, A
′
in, B

′
in, C

′
in, andD′

in are un-
knowns to be determined. Using Maxwell’s equations, the φ com-
ponents of the magnetic field can be obtained as follow

Hφ =
−1
jωµ

(
∂Eρ

∂z
− ∂Ez

∂ρ

)
,

where Eρ = 1
jωε

(
1
ρ

∂Hz
∂φ − ∂Hφ

∂z

)
.

The only dependence on the parameter z is in the exponential term
ejk0z cos θ0 , thus the differentiation with respect to z can be expressed
in the form of ∂

∂z = jk0 cos θ0, and therefore Hφ can be written as

Hφ(ρ, φ, z)
[
1 − k2

0 cos2 θ0
ω2µε

]
= −k0 cos θ0

jω2µερ

∂Hz

∂φ
+

1
jωµ

∂Ez

∂ρ
. (9)

According to Equation (9) and based on the fact that the z component
of the incident magnetic field is equal to zero for the TMz case, then
the φ component of the incident magnetic field on cylinder “i” can be
written as

H inc
φi

(ρi, φi, z) =
1

jωµ0 sin2 θ0

∂Einc
z

∂ρi

=
E′

0k0

jη0λ0
GPi

∞∑
n=−∞

jn J ′
n (λ0ρi) ejn(φi−φ0), (10)

where the prime represents the derivative of the Bessel function with
respect to its full argument, G = ejk0z cos θ0 , h = k0 cos θ0, λ0 =
k0 sin θ0, η0 =

√
µ0/ε0, and Pi = ejk0ρ′i sin θ0 cos(φ′

i−φ0).
Based on Equation (9), the φ components of the scattered

magnetic field and the magnetic field transmitted in the core and
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coating materials of cylinder “i” can be expressed, respectively, as

Hs
φi

(ρi, φi, z) = E′
0G

k0

jη0λ0

∞∑
n=−∞

AinH
(2)′
n (λ0ρi) ejn(φi−φ0)

−E′
0G

h

λ2
0ρi

∞∑
n=−∞

nA′
inH

(2)
n (λ0ρi) ejn(φi−φ0), (11)

Hd1
φi

(ρi, φi, z) =
E′

0kd1

jηd1λd1
G

∞∑
n=−∞

DinJ
′
n (λd1ρi) ejn(φi−φ0)

− E′
0h

λ2
d1ρi

G

∞∑
n=−∞

nD′
inJn (λd1ρi) ejn(φi−φ0), (12)

Hd2
φi

(ρi, φi, z) =
E′

0kd2

jηd2λd2
G

∞∑
n=−∞

[
BinJ

′
n (λd2ρi)

+CinN
′
n (λd2ρi)

]
ejn(φi−φ0)

− E′
0h

λ2
d2ρi

G

∞∑
n=−∞

n
[
B′

inJn (λd2ρi)

+C ′
inNn (λd2ρi)

]
ejn(φi−φ0), (13)

where kd = k0
√
µdrεdr , λd =

√
k2

d − k2
0 cos2 θ0, and ηd = η0

√
µdr/εdr .

In the same manner, the φ components of the electric field can be
derived using Maxwell’s equations as follow

Eφ =
1
jωε

(
∂Hρ

∂z
− ∂Hz

∂ρ

)
,

where

Hρ =
−1
jωµ

(
1
ρ

∂Ez

∂φ
− ∂Eφ

∂z

)
.

Thus the φ component of the incident electric field on cylinder “i”
takes the form

Einc
φ (ρi, φi, z) =

−hE′
0

λ2
0ρi

PiG
∞∑

n=−∞
njn Jn (λ0ρi) ejn(φi−φ0), (14)

while the φ components of the scattered electric field and the electric
field transmitted inside the core and coating material of cylinder “i”
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can be expressed, respectively, as

Es
φi

(ρi, φi, z) =
−hE′

0

λ2
0ρi

G
∞∑

n=−∞
nAinH

(2)
n (λ0ρi) ejn(φi−φ0)

−η0k0E
′
0

jλ0
G

∞∑
n=−∞

A′
inH

(2)′
n (λ0ρi) ejn(φi−φ0), (15)

Ed1
φi

(ρi, φi, z) =
−hE′

0

ρiλ2
d1

G

∞∑
n=−∞

nDinJn (λd1ρi) ejn(φi−φ0)

−kd1ηd1E
′
0

jλd1
G

∞∑
n=−∞

D′
inJ

′
n (λd1ρi) ejn(φi−φ0), (16)

Ed2
φi

(ρi, φi, z) =
−hE′

0

ρiλ2
d2

G

∞∑
n=−∞

n [BinJn (λd2ρi)

+CinNn (λd2ρi)] ejn(φi−φ0)

−kd2ηd2E
′
0

jλd2
G

∞∑
n=−∞

[
B′

inJ
′
n (λd2ρi)

+C ′
inN

′
n (λd2ρi)

]
ejn(φi−φ0). (17)

The expressions of the scattered electric and magnetic field are
based on the local coordinates (ρi, φi, z) of cylinder “i”. However, the
interaction between the M cylinders in terms of multiple scattered
fields will require a representation of the scattered field from one
cylinder in terms of the local coordinates of another as shown in
Fig. 2. Therefore, the addition theorem of Bessel and Hankel functions
are used to transfer the scattered field components from one set of
coordinates to another. As an example the scattered fields from the
“g” cylinder in terms of the ”i” cylinder are presented by [6]

H(2)
n (λ0ρg) ejmφg =

∑
m

Jm (λ0ρi)H
(2)
m−n (λ0dig) ejmφie−j(m−n)φig(18)

dig =ρ′2i + ρ′2g − 2ρ′iρ
′
g cos

(
φ′i − φ′g

)
,

φig =




cos−1

(
ρ′i cos (φ′i) − ρ′g cos

(
φ′g

)
dig

)
ρ′i sin

(
φ′i

)
≥ ρ′g sin

(
φ′g

)

− cos−1

(
ρ′i cos (φ′i) − ρ′g cos

(
φ′g

)
dig

)
ρ′i sin

(
φ′i

)
< ρ′g sin

(
φ′g

)
,

(19)
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Figure 2. The cross-sectional geometry of the M cylinders in the x-y
plane.

where (ρ′i, φ
′
i, z) and (ρ′g, φ

′
g, z) are the coordinates of the origins

of both, the ith and gth coordinate system of cylinder “i” and “g”,
respectively, in terms of the global coordinate system (x, y). The
variable dig represents the distance between the centers of the cylinders,
while φig is the angle between the line joining the centers of the
cylinders and the positive x-axis.

The coefficientsAin, Bin, Cin, Din, A
′
in, B

′
in, C

′
in, andD′

in are un-
knowns to be determined. These unknowns can be obtained by ap-
plying the appropriate boundary conditions on the surface of all core
cylinders and the coating layered cylinders.

The boundary conditions on the surface of the ith core cylinders
with ρi = ai, 0 < θ < 2π are given by

Ed1
zi

= Ed2
zi
, (20)

Hd1
zi

= Hd2
zi
, (21)

Ed1
φi

= Ed2
φi
, (22)

Hd1
φi

= Hd2
φi
. (23)

Using Equations (20)–(24) and substituting the appropriate field
component, the constants Din and D′

in can be expressed in terms of
Bin and B′

in as follow

Bin = DinT1 +D′
inT2, (24)

B′
in = DinT3 +D′

inT4, (25)
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where

T1 = −(α1α2 + α4α5)(
α2

2 + α4α6

) , T2 =
(α1α4 − α2α3)(
α2

2 + α4α6

) ,

T3 =
(α2α5 − α1α6)(
α2

2 + α4α6

) , T4 = −(α1α2 + α3α6)(
α2

2 + α4α6

) ,

α1 =
hn

ai

[
1
λ2

d2

− 1
λ2

d1

]
Jn (λd2ai) ,

α2 =
hn

ai

[
1
λ2

d2

− 1
λ2

d1

]
Nn (λd2ai) ,

α3 =
(
kd2ηd2

jλd2
J ′

n (λd2ai) −
kd1ηd1

jλd1
J ′

n (λd1ai)
Jn (λd2ai)
Jn (λd1ai)

)
,

α4 =
(
kd2ηd2

jλd2
N ′

n (λd2ai) −
kd1ηd1

jλd1
J ′

n (λd1ai)
Nn (λd2ai)
Jn (λd1ai)

)
,

α5 =
(

kd2

jηd2λd2
J ′

n (λd2ai) −
kd1

jηd1λd1
J ′

n (λd1ai)
Jn (λd2ai)
Jn (λd1ai)

)
,

α6 =
(

kd2

jηd2λd2
N ′

n (λd2ai) −
kd1

jηd1λd1
J ′

n (λd1ai)
Nn (λd2ai)
Jn (λd1ai)

)
.

The boundary conditions on the surface of the ith coating layers
cylinders with ρi = bi, 0 < θ < 2π are given by

Einc
zi

+
M∑

g=1

Es
zg

= Ed2
zi
, (26)

H inc
zi

+
M∑

g=1

Hs
zg

= Hd2
zi
, (27)

Einc
φi

+
M∑

g=1

Es
φg

= Ed2
φi
, (28)

H inc
φi

+
M∑

g=1

Hs
φg

= Hd2
φi
. (29)

After some mathematical manipulations and the application of the
orthogonality condition on equations (26)–(29), the following equations
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are obtained

Pij
lJl(λ0ai)e−jl(φ0) +AilH

(2)
l (λ0ai)e−jl(φ0)

+
M∑

g=1
g �=1

∑
n

Agne
−jnφ0Jl(λ0ai)H

(2)
l−n(λ0dig)e−j(l−n)φig

= (BilJl(λd1ai) + CilNl(λd1ai))e−jl(φ0), (30)

A′
ilH

(2)
l (λ0ai)e−jl(φ0)

+
M∑

g=1
g �=1

∑
n

A′
gne

−jnφ0Jl(λ0ai)H
(2)
l−n(λ0dig)e−j(l−n)φig

= (B′
ilJl(λd1ai) + C ′

ilNl(λd1ai))e−jl(φ0), (31)

hl

λ2
0ai

Jl(λ0ai)Pij
l +

hl

λ2
0ai

H
(2)
l (λ0ai)Ail +

k0η0

jλ0
H

(2)
l

′
(λ0ai)A′

il

+
hl

λ2
0ai

Jl(λ0ai)
∑
g=1
g �=1

∑
n

AgnH
(2)
l−n(λ0dig)e−j(l−n)(φig−φ0)

+
k0η0

jλ0
J ′

l (λ0ai)
∑
g=1
g �=1

∑
n

A′
gnH

(2)
l−n(λ0dig)e−j(l−n)(φig−φ0)

=
hl

aiλ2
d1

[BilJl(λd1ai) + CilNl(λd1ai)]

+
kd1ηd1

jλd1
[B′

ilJ
′
l (λd1ai) + C ′

ilN
′
l (λd1ai)], (32)

k0

jη0λ0
J ′

l (λ0ai)Pij
l +

k0

jη0λ0
H

(2)
l

′
(λ0ai)Ail −

hl

λ2
0ai

H
(2)
l (λ0ai)A′

il

+
k0

jη0λ0
J ′

l (λ0ai)
∑
g=1
g �=1

∑
n

AgnH
(2)
l−n(λ0dig)e−j(l−n)(φig−φ0)

− hl

λ2
0ai

Jl(λ0ai)
∑
g=1
g �=1

∑
n

A′
gnH

(2)
l−n(λ0dig)e−j(l−n)(φig−φ0)

=
kd1

jηd1λd1
[BilJ

′
l (λd1ai) + CilN

′
l (λd1ai)]

− hl

λ2
d1ai

[B′
ilJl(λd1ai) + C ′

ilNl(λd1ai)]. (33)
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The solution for the unknown coefficients Ain and A′
in can be obtained

from equations (30)–(33) and put in the form

V1 =
M∑

g=1

∞∑
n=−∞

AgnS1+A′
gnR1, (34)

V2 =
M∑

g=1

∞∑
n=−∞

AgnS2+A′
gnR2, (35)

where

V1 =
(
γ12γ5 + γ11γ10 −

hl

λ2
0ai

Jl (λ0bi)
)
Pij, (36)

V2 =
(
γ14γ5 + γ13γ10 −

k0

jη0λ0
J ′

l (λ0bi)
)
Pij

l, (37)

S1 = 0 i = g, l �= n

=
hl

λ2
0ai

H
(2)
l (λ0bi) − γ12γ3 − γ11γ8 i = g, l = n

=
[
hl

λ2
0ai

Jl (λ0bi) − γ12γ4 − γ11γ9

]
Hln i �= g, (38)

S2 = 0 i = g, l �= n

=
k0

jη0λ0
H

(2)′

l (λ0bi) − γ14γ3 − γ13γ8 i = g, l = n

=
[

k0

jη0λ0
J ′

l (λ0bi) − γ14γ4 − γ13γ9

]
Hln i �= g, (39)

R1 = 0 i = g, l �= n

=
k0η0

jλ0
H

(2)′

l (λ0bi) − γ12γ1 − γ11γ6 i = g, l = n

=
[
k0η0

jλ0
J ′

l (λ0bi) − γ12γ2 − γ11γ7

]
Hln i �= g, (40)

R2 = 0 i = g, l �= n

= −
(

hl

λ2
0ai

H
(2)
l (λ0bi) + γ14γ1 + γ13γ6

)
i = g, l = n

= −
[
hl

λ2
0ai

Jl (λ0bi) + γ14γ2 + γ13γ7

]
Hln i �= g, (41)
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while

γ1 =
H

(2)
l (λ0bi)
T5

, γ2 =
Jl (λ0bi)
T5

,

γ3 = − H
(2)
l (λ0bi)T3Nl (λd2bi)

T5 (Jl (λd2bi) + T1Nl (λd2bi))
,

γ4 = − Jl (λ0bi)T3Nl (λd2bi)
T5 (Jl (λd2bi) + T1Nl (λd2bi))

, γ5 = γ4,

T5 = Jl (λd2bi) + T4Nl (λd2bi) −
T2T3Nl (λd2bi)Nl (λd2bi)
(Jl (λd2bi) + T1Nl (λd2bi))

,

γ6 = −T6γ1, γ7 = −T6γ2,

γ8 = −T6γ3 +
H

(2)
l (λ0bi)

(Jl (λd2bi) + T1Nl (λd2bi))
,

γ9 = −T6γ4 +
Jl (λ0bi)

(Jl (λd2bi) + T1Nl (λd2bi))
, γ10 = γ9,

T6 =
(

T2Nl (λd2bi)
(Jl (λd2bi) + T1Nl (λd2bi))

)
,

γ11 =
(

hl

biλ2
d2

(Jl (λd2bi) + T1Nl (λd2bi)) +
kd2ηd2

jλd2
T3N

′
l (λd2bi)

)
,

γ12 =
(

hl

biλ2
d2

T2Nl (λd2bi) +
kd2ηd2

jλd2

(
J ′

l (λd2bi) + T4N
′
l (λd2bi)

))
,

γ13 =
(

kd2

jηd2λd2

(
J ′

l (λd2bi) + T1N
′
l (λd2bi)

)
− T3

hl

λ2
d2bi

Nl (λd2bi)
)
,

γ14 =
(

kd2

jηd2λd2
T2N

′
l (λd2bi) −

hl

λ2
d2bi

(Jl (λd2bi) + T4Nl (λd2bi))
)
,

and
Hln = H

(2)
l−n (λ0dig) e−j(l−n)(φig−φ0).

The integers n, l = 0, ±1, ±2, . . . . . . , ±Ni and i, g =
0, 1, 2, . . . . . . ,M . Theoretically, Ni is an integer which is equal to
infinity; however, it is related to the radius “ai” of cylinder “i”, type
of the ith cylinder, and also the distance between the ith cylinder and
the surrounding cylinders. Equations (36) and (37) are then cast into
a matrix form such as [

V1

V2

]
=

[
S1 R1

S2 R2

] [
A
A′

]
. (42)



Progress In Electromagnetics Research, PIER 77, 2007 297

The solution of the above truncated matrix equation yields the
unknown scattering coefficients Ain and A′

in. Hence, the other
remaining unknown coefficients can be otained from euqations (30)–
(33).

3. NUMERICAL RESULTS

In this section, sample numerical results are presented to proof the
validity of the developed formulation for computing the radar cross-
section (RCS) of an array of coated cylinders excited by an obliquely
incident TMz plane wave. For all configurations presented in this
paper, the frequency of the incident wave was set to 300 MHz, and
RCS (alternatively called echo width for 2D scatterers) is defined as

σ2D = 10 log

(
Lim
ρ→∞

[
2πρ

|Es
z |2

|Ei
z|2

])
. (43)

Figure 3 represents the echo width calculated from a single
dielectric cylinder with air core. The inner radius of the cylinder
is a = 0.25λ and the outer radius is b = 0.3λ, having relative
permittivity εr = 4, with incident angel θi = 90 and φi = 180. The
result generated using the presented boundary value solution (BVS)

Figure 3. The echo width of a single cylindrical shell of inner radius
a = 0.25λ, outer radius b = 0.3λ, εr = 4, θi = 90, and φi = 180.
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Figure 4. The echo width of a single conducting cylinder of radius
a = 0.05λ coated with either dielectric or metamaterial of outer radius
b = 0.1λ.

technique is compared to the RCS data based on the method of moment
solution presented in [3]. It is clear from the figure that the two
solutions are in complete agreement.

The metamaterial parameters used in this paper are selectively
used to provide confirmation of the validity of the new formulation
by comparison of special cases with published results. Figure 4
represents the RCS calculated from a single coated conducting cylinder,
the coating layer was made of a dielectric material having relative
permittivity of εr = 9.8 or a metamaterial having relative permittivity
εr = −9.8 and relative permeability µr = −1. For comparison, The
incident wave frequency is set to 1 GHz, the radius of the conducting
cylinder is a = 0.05λ, the outer radius of the coating cylinder is
b = 0.1λ, and excited by a TMz plane wave with incident angel
θi = 90 and φi = 0. The results show a complete agreement with
the independently reported results in [13].

In order to prove the validity of the presented formulation for
multiple cylinders, the scattering echo width of one and two and three
metamaterial cylinders in a linear array configuration located along
the x-axis is calculated. The metamaterial cylinders have relative
permittivity εr = −4 and relative permeability µr = −1. The radius of
the cylinders is a = 1λ and the center-to-center separation is d = 3λ,
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(a)

(b)

Figure 5. The echo width of an array of one, two, or three
metamaterial cylinders of radius a = 1λ, (a) the arrangements of the
cylinders, (b) The corresponding echo width.

and excited by a TMz plane wave with incident angel θi = 90 and
φi = 90. The results generated using the developed formulation as
shown in Figure 5, show a complete agreement with those given in
Figure 10 of [14].

Numerical solution shows that Ni = 1 + 2kiai is sufficient to
achieve a converged solution for the scattered field in the case of
dielectric cylinders. For DNG metamaterial cylinders, this expression
for the number of terms is not enough to achieve convergence and
more terms are needed. The distance between the cylinders also
greatly affect the needed number of terms for convergence in the case
of metamaterial cylinders. Results show that decreasing the distance
between the two metamaterial cylinders increases the needed number
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of terms for convergence. For metamaterial cylinders, the relation
Ni = 1 + 2kiai is found to be valid for each cylinder in the case of
center-to-center separation three times the radius of each cylinder.

Figure 6 shows the echo width of an arbitrary positioned array of
five cylinders. The radius of the cylinders is 0.1λ, and the center-to-
center separation is 0.5λ. The graph shows the results for two different
cases; dielectric cylinders with εr = 2.2, and metamaterial cylinders
with εr = −2.2 and µr = −1. For the two cases the results are in
complete agreement with the results published in [14].

incE

Figure 6. The echo width results of a TMz plane wave incident on an
arbitrary positioned array of five cylinders.

As another method to check the validity of this technique and
its accuracy, especially in the near field region, the value of the
coefficients of the transmitted field inside both the core cylinders and
the coating layers are calculated. Then, the numerical values of these
coefficients are used to check the validity of boundary equations from
Equation (20) to Equation (23). For simplicity, three cylinders are
used. The radius of the core cylinders is 0.1λ, and the radius of the
coating layers is 0.2λ.
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The cylinders are placed symmetrically around the x-axis with
the center of all cylinders located on the y-axis, and the distance
between the centers is 0.7λ. Figure 7 shows the numerical value of the
transmitted field inside the coating layer of the first cylinder compared
with the summation of the incident field and the scattered fields form
all cylinders on the outer surface of this cylinder. In Figure 7(b)
the continuity of the Ez component is considered in the case of TMz

excitation for dielectric cylinders with εr = 4 at an oblique incident
angle of θi = 30 and φi = 0. In Figure 7(c) the continuity of the Ez

component is considered in the case of TMz excitation for metamaterial
cylinders with εr = −4 and µr = −1 at an oblique incident angle of
θi = 30 and φi = 0.

Figure 8 shows the near field distribution resulting from the
incidence of a TMz polarized plane wave on the array of three cylinders
shown in Figure 7(a). The graph shows the numerical value of the
transmitted field inside the core and coating layer cylinders and the
total field outside the cylinders for three different cases; dielectric
cylinders with εr = 4, metamaterial cylinders with εr = −4 and
µr = −1, and conductor cylinders. All the three cases are excited
by an obliquely incident plane wave at angle of θi = 30 and φi = 0.
The graphs show a greet enhancement of the field on the edges of the
metamaterial cylinders and fast decay everywhere else.

Finally, to show the effect of metamaterial in forward and
backward scattering, Figure 9 shows the near field distribution
resulting from the incidence of a TMz polarized plane wave on an
array of five cylinders. The cylinders are placed symmetrically around
the x-axis with the center of all cylinders located on the y-axis. The
radius of each cylinder is 0.1λ and the distance between the centers is
0.5λ and excited by an incident plane wave at θi = 90 and φi = 180.
Figure 7(a) shows the near field distribution of an array of conducting
cylinders while Figure 7(b) shows that of metamaterial cylinders having
relative permittivity εr = −10 and relative permeability µr = −1. A
higher isolation in the forward direction was noticed in the case of
metamaterial cylinders. Figure 7(c) shows the near field distribution
of an array of conducting cylinders with the same radius coated with
metamaterial layer of thickness 0.05λ. The relative permittivity of the
cylinders change between εr = −2 for the center cylinder, εr = −10 for
the upper and lower cylinders, and εr = −6 for the other two cylinders.
The result shows a greet focusing of the field in the forward direction.
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(a)

z

 

(b)

(c)

Figure 7. The continuity of the near field components of three parallel
coated cylinders excited by an incident plane wave at θi = 30, φi = 0.
(a) The arrangement of the cylinders, (b) Continuity of the Ez for
TMz excitation for dielectric cylinders with εr = 4, (c) Continuity of
the Ez for TMz excitation for metamaterial cylinders with εr = −4
and µr = −1.
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(a)

(b)
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(c)

Figure 8. The near field distribution of three parallel coated cylinders
excited by an incident plane wave at θi = 30 and φi = 0. (a) Dielectric
cylinders with εr = 4, (b) Metamaterial cylinders with εr = −4 and
µr = −1, (c) conductor cylinders.

(a)
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(b)

(c)

Figure 9. The near field distribution of an array of five cylinders
excited by an incident plane wave at θi = 90 and φi = 180. (a)
conducting cylinders, (b) metamaterial cylinders, and (c) conducting
cylinders coated with metamaterial.



306 Henin, Al Sharkawy, and Elsherbeni

4. CONCLUSION

The analyses of an obliquely incident plane wave scattering from
an array of parallel-coated circular cross-section cylinders is derived
for TMz polarizations. The derivation is based on the application
of the boundary conditions on the surface of each core and coated
layer cylinder. This solution is verified for metamaterial, dielectric
and conductor cylinders, and can be used to study electromagnetic
interaction with two-dimensional scattering object that can be
constructed from an array of parallel circular cylinders. The effect
of metamaterial in enhancing the forward or backward scattering
from an array of cylinders was studied, and the effect of isolating
or focusing the field in front of the cylinders is also demonstrated.
This verified frequency domain technique is thus useful in studying
the scattering from practical configurations of cylinders with depressive
type material. This verified frequency domain technique is thus useful
in studying the scattering from practical configurations of cylinders
with depressive type material.
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