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Abstract—An analytical formulation based on physical optics is
employed to determine the field and the radiated power distribution
by open-ended circular waveguides. Using the incomplete Hankel
functions, the line integrals yielding the electromagnetic field are
evaluated in closed analytical form along the waveguide axis. It is
shown that cylindrical waves are generated by the surface currents
flowing on the waveguide walls, while spherical waves are produced
by the currents and charges excited at the waveguide truncation.
Cylindrical and spherical waves are shown to be responsible for the
field synthesis in terms of waveguide modes and scattered fields
at the waveguide mouth. Numerical results concerning the spatial
distribution of the electromagnetic field and associated power density
are compared with previously published results, showing the advantage
of the incomplete Hankel functions formulation. Finally, the uniform
asymptotic representation of the incomplete Hankel function is shown
to be suitable to compute the field distribution on the waveguide axis
except for the TE11 and TM01 modes.



286 Cicchetti and Faraone

1. INTRODUCTION

The electromagnetic analysis of semi-infinite open-ended waveguides,
is a relevant canonical problem in applied electromagnetics since they
can represent waveguide antennas [1, 2], reflector antenna feeders [3–6],
and scatterers in radar cross section analysis [7–11]. The exact solution
of the electromagnetic field excited in open-ended circular waveguides
can be derived using the Wiener-Hopf technique. This technique, that
is only applicable to circular waveguides [12], allows expressing the
field quantities in terms of spectral Fourier integrals. Consequently,
to obtain the corresponding expressions in the coordinate domain, the
evaluation of slowly converging numerical integrations is required. On
the other hand, asymptotic techniques fail to describe the field along
or near the waveguide axis [6]. Physical optics (PO) may indeed allow
computing the field with sufficient numerical accuracy [7, 8], therefore,
in this paper, the explicit expressions of the PO electromagnetic
field components excited along the axis of circular waveguides are
derived in closed form. The field is expressed in terms of incomplete
Hankel functions (IHFs), recently introduced in literature [13–15],
which provide physical insight into the wave propagation and radiation
mechanisms. This representation further allows establishing the spatial
regions where asymptotic techniques fail.

The paper, which completes and extends the results presented
in [15], consists of five sections. In Section 2, the procedure adopted
to evaluate the PO field quantities is summarized, while in Section 3
the electromagnetic field components are derived, in closed analytical
form, along the waveguide axis. The resulting expressions, which
comprise radiative, inductive and electrostatic terms, are then related
with the Brillouin’s angles. The latter are linked with the Keller’s cone
associated with the scattered field phenomenon. Numerical results
concerning the spatial behavior of fields and power density in truncated
circular waveguides excited by TE and TM traveling wave modes are
presented in Section 4, while a concluding discussion is outlined in
Section 5.

2. METHODOLOGY

A cylindrical reference frame (ρ, φ, z), with unit vectors ρ̂, φ̂, and ẑ, is
adopted to express the field quantities, while a time dependence e j ω t,
with ω being the angular frequency, is assumed and suppressed.

An open-ended circular waveguide having radius a, truncated at
z0, is shown in Fig. 1. As discussed in [15], the electromagnetic
field distribution excited in the structure can be evaluated by means
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Figure 1. A truncated circular waveguide excited by a guided-wave
mode. The reference system adopted to define the field quantities is
established.

of the surface currents excited on the metal surface using the PO
approximation. Doing so, and adopting the procedure presented
in [15], it is possible to reduce the PO surface integrals in simple line
integrals along the waveguide contour as follows

E(ρ, z, z0) =

2π∫
0

T (φ′) · GE(ρ, z, z0, φ
′) · j(φ′)adφ′, (1)
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H(ρ, z, z0) =

2π∫
0

T (φ′) · GH(ρ, z, z0, φ
′) · j(φ′)adφ′, (2)

where j(φ) is the PO surface current, while GE(·), GH(·), and T (·)
are the tensors defined in [15].

The integrals (1)–(2), which include the PO edge currents that
take into account the near-field effects, express the field synthesis in
terms of waveguide modes and scattered fields at the waveguide mouth,
anywhere inside and outside the waveguide. Waveguide modes are
synthesized by means of a superposition of cylindrical waves expressed
through the Hankel functions embedded in the IHFs [13, Eq. (37)],
while the scattered field is synthesized by the current and charge
excited at the waveguide truncation as well as by the IHFs end-
point contribution modeling the transition of said cylindrical waves
into spherical ones.

2.1. The Field and the Power Density along the Waveguide
Axis

As observed in [15], along the waveguide axis the tensors components
reported in (1)–(2) become independent of the source angle, while those
of the transformation matrix T [15, Eq. (10)] become proportional
to trigonometric functions of the difference between the source and
observation angles [15, Eqs. (17)–(18)]. Using the results reported
in [15] it is possible to express the propagating modes with non
vanishing transverse field components along the waveguide axis. These
modes, having m = 1 can be expressed as follows

Eρ (ρ, φ, z; z0)|ρ=0 = πa
[
gE
Rz (a, z; z0)hφ max − gE

ΦΦ (a, z; z0)hz max

]
sin(φ + φ0), (3)

Eφ (ρ, φ, z; z0)|ρ=0 = πa
[
gE
Rz (a, z; z0)hφ max − gE

ΦΦ (a, z; z0)hz max

]
cos(φ + φ0), (4)

Ez (ρ, φ, z; z0)|ρ=0 = 0, (5)

and

Hρ (ρ, φ, z; z0)|ρ=0 = −πa
[
gH
Φz (a, z; z0)hφ max + gH

RΦ (a, z; z0)hz max

]
cos(φ + φ0), (6)

Hφ (ρ, φ, z; z0)|ρ=0 = πa
[
gH
Φz (a, z; z0)hφ max + gH

RΦ (a, z; z0)hz max

]
sin(φ + φ0), (7)

Hz (ρ, φ, z; z0)|ρ=0 = 0 (8)
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where the functions gE
Rz (·), gE

ΦΦ (·), gH
Φz (·), and gH

RΦ (·) are defined
through the following relationships

gE
Rz (R, z; z0) =

1
jωε0

∂2

∂R∂z
A±

0 (R, z, z0) (9)

gE
ΦΦ (R, z; z0) = jωµ0

[
1 +

1
β2

0

1
R

∂

∂R

]
A±

0 (R, z, z0) (10)

and

gH
Φz (R, z; z0) = − ∂

∂R
A±

0 (R, z, z0), (11)

gH
RΦ (R, z; z0) =

∂

∂z
A±

0 (R, z, z0), (12)

with

A±
0 (R, z, z0) = −j

1
4
H

(2)
0

[
β0γpR, sinh−1

(
∆z+̄αnr0

γpR

)]
e∓jβzz, (13)

where β0 and βz are the free-space and the guided wave wavenumbers,
respectively. The function H

(2)
0 [·] in (13) is the incomplete Hankel

function of second kind and order zero [13], whose arguments are:

αn = βz

β0
, γp =

√
1 − α2

n, ∆z = z − z0, and r0 =
√

R2 + (∆z)2.
The partial derivative appearing in (9)–(13) are reported in Appendix
A. The magnetic field components in (3)–(8) are those describing
the surface current in the corresponding unlimited waveguide (PO
approximation). For TE-modes they are

hTE
φ max = ±jαn

β0a

(ξ′1n)2
C0J1(ξ′1n), (14)

hTE
z max = C0J1(ξ′1n), (15)

where J1(·) is the Bessel function of the first kind of order m = 1, and
ξ′1n is the n-th zero of its first derivative, while for TM -modes we have

hTM
φ max = −j

ωε0

ζ1n
aC0J

′
1(ζ1n) (16)

ζ1n being the n-th zero of the function J1(·). Finally, C0 is a constant
which depends on the impinging field amplitude.

Using (3)–(8), the expressions for the fields associated to the



290 Cicchetti and Faraone

progressive waveguide modes are finally derived

Eρ (ρ, φ, z; z0)|ρ=0 =

πa

{
1
4

[
ωµ0H

(2)
0

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hz max

−γp
η0

a
H

(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hz max

−jωµ0αnγpH
(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hφ max

]
e−jβzz

+
[
−η0αn

∆z

a

e−jβ0r0

4πr0
+

a

jωε0

(
jβ0 +

1
r0

)
e−jβ0r0

4πr2
0

]
hφ maxe

−jβzz0

− 1
jωε0

∆z

a2

e−jβ0r0

4πr0
e−jβzz0hz max

}
sin(φ + φ0) (17)

Eφ (ρ, φ, z; z0)|ρ=0 =

πa

{
1
4

[
ωµ0H

(2)
0

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hz max

−γp
η0

a
H

(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hz max

−jωµ0αnγpH
(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hφ max

]
e−jβzz

+
[
−η0αn

∆z

a

e−jβ0r0

4πr0
+

a

jωε0

(
jβ0 +

1
r0

)
e−jβ0r0

4πr2
0

]
hφ maxe

−jβzz0

− 1
jωε0

∆z

a2

e−jβ0r0

4πr0
e−jβzz0hz max

}
cos(φ + φ0) (18)

and

Hρ (ρ, φ, z; z0)|ρ=0 =

πa

{
1
4

[
jβ0γpH

(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hφ max

+ β0αnH
(2)
0

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hz max

]
e−jβzz

+
[
∆z

a
hφ max + hz max

]
e−jβ0r0

4πr0
e−jβzz0

}
cos(φ + φ0) (19)
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Hφ (ρ, φ, z; z0)|ρ=0 =

−πa

{
1
4

[
jβ0γpH

(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hφ max

+ β0αnH
(2)
0

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
hz max

]
e−jβzz

+
[
∆z

a
hφ max + hz max

]
e−jβ0r0

4πr0
e−jβzz0

}
sin(φ + φ0) (20)

showing that the electromagnetic field is described by means of
incomplete Hankel functions of order zero and one that model the
transition from the guided toward the spherical wave propagation
regime, as well as additional spherical wave contributions arising
from the waveguide truncation. Moreover, they explicitly show the
dependence from the parameters αn and γp. These parameters, whose
expressions in terms of the zeroes ζ1n of J1(·) or those of J ′

1(·) (ξ′1n)
are

αn =

√
1 −

(
p1n

β0a

)2

(21)

γn =
p1n

β0a
(22)

where

p1n =
{

ξ′1n for TE modes
ζ1n for TM modes

, (23)

are related with the Brillouin’s angles (see Tabs. 1 and 2), which
coincides with the semi-aperture angle of the Keller’s cone (see Fig. 1).
The field expressions (17)–(20) can also be employed to compute the
z-component of the Poynting vector (Pz) excited along the waveguide
axis. For the TE0n and TM0n modes the z-component of the
Poynting vector vanishes since they present only the longitudinal
components different from zero along the z-axis. Indeed, for the sake
of completeness, the analytical expressions of these modes are reported
in Appendix B. These expressions have the same analytical structures
as Eqs. (17)–(20).

It is worth reminding that the IHFs appearing in (17)–(20)
possess the asymptotic representation introduced in [13]. This
representation is numerically very accurate when the IHFs parameter
Ω > 3 [13, Eq. (48)], where Ω = β0γpa = p1n (see Eq. (22)). It is
easily verified that this condition is met for all the waveguide modes,
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Table 1.

Characteristic parameters dependence on the guide radius for TE11 mode

Guide radii α n γ p Brillouin angle Half amplitude field point zhalf / 0

0 5 0. 0.810263 0.586066 35 8784. 0.691272

0 0.956102 0.293034 17 0397. 3.26277
2 0 0.989208 0.146518 8 42512. 13.5029
4 0 0.997313 0.0732583 4 20116. 54.4546

10 0 0.999571 0.0293033 1 6792. 341.111

λ

λ
λ
λ

λ

λ
o

o

o

o

o

Table 2.

Characteristic parameters dependence on the guide radius for TM 11 mode

Guide radii α n γ p Brillouin angle Half amplitude field point zhalf / 0

0 0.792528 0.609836 37 5776. 1.29958
2 0 0.952379 0.304917 17 7532. 6.24681
4 0 0.988310 0.152458 8 76944. 25.9301

10 0 0.998139 0.0609835 3 49605. 163.674

λ

λ

λ
λ
λ

o

o

o

o

except for the TE11 and TM01, for which Ω = ξ′11 = 1.8412 and
Ω = ζ01 = 2.4049, respectively. This will be clearly shown by the
numerical results reported in the next section.

3. NUMERICAL RESULTS

In this section, numerical results concerning the field and power
distributions excited in open-ended circular waveguides are presented.
The validation of the numerical procedure adopted herein for the
evaluation of the field quantities has been performed in [15]. So, in
this section we report comparisons with previously published results
and characterize the field and the power density distribution excited
along the axis of circular waveguides. We will consider the excitation
of the progressive guided wave only, and the waveguide truncation will
be assumed at z0 = 0. Neglecting the reflected wave introduces a
small error since the modal reflection coefficients for these truncated
waveguide structures are typically small [5]. A full-wave analysis would
entail a laborious MoM approach encompassing modal basis function,
or a hybrid PO/MoM formulation with suitable basis functions located
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near the waveguide truncation.
In order to compare our formulation with others in literature,

we analyzed the field pattern of the open-ended circular waveguide
analyzed in [6], having radius a = 0.5λ0, and excited by the
fundamental TE11-mode. The angular behavior of the φ-component
of the electric field, computed in the E-plane at r = 0.7λ0 and
r = 1.5λ0, is shown in Fig. 2 where it is compared against analogous
results obtained by means of the asymptotic solution proposed in
[6]. An excellent agreement between the two normalized patterns is
observed. It should be remarked that we extended the angular range
to about 180◦, thus penetrating the waveguide wall and reaching the
waveguide axis. As discussed in [14, 15] asymptotic techniques can fail
to represent the field excited inside the waveguide or in its proximity.
The formulation based on the IHFs, instead, allows overcoming such
a limitation. Moreover, the numerical accuracy of the asymptotic
technique tends to decrease for waveguides having electrically large
cross-sections.
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Figure 2. Magnitude of the φ-component of the electric field (H-
plane) radiated by a truncated circular waveguide versus elevation
angle θ. Guide characteristics: a = 0.5λ0, exciting mode: TE11.
The empty circles trace the asymptotic solution presented in [6].
Curves normalized with respect to the maximum value at broadside
for r = 0.7λ0. The cuspid in both curves is where the field point
crosses the waveguide wall.



294 Cicchetti and Faraone

In Figs. 3(a)–3(b), the spatial behavior along the waveguide axis of
the radial component of the electric field in the E-plane, and that of the
radial component of the magnetic field in the H-plane, are reported for
the case of a circular waveguide having radius a = 2λ0 excited with the
TE11-mode. The field amplitudes have been computed starting from
the internal waveguide region up to the far-field region and normalized
so that the peak level of the ρ−component of the exciting TE11-mode
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Figure 3. Field quantities of the TE11 mode along the z-axis of
a truncated circular waveguide (a = 2λ0, z0 = 0). (a) |Eρ| in the E-
plane, (b) |Hρ| in the H-plane, and (c) |Pz|. The accuracy of the
asymptotic solution is marginal as expected based on the theory. The
circle indicates the point zhalf .
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Figure 4. Field quantities of the TM11 mode along the z-axis of
a truncated circular waveguide (a = 2λ0, z0 = 0). (a) |Eρ| in the
E-plane, (b) |Hρ| in the H-plane, and (c) |Pz|. The accuracy of
the asymptotic solution is excellent since the dotted and solid lines
coincide. The circle indicates the point zhalf .

electric field is 1 V/m. Finally, in Fig. 3(c) the z-component of the
Poynting vector is reported for completeness. These figures show the
interaction of the guided wave with the field scattered at the open-
end discontinuity, producing the undulations that are observed near
the waveguide truncation. The distance where the field amplitude
overshoot is observed, corresponding to the field character transition
toward the spherical wave propagation regime [14], moves away from
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the waveguide aperture as its electrical cross-section increases, and so
does the parameter zhalf (see Tabs. 1 and 2), i.e., the point where
the electromagnetic field amplitude on the waveguide axis decays to
one half [15]. The same point identifies the maximum extension of
the geometrical optics field along the z-axis. From Eqs. (17)–(20) it is
evident that the field focusing (overshoot) phenomenon is caused by
the field scattered at the waveguide truncation. A similar behavior
is observable when the considered guides are excited by means of a
TM11-mode. The corresponding case for a = 2λ0 is reported in Fig. 4.
Finally, it should be observed that the field quantities computed using
the asymptotic representation of the IHFs show the inadequacy in
producing accurate results along the waveguide axis only for the TE11-
mode (see Figs. 3–4). In any case, good asymptotic results are expected
for the higher order modes (TE1n with n > 1) even for the moderately
small waveguide since in this case Ω = ξ′1n > 3, and for all TM1n

modes (n ≥ 1).

4. CONCLUSIONS

The analysis of the electromagnetic field distribution excited in open-
ended circular waveguides has been carried out based on physical
optics and incomplete Hankel functions formulation. A line integral
representation involving the incomplete Hankel functions has been
employed to express the field quantities without introducing analytical
or numerical approximations. The exact expressions of the elementary
fields involved in the line integral representation allows the analysis
of the field distribution near and far from the analyzed structures.
In particular, the field distribution computed in closed analytical
form along the waveguide axis explicitly show the dependence on
the radiative, inductive and electrostatic components as well as the
analytical link with the Brillouin’s angle related with the Keller’s
cone. In addition, it has been observed that the uniform asymptotic
representation of the IHFs can be employed to determine the field
quantities with excellent accuracy on the waveguide axis, except for the
TE11 and TM01 modes. Numerical results concerning the propagation
and conversion of the guided-wave modes into the spherical waves have
been presented for different exciting modes and waveguide dimensions.
It has been observed that interference processes between the guided
modes and the field scattered at the waveguide rim are responsible for
the electromagnetic energy focusing observed just before the transition
of the radiated field toward the spherical wave propagation regime.
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APPENDIX A. PARTIAL DERIVATIVES OF THE
ELECTRIC VECTOR POTENTIAL

The partial derivatives of the vector potential, needed to compute the
electromagnetic field distribution in circular open-ended waveguides
excited by non evanescent traveling-wave modes, are given by

∂

∂R
A±

0 (R, z, z0) = jβ0γp
1
4
H

(2)
1

[
β0γpR, sinh−1

(
∆z ∓ αnr0

γpR

)]
e∓jβzz

+
∆z

R

e−jβ0r0

4πr0
e∓jβzz0 , (A1)

∂

∂z
A±

0 (R, z, z0) = ∓βz
1
4
H

(2)
0

[
β0γpR, sinh−1

(
∆z ∓ αnr0

γpR

)]
e∓jβzz

−e−jβ0r0

4πr0
e∓jβzz0 , (A2)

∂2

∂z2
A±

0 (R, z, z0) = jβ2
z

1
4
H

(2)
0

[
β0γpR, sinh−1

(
∆z ∓ αnr0

γpR

)]
e∓jβzz

±jβz
e−jβ0r0

4πr0
e∓jβzz0 + ∆z

(
jβ0 +

1
r0

)
e−jβ0r0

4πr2
0

e∓jβzz0 , (A3)

∂2

∂R2
A±

0 (R, z, z0)=jβ2
0γ

2
p

1
4
H

(2)
0

[
β0γpR, sinh−1

(
∆z ∓ αnr0

γpR

)]
e∓jβzz

−jβ0γp
1

4R
H

(2)
1

[
β0γpR, sinh−1

(
∆z∓αnr0

γpR

)]
e∓jβzz∓jβz

e−jβ0r0

4πr0
e∓jβzz0

−∆z

(
jβ0 +

1
r0

)
e−jβ0r0

4πr2
0

e∓jβzz0 − ∆z

R2

e−jβ0r0

4πr0
e∓jβzz0 , (A4)

∂2

∂R∂z
A±

0 (R, z, z0) = ±βzβ0γp
1
4
H

(2)
1

[
β0γpR, sinh−1

(
∆z ∓ αnr0

γpR

)]

e∓jβzz ∓ jβz
∆z

R

e−jβ0r0

4πr0
e∓jβzz0 + R

(
jβ0 +

1
r0

)
e−jβ0r0

4πr2
0

e∓βzz0 . (A5)
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In (A1)–(A5), the upper/lower sign refers to the progressive/regressive
waveguide mode propagation. Notice that the recurrence equation in
[13, Eq. (9)] has been employed to derive (A4). This equation shows
that in contrast with the derivative of the IHF of order zero, which
exhibits the same analytical form of that presented by the conventional
Hankel function of order zero [16], the IHF of first order presents
additional terms [13, Eq. (9)]. These terms describe spherical waves
excited at the current truncation.

APPENDIX B. FIELD COMPONENTS FOR THE TE0N

AND TM0N MODES ON THE WAVEGUIDE AXIS

The analytical expressions of field components of the TM0n along the
z-axis are

Eρ (ρ, φ, z; z0)|ρ=0 = 0, (B1)

Eφ (ρ, φ, z; z0)|ρ=0 = 0, (B2)

Ez (ρ, φ, z; z0)|ρ=0 =

2πa
{
ωµ0

4
γ2

pH
(2)
0

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
e−jβzz+

−
(
η0αn

e−jβ0r0

4πr0
+

∆z

jωε0

(
jβ0 +

1
r0

)
e−jβ0r0

4πr2
0

)
e−jβzz0

}
hφ max,(B3)

while those of the TE0n modes components are

Hρ (ρ, φ, z; z0)|ρ=0 = 0, (B4)

Hφ (ρ, φ, z; z0)|ρ=0 = 0, (B5)

Hz (ρ, φ, z; z0)|ρ=0 =

−2πa
{
jβ0γp

1
4
H

(2)
1

[
β0γpa, sinh

−1

(
∆z − αnr0

γpa

)]
e−jβzz +

+
∆z

a

e−jβ0r0

4πr0
e−jβzz0

}
hz max (B6)

with

hφ max = −j
ωε0

ζ0n
aC0J

′
0(ζ0n), (B7)

hz max = C0J0(ξ′0n). (B8)

To derive Eqs. (B1)–(B6) a procedure similar to that adopted in
Eqs. (17)–(20) has been employed.
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