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Abstract—In this paper, the previously introduced fuzzy modeling
method is used to model the input impedance of two coupled dipole
antennas in the echelon form. The initial data of two coupled dipole
antennas in the parallel and collinear form, which are required for the
model, are obtained using the MoM (Method of Moments). Then, the
knowledge of two coupled dipole antennas in the echelon form is easily
predicted based on the knowledge of two coupled dipole antennas in
the parallel and collinear form and the concept of spatial membership
functions. Comparing the results of the proposed model with MoM
shows an excellent agreement with a vanishingly short execution time
comparing with MoM.

1. INTRODUCTION

Wire antennas are widely used in communication systems from low
to ultra-high frequencies, either in the form of individual elements or
arranged together to form an array [1]. They are also frequently used
as probes to sense unknown environments or as bases for modeling
more complex systems and structures [2–5]. As we know, there are
several analytical and numerical methods to analyze dipole antennas,
either in individual or in coupled form, e.g., the method of moments
(MoM) [6]. When encountering with large scale arrays, these methods
are suffering from the complex and time-consuming calculations. This
will increase when good accuracy is required. Hence, recently, much
research work has been devoted to rapid numerical techniques for
reducing the computation effort in full-wave analysis [7–13]. In contrast
with these methods, qualitative inferences and soft calculating methods
can be taken into consideration. A new modeling approach by using
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fuzzy inferences for computing the input impedance of an isolated
monopole antenna has been introduced by Tayarani et al. [14]. In
this paper, the introduced method in [14] is used to model input
impedance of an isolated dipole antenna to extract its behavior. Then
we apply the same method for modeling input impedance of two
coupled parallel and collinear dipole antennas individually and extract
their knowledge. After then using spatial membership functions and
the extracted knowledge of two above mentioned structures, knowledge
of two coupled staggered dipole antennas is extracted. Behavior of two
coupled antennas is then approximated using the same fuzzy inference
method and finally, we show that our modeling results are in a very
excellent agreement with MoM, and the execution time is vanishingly
reduced.

2. A FUZZY MODEL FOR INPUT IMPEDANCE OF AN
ISOLATED DIPOLE ANTENNA

In this section, a dipole with an arbitrary radius (for instance, a =
2.7 mm) is considered as shown in Figure 1. Its input impedance is
computed versus normalized length, (L/λ) using MoM and shown in
Figure 2 in polar plane.

Figure 1. A dipole of an array.
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Figure 2. Input impedance of isolated dipole in polar plane as well
as fitted circles (dotted circles).

This kind of curve is introduced and modeled previously in [14].
Here, we use the same method to create our fuzzy model for input
impedance of the dipole antenna of Figure 1. At first, we choose three-
points sets around the even resonances,L/λ = 0.42, 0.9, 1.4 (* marks)
to define the first, second and third circles as introduced in [14]. These
circles are changing around odd resonances smoothly and this smooth
movement can be modeled easily using fuzzy membership functions.
Three fuzzy sets are defined in the range and could be extended for
longer antennas. The membership functions, which are used here, were
defined by Shouraki [15] and are selected because of their flexibility
and smoothness as shown in Figure 3. The general form of membership
functions, which are used in Figure 3, can be expressed as Equation (1):
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where β1,2 are optimizing parameters, and a, b are defined in [14].
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Figure 3. Membership functions for modeling the moving circles.

If we put a name on each of fuzzy sets, like Short, Medium and
Long from the left to right in Figure 3, then the implications below
can be written as:


If L/λ belongs to short set then first circle
If L/λ belongs to medium set then second circle
If L/λ belongs to Long set then third circle

(2)

where the first, second and third circles are those defined in Figure 2
(fitted circles or dotted circles), a new circle can be inferred for each
L/λ using simple inferences of Equation (3).



x

(
L

λ

)
=

3∑
i=1

xiαi

(
L

λ

)

y

(
L

λ

)
=

3∑
i=1

yiαi

(
L

λ

)

r

(
L

λ

)
=

3∑
i=1

riαi

(
L

λ

)
(3)

where xi, yi and ri are coordinates of center and radius of the
basic circles (fitted circles in Figure 2) respectively, and αi is the
belongingness of desired L/λ derived from Figure 3 and finally the
new circles are specified by x, y and r as center coordinates and radius
for each L/λ respectively. To choose the proper point on the resulted



Progress In Electromagnetics Research, PIER 78, 2008 269

circle, we need to define the partial phase as defined in [14]. The Partial
Phase is shown in Figure 4(a).

Figure 4. (a) partial phase (b) belongingness for partial phase.

As it is seen, at least there are three linear parts in Figure 4(a).
The marked phases in the linear parts belong to the three-point sets,
which were used in the pervious section to define circles.

Using Takagi/Sugeno’s method in [16], this phase curve could be
modeled by using the above-mentioned three lines. In this case also,
three fuzzy sets with suitable membership functions are used as shown
in Figure 4(b) and the rules are the same as Equation (2), but circles
modify to lines and Equation (3) reduces as following:
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where mi and ni are slopes and biases of three lines and αi is the
belongingness of desired L/λ deriving from Figure 4(b) and finally
the new lines are specified by m,n as slope and bias for each L/λ
respectively. Finally, with only three three-point sets in the vicinity of
L/λ = 0.42, 0.9, 1.4, and membership functions from modeling moving
circles and partial phase, Input impedance can be regenerated as shown
in Figure 5.

Figure 5. Modeled input impedance of the isolated dipole antenna.

3. A FUZZY MODEL FOR COMPUTING INPUT
IMPEDANCE OF TWO COUPLED DIPOLE ANTENNAS
IN THE PARALLEL FORM

In this section, an array of two coupled dipole antennas in parallel is
considered as shown in Figure 6.

Input impedance for a number of samples with different spacing,
Dh is calculated and shown in Figure 7 in polar plane.

As it is seen, these curves are similar to the introduced curve in
the previous section. Therefore, the introduced method in previous
section can be applied to model these curves as well. The membership
functions, which model moving circles and partial phase for each
sample, are shown in Figure 8.

As it is seen in Figure 8, the membership functions of moving
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Figure 6. Array of two coupled parallel dipole antenna.

Figure 7. Input impedance for several samples of two coupled parallel
dipole antennas in polar plane.

circles have not been changed for different spacings, and only slight
changes for the partial phase can be seen. Therefore, we approximate
them to membership functions of the isolated dipole antenna as a first
order approximation. Therefore, the only parameters which change for
different spacings are the initial point values that can be supposed as
a knowledge base and can be extracted simply through applying the
proposed algorithm. The knowledge base for the first circle and line is
shown in Figure 9.
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Figure 8. Membership functions of two coupled parallel dipole
antennas as well as membership functions of the isolated dipole antenna
for (a) moving circles (b) partial phase.

Now, we can read the inputs of our fuzzy system, circles and lines
through the Figure 9 and then using the membership functions of the
isolated dipole antenna, the input impedance for each dipole antenna
is generated. For instance, a sample with Dh = 27 cm is run. The
predicted input impedance has been shown in Figure 10. As shown in
Figure 10, an excellent agreement with a vanishingly short computing
time is achieved.

Another sample is Dh = 15 cm (strong coupling region). The
predicted input impedance of this sample is shown in Figure 11.

As it is seen in Figure 11, the fuzzy predicted input impedance is
good enough even in strong coupling region, but we may make even
more accurate model by adding a new fuzzy set between the short and
medium fuzzy set where we encounter higher errors. Since there is no
new data for this new fuzzy set, the technique below, is used.

1- Suppose the last point of the short set and the first point of the
medium set as margins.

2- Let the short and medium sets go to zero at these margins.
3- Allocate a new set between two margins with a membership

function as shown in Figure 12(b).
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Figure 9. Extracted knowledge of two coupled dipole antennas in the
parallel form for the first circle and line.

Figure 10. Predicted input impedance of two coupled dipole antennas
with Dh = 27 cm.
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Figure 11. Predicted input impedance of two coupled parallel dipole
antennas with Dh = 15 cm.

4- Draw a line between two margin points and use it in the new
implications below:

If
L
λ

belongs to short set then first line

If
L
λ

belongs to new set then new line

If
L
λ

belongs to medium set then second line

If
L
λ

belongs to long set then third line

(5)

Note that, we create a new fuzzy set such that the new resulted
membership functions are valid both in strong and in week coupling
regions.

We can see the improvement in our fuzzy model using the
membership functions of Figure 12 as shown in Figure 13.

Now, using the resulted membership functions, strong coupling
region is again tested.
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Figure 12. (a) Creating a new line in the partial phase of isolated
dipole antenna (dashed line) and (b) creating a new fuzzy set in
membership functions (dashed set).

Figure 13. Predicted input impedance of two coupled parallel dipole
antennas with Dh = 15 cm.
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Figure 14. Array of two coupled collinear dipole antenna.

4. A FUZZY MODEL FOR COMPUTING INPUT
IMPEDANCE OF TWO COUPLED DIPOLE ANTENNAS
IN COLLINEAR FORM

In this section we model an array of two coupled dipole antennas, the
same as the previous section but in collinear as shown in Figure 14.

The resulted membership functions of two coupled dipole antennas
in the collinear form are shown in Figure 15.

As it is seen, these membership functions can also be
approximated by the membership functions of the isolated dipole
antenna. Now, we can extract the related knowledge through the
proposed method for each sample. The extracted knowledge for the
first circle and line is shown in Figure 16.

Again, we can read inputs of our fuzzy system (circles and lines
through the Figure 16), and then using the membership functions of
the isolated dipole antenna, the input impedance is easily extracted.
For instance, a sample with Dv = 45 cm is run. As shown in Figure 17,
a very good agreement is achieved and the execution time is vanishingly
short.
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Figure 15. Membership functions of two coupled collinear dipole
antennas as well as membership functions of the isolated dipole antenna
for (a) moving circles (b) partial phase.

Figure 16. Extracted knowledge for two coupled collinear dipole
antennas for the first circle and line.



278 Ostadzadeh, Soleimani, and Tayarani

Figure 17. Predicted input impedance of two coupled collinear dipole
antennas with Dv = 45 cm.

5. EXTRACTING KNOWLEDGE OF TWO COUPLED
DIPOLE ANTENNAS IN ECHELON FORM USING
SPATIAL MEMBERSHIP FUNCTIONS

In two previous sections, we modeled two coupled dipole antennas both
in parallel and in collinear form. After then, we have shown that the
behavior of two coupled dipole antennas could be approximated using
the membership functions of the isolated dipole antenna. Then we
obtained their knowledge bases separately. In this section, we consider
two coupled dipole antennas in echelon as shown in Figure 18.

In the previous sections, two sets of membership functions for
moving circles and partial phase were obtained. The behavior of
two structures as two SIMO (Single-Input-Multi-Output) systems (two
coupled dipole antennas in parallel and collinear form) were also
extracted and saved as the simple curves. Here we combine these two
SIMO systems using the definition of appropriate spatial membership
functions introduced for the first time by Shouraki in [17] to achieve the
knowledge base for two coupled dipole antennas in echelon form and
predict its input impedance using the same fuzzy modeling method.
The functions used here are the same as those defined before in [15],
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Figure 18. Two coupled staggered dipole antennas.

but in the spatial form as following:

αi(Dh, Dv) =




1
2

(
1 − cosπ

(
ψ − ϕ2

ϕ2 − ϕ1

)β1
)

for ϕ1 → ϕ2

1
2

(
1 + cosπ

(
ψ − ϕ2

ϕ2 − ϕ1

)β2
)

for ϕ2 → ϕ1

(6)

where ψ = tan−1
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)
, β1, β2 = optimizing parameters.

The spatial membership functions, which we used here, are shown
in Figure 19. Now, using the following equations, we can infer the
knowledge base of two coupled dipole antennas in echelon form as
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Figure 19. Spatial membership functions for combining two SIMO
systems.

Equations (7):

xi(Dh, Dv) =
xi(Dh)α1(Dh, Dv) + xi(Dv)α2(Dh, Dv)

α1(Dh, Dv) + α2(Dh, Dv)

xi(Dh, Dv) =
xi(Dh)α1(Dh, Dv) + xi(Dv)α2(Dh, Dv)

α1(Dh, Dv) + α2(Dh, Dv)

ri(Dh, Dv) =
ri(Dh)α1(Dh, Dv) + ri(Dv)α2(Dh, Dv)

α1(Dh, Dv) + α2(Dh, Dv)

mi(Dh, Dv) =
mi(Dh)α1(Dh, Dv) +mi(Dv)α2(Dh, Dv)

α1(Dh, Dv) + α2(Dh, Dv)

ni(Dh, Dv) =
ni(Dh)α1(Dh, Dv) + ni(Dv)α2(Dh, Dv)

α1(Dh, Dv) + α2(Dh, Dv)

(7)

where αi(Dh, Dv), i = 1, 2 are spatial membership functions and
xj(Di), yj(Di), rj(Di), mj(Di), nji(Di) i = h, v, j = 1, 2, 3, is
knowledge of two SIMO systems, and ϕ1 = π

2 , ϕ2 = 0. Now, using
the inferred knowledge and the membership functions of the isolated
dipole antenna, the input impedance for each dipole antenna in the
echelon form is generated. Our fuzzy system is run for a sample with
Dh = 30 cm, Dv = 44 cm and Dh = 15 cm, Dv = 46 cm. As shown in
Figures 20 and 21, an excellent agreement is achieved. The execution
time is considerably reduced again.
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Figure 20. Predicted input impedance for two coupled dipole
antennas with Dh = 30 cm, Dv = 44 cm.

Figure 21. Predicted input impedance for two coupled staggered
dipole antennas with Dh = 15 cm, Dv = 46 cm.
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6. CONCLUSION

In this paper, we have introduced a method based on fuzzy inferences to
predict the input impedance of two coupled dipole antennas in echelon
form. The knowledge base for two coupled dipole antennas in echelon
was extracted using the knowledge of two coupled dipole antennas in
parallel and collinear form and a new concept, which is called spatial
membership functions. The array behavior (membership functions)
was approximated by the behavior of the isolated dipole antenna.
Therefore, using the obtained spatial knowledge, and membership
functions of the isolated dipole antenna, the input impedance for the
new structure is generated. Comparing our modeling results with the
accurate results (MoM) shows an excellent agreement with vanishingly
short execution time. This paper could be considered as a key for fast
and accurate calculations of large scale antenna arrays.
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