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Abstract—The fractional dual solutions of Maxwell equations in
bi-isotropic medium are determined using the field decomposition
approach. Both negative phase velocity and positive phase velocity
propagation have been considered. The results are compared with the
corresponding available results for isotropic and chiral medium. Time
average power associated with fractional dual fields and corresponding
source distribution are also studied.

1. INTRODUCTION

More than a decade before, Engheta initiated an effort to bring
together the tools of fractional derivatives/fractional integrals and the
theory of electromagnetism. His contribution developed an area in
electromagnetics that is named fractional paradigm in electromagnetic
theory [1–6]. Fractional derivative/integrals are mathematical
operators involving differentiation/integration to arbitrary non-integer
orders. These operators, possess interesting mathematical properties
and have been studied in the field of fractional calculus [7]. In
his study, he applied the tools of fractional calculus in various
problems of electromagnetic fields and waves, and obtained interesting
results. These results highlight certain notable features and promising
potential applications of these operators in electromagnetic theory [1–
6]. He investigated the notion of fractionalization of some other
linear operators in electromagnetic theory, e.g., curl operator, kernel
of integral transform. Fractionalization of such operators has led us
to novel solutions, interpretable as “fractional solutions”, for certain
electromagnetic problems [8–11]. An interesting and useful work done
by Engheta is fractionalization of curl operator [8]. Mathematical
recipe to fractionalize a linear operator is available in [8, 12]. Some
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interesting works are reported in [13, 14]. Problem of implementation
of fractional order electric potential had been addressed in [13].
Debnath collected recent applications of fractional calculus in science
and engineering [14].

Engheta used the fractional curl operator to find the new set of
solutions to Maxwell’s equations by fractionalizing the principle of
duality [8]. New set of solutions is named as fractional dual solutions
to the Maxwell equations. In electromagnetics, principle of duality
states that if (E, ηH) is one set of solutions (original solutions) to
Maxwell equations, then other set of solutions (dual to the original
solutions) is (ηH,−E), where η is the impedance of the medium. The
solutions which may be regarded as intermediate step between the
original and dual to the original solutions may be obtained using the
following relations [8]

Efd =
1

(jk)α
(∇×)αE

ηHfd =
1

(jk)α
(∇×)αηH

where (∇×)α means fractional curl operator and k = ω
√

µε is the
wavenumber of the medium. It may be noted that fd means fractional
dual solutions. It is obvious from above set of equations that for α = 0,

Efd = E, ηHfd = ηH

and for α = 1

Efd = ηH, ηHfd = −E

Which are two sets of solutions to Maxwell’s equations. The solutions
which may be regarded intermediate step between the above two sets
of solutions may be obtained by varying parameter α between zero and
one. Naqvi et al. [15] afterward extended the work [8] and discussed the
behavior of fractional dual solutions in an unbounded chiral medium.
Lakhtakia [16] derived theorem which shows that a dyadic operator
which commutes with curl operator can be used to find new solutions of
the Faraday and Ampere-Maxwell equations. Veliev and Engheta [17]
utilized the fractional curl operator to a fixed solution and obtained
the fractional fields that represent the solution of reflection problem
from an anisotropic surface. Naqvi and Abbas studied the behavior of
fractional curl operator for complex and higher orders [18]. Hussain
and Naqvi [19] and Hussain et al. [20, 21] proposed the idea of fractional
transmission line and fractional waveguides respectively. Naqvi and
Abbas [22] extended the work [8] for metamaterials with negative
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permittivity and permeability, while Naqvi and Rizvi [23] determined
the sources corresponding to fractional dual solutions. Recently, Naqvi
et al., has modelled the transmission through chiral slab in terms of
fractional curl operator [24]. Two recent work are reported in [25–27].

In present work, Engheta’s work [8] has been extended for
homogenous bi-isotropic medium. The results obtained in present work
have been compared with corresponding results obtained by Engheta
for ordinary isotropic medium [8] and results obtained by Naqvi et al.
for chiral medium [15]. We have also noted the effects of negative phase
velocity (NPV) and positive phase velocity (PPV) on fractional dual
solutions. “Negative phase velocity medium are defined as medium in
which phase changes apposite to the direction of energy propagation
[28–33]. It is of interest is to find a uniform procedure which may
be utilized to find fractional dual fields in each case. Corresponding
source distribution and power is also in interest.

2. FRACTIONAL DUAL SOLUTIONS

In bi-isotropic medium having constitutive parameters ε, µ, ξ =
(χ − jκ)

√
µ0ε0 and ζ = (χ + jκ)

√
µ0ε0, relations between four field

vectors may be written as [34]

D = εE + ξH (1a)
B = ζE + µH (1b)

where parameters ξ and ζ may be expressed in terms of Tellegen
parameter χ and chirality parameter κ as

ξ = (χ − jκ)
√

ε0µ0

ζ = (χ + jκ)
√

ε0µ0

χr =
χ

n
= sin θ

where n is the refractive index of the medium. It may be noted that
θ = 0 or χ = 0 corresponds to chiral medium. In bi-isotropic materials,
it is convenient not to work with electric and magnetic field vectors E,
H, but with other field quantities, the wavefields, E+, H+ and E−,
H−, which make up the total field as [34]

E = E− + E+ (2a)
H = H− + H+ (2b)
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Each of the two wavefields sees the BI medium as an equivalent medium
with respective medium parameters ε+, µ+ and ε−, µ−, that is

ε+ = ε(cos θ + κr) exp(jθ)
ε− = ε(cos θ − κr) exp(−jθ)
µ+ = µ(cos θ + κr) exp(jθ)
µ− = µ(cos θ − κr) exp(−jθ)
η± = η exp(∓jθ)
k± = k(cos θ ± κr)

κr =
κ

n

NPV and PPV propagation in loss-less bi-isotropic medium may
be described by the following conditions

Case 1:

κr < cos θ, ε > 0

Both wave fields travel with PPV.

Case 2:

κr < cos θ, ε < 0

Both wave fields travel with NPV.

Case 3:

−κr > cos θ

Wave field with wave number k+ is of NPV and with k− is of PPV
type.

Case 4:

κr > cos θ

Wave field with wave number k+ is of PPV and with k− is of NPV
type.

For homogeneous bi-isotropic medium we have the wavefields [34]

E± =
1

2 cos θ
[exp(∓jθ)E ∓ jηH] (3a)

ηH± =
1

2 cos θ
[exp(±jθ)ηH ± jE] (3b)
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Equation (3) is known as Bohren decomposition [35]. Above equation
may be written as

E± =
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

η±H± =
1

2 cos θ
[ηH ± jE exp(∓jθ)]

It may be considered that wavefields (E±, η±H±) are propagating in
an isotropic medium having intrinsic impedance η±. Above relations
are related through the principle of duality. Duality principle states
that if (E±, η±H±) is one set of solutions to Maxwell equations
then (η±H±,−E±) is the dual set of solutions. As wavefields are
solutions of Maxwell equations therefore, using the Maxwell equations
or application of duality transformation yields the following relations,
for

Case 1:

OE± = exp
(
±j

π

2

) [
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

]

= exp
(
±j

π

2

)
E± = η±H±

Oη±H± = − exp
(
∓j

π

2

) [
1

2 cos θ
[ηH ± j exp(∓jθ)E]

]

= exp
(
±j

π

2

)
η±H± = −E±

above equations may be written in an appropriate form as

OE± = exp
(
±j

π

2

)
E± (4a)

Oη±H± = exp
(
±j

π

2

)
η±H± (4b)

Similarly for

Case 2:

OE± = exp
(
∓j

π

2

)
E± (4c)

Oη±H± = exp
(
∓j

π

2

)
η±H± (4d)

Case 3:

OE± = exp
(
−j

π

2

)
E± (4e)

Oη±H± = exp
(
−j

π

2

)
η±H± (4f)
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Case 4:

OE± = exp
(
j
π

2

)
E± (4g)

Oη±H± = exp
(
j
π

2

)
η±H± (4h)

In above equations vector operator O may be termed as duality
operator and is given by

O =
1

jk±
∇×

It may be noted that if wavefields are proportional to its curl then this
type of vector fields are known as Beltrami fields [30]. In Equations (4),
E± and η±H± may be considered as eigenvectors of the duality
operator O and its corresponding eigenvalues are exp

(
±j π

2

)
when both

wavefields are of PPV type, and exp
(
∓j π

2

)
when both wavefields are

of NPV type etc.
Fractional dual of the wavefields may be obtained by fractionaliz-

ing the duality operator and fractionalization of linear operator means
fractionalization of corresponding eigenvalues [8]. That is

Case 1:

Efd± = OαE± = exp
(
±jα

π

2

) [
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

]

η±Hfd± = Oαη±H± = exp
(
±jα

π

2

) [
1

2 cos θ
[ηH ± j exp(∓jθ)E]

]

or

Efd± = exp
(
±jα

π

2

) [
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

]
(5a)

Hfd± =
1
η

exp
(
±jα

π

2
± jθ

) [
1

2 cos θ
[ηH ± j exp(∓jθ)E]

]
(5b)

Case 2:

Efd± = exp
(
∓jα

π

2

) [
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

]
(5c)

Hfd± =
1
η

exp
(
∓jα

π

2
± jθ

) [
1

2 cos θ
[ηH ± j exp(∓jθ)E]

]
(5d)
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Case 3:

Efd± = exp
(
−jα

π

2

) [
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

]
(5e)

Hfd± =
1
η

exp
(
−jα

π

2
± jθ

) [
1

2 cos θ
[ηH ± j exp(∓jθ)E]

]
(5f)

Case 4:

Efd± = exp
(
jα

π

2

) [
1

2 cos θ
[exp(∓jθ)E ∓ jηH]

]
(5g)

Hfd± =
1
η

exp
(
jα

π

2
± jθ

) [
1

2 cos θ
[ηH ± j exp(∓jθ)E]

]
(5h)

where α is the fractional parameter. Total fractional dual field may be
obtained as

Efd = Efd− + Efd+

Hfd = Hfd− + Hfd+

Substituting (5) in above expressions yields the following results

Case 1:

Efd =
1

cos θ

[
E cos

(
α

π

2
− θ

)
+ ηH sin

(
α

π

2

)]
(6a)

Hfd =
1

cos θ

[
H cos

(
θ + α

π

2

)
− E

η
sin

(
α

π

2

)]
(6b)

Case 2:

Efd =
1

cos θ

[
E cos

(
α

π

2
+ θ

)
− ηH sin

(
α

π

2

)]
(6c)

Hfd =
1

cos θ

[
H cos

(
θ − α

π

2

)
+

E
η

sin
(
α

π

2

)]
(6d)

Case 3:

Efd = exp
(
−jα

π

2

)
E (6e)

Hfd = exp
(
−jα

π

2

)
H (6f)

Case 4:

Efd = exp
(
jα

π

2

)
E (6g)

Hfd = exp
(
jα

π

2

)
H (6h)
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3. PLANE WAVE PROPAGATION IN UNBOUNDED
BI-ISOTROPIC MEDIUM

A plane wave polarized along ux at z = 0 and propagating along
positive z-axis in bi-isotropic medium may be written as sum of two
plane waves [34]

E(z) = E exp(−jkz cos θ) [ux cos(κrkz) − uy sin(κrkz)]

The vector in square brackets is a unit vector which has been rotated
from position ux at z = 0, by angle φ = −κrkz in the right direction
of propagation, while propagating through the bi-isotropic medium.
Above expression may be rewritten with the help of rotation dyadic
R(·) as

E(z) = exp(−jkz cos θ)R(−κrkz) · E(0) (7a)

The corresponding magnetic field may be written as

ηH = R(θ + π/2).E(z) (7b)

where

R(·) = It cos(·) + J sin(·)
I = uxux + uyuy + uzuz

It = uxux + uyuy

J = uz × I

Substituting (7) in (6a) and (6b) yields the following

Efd =
1

cos θ

[
It cos

(
α

π

2
− θ

)
+ R(θ + π/2) sin

(
α

π

2

)]
· E(z)

ηHfd =
1

cos θ

[
R(θ + π/2) cos

(
θ + α

π

2

)
− It sin

(
α

π

2

)]
· E(z)

Hence for bi-isotropic medium, where θ �= 0, we have

Efd =
[
It cos

(
α

π

2

)
+ J sin

(
α

π

2

)]
· E(z) = R(απ/2) · E(z)

ηHfd =
[
J cos

(
α

π

2
+ θ

)
− It sin

(
α

π

2
+ θ

)]
· E(z)

= R(θ + απ/2 + π/2) · E(z)

In terms of rotation dyadic R(·), we have the expressions for bi-
isotropic medium, for
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Case 1:

Efd = R(απ/2) · E(z) (8a)
ηHfd = R(θ + απ/2 + π/2) · E(z) (8b)

Similarly for

Case 2:

Efd = R(−απ/2) · E(z) (8c)
ηHfd = R(θ − απ/2 + π/2) · E(z) (8d)

Case 3:

Efd = exp
(
−jα

π

2

)
E(z) (8e)

ηHfd = exp
(
−jα

π

2

)
R(θ + π/2) · E(z) (8f)

Case 4:

Efd = exp
(
jα

π

2

)
E(z) (8g)

ηHfd = exp
(
jα

π

2

)
R(θ + π/2) · E(z) (8h)

It may be noted from above equations that, in case 1 and case 2,
changing the parameter α rotates the plane of polarization. For case 3
and case 4, there is no rotation in the plane of polarization. Secondly,
when we changes the value of α, plane of polarization in case 2 rotates
opposite to that of case 1. Thirdly, in case 3 and 4, parameter α only
effects the phase of the field. It is also obvious that direction of ηHfd

makes an angle θ + π/2 with that of Efd as for the case of original set
of solutions (E, ηH). That is, for all cases

ηHfd = R(θ + π/2) · Efd(z) (9)

For chiral medium θ = 0, Equations (8a) and (8b) simplifies to

Efd =
[
It cos

(
α

π

2

)
+ R(π/2) sin

(
α

π

2

)]
· E(z)

= R(απ/2) · E(z) (10a)

ηHfd =
[
R(π/2) cos

(
α

π

2

)
− It sin

(
α

π

2

)]
· E(z)

= R(απ/2 + π/2) · E(z) (10b)
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In terms of rotation dyadic, we have

Efd = R(απ/2) · E(z) (11a)
ηHfd = R(απ/2 + π/2) · E(z) (11b)
ηHfd = R(π/2) · Efd(z) (11c)

It is obvious that direction of ηHfd is orthogonal to Efd. For ordinary
isotropic material, θ = κr = 0, set of expressions given in (11) hold. It
is obvious from above set of equations that in case 1 and 2, fractional
curl operator effects only the rotation dyadic R(·) and in case 3 and
4 it effects only the phase of the field. Equation (8) is the general
expression and fractional dual solution for chiral and ordinary medium
may be derived very easily.

4. CORRESPONDING SOURCES AND TIME AVERAGE
POWER

The expression for corresponding sources are obtained as [16, 23]

Case 1:

Jfd =
1

cos θ

[
J cos

(
α

π

2
− θ

)
+ ηM sin

(
α

π

2

)]
(12a)

Mfd =
1

cos θ

[
M cos

(
θ + α

π

2

)
− J

η
sin

(
α

π

2

)]
(12b)

Case 2:

Jfd =
1

cos θ

[
J cos

(
α

π

2
+ θ

)
− ηM sin

(
α

π

2

)]
(12c)

Mfd =
1

cos θ

[
M cos

(
θ − α

π

2

)
+

J
η

sin
(
α

π

2

)]
(12d)

Case 3:

Jfd = exp
(
−jα

π

2

)
J (12e)

Mfd = exp
(
−jα

π

2

)
M (12f)

Case 4:

Jfd = exp
(
jα

π

2

)
J (12g)

Mfd = exp
(
jα

π

2

)
M (12h)



Progress In Electromagnetics Research, PIER 78, 2008 169

where J and M are electric and magnetic current densities respectively
corresponding to the original fields. It may be noted from above
equations that, in case 1 and 2, the fractional sources are combination
of ordinary electric and magnetic sources but not in case 3 and 4.

Time average power associated with fractional dual fields is given
by [36–38], for all cases

1
2
Re

{
Efd × H∗

fd

}
=

1
2
Re

[{
Efd− × H∗

fd−
}

+
{
Efd− × H∗

fd+

}
+

{
Efd+ × H∗

fd−
}

+
{
Efd+ × H∗

fd+

}]
=

1
2
Re {E × H∗}

This shows that time average power associated with the fractional dual
fields is same as time average power associated with the original set of
fields.

5. CONCLUSIONS

Fractional dual fields for bi-isotropic medium are derived and written
in a form involving rotation dyadic. We have used field decomposition
approach. Discussion have been divided into four cases. In case 1,
both wave fields travel with PPV, in case 2, both wave fields travel
with NPV, in case 3, wave field with wave number k+ travels with
NPV while wave field with wave number k− travels with PPV. In
case 4, wave field with wave number k+ travels with PPV while wave
field with wave number k− travels with NPV. It is noted that in case 1
and 2, fractional parameter appears in a rotation dyadic which relates
original solution to the fractional dual solution. This means that effect
of fractional parameter is to rotate the plane of polarization. Rotation
of the plane of polarization in case 1 and case 2 is opposite of each
other. For case 3 and 4, the fractional parameter effects only the
phase of the field and does not changes the plane of polarization of
the field. We have derived the corresponding fractional sources for all
these cases. It is noted that for case 1 and 2, the fractional sources
are constructed from superposition of ordinary electric and magnetic
sources while in case 3 and 4 the fractional dual sources are obtained
from electric source in case 3 while from magnetic source from case 4.
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