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Abstract—Analytical TM scattering from semi-elliptic channel
loaded with confocal elliptic cylindrical impedance core is investigated.
Fields in every regions are expressed appropriately in terms of Mathieu
functions. Applying boundary conditions at the impedance core and
across different regions of channels and using orthogonality of angular
Mathieu functions result in two simultaneous set of equations which
would be solved numerically.

1. INTRODUCTION

Scattering from geometries with channels, grooves and cracks have
received considerable attention due to fact that these local guiding
structures may excite internal resonances which may have dramatic
effects on the nearby electromagnetic structures. The electromagnetic
scattering from semi-circular channel has been investigated in [1, 2]
based on dual series eigenfunction solution. Later, this method has
been applied to semi-elliptical channel in perfect conducting ground
plane [3]. Others have used this method to investigate scattering of
- Gaussian beam from semi-circular channel [4], semi-circular channel
loaded with conducting and dielectric cylindrical core [5] and lately
conducting elliptical core loading semi-elliptic cannel [6]. Also there
have been other reports based on numerical solution [7, 8]. This paper
presents analytical solution of scattering from impedance elliptical
core loading confocally semi-elliptic channel. Effects of geometrical
properties and reactance variation would be investigated.
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Figure 1. Geometry of the scattering problem.

2. FORMULATION

A linearly polarized electromagnetic plane wave is incident at an angle
φ0 with respect to x−axis, on the structure shown in Fig. 1, in which
free space region is labeled medium I and dielectric region is labeled
medium II. For the TM case, the electric field, in each region, has
only axial component Ez which may be written as†

Einc
z = eik0(x cos φ0+y sin φ0) (1)

For structures involving elliptical shaped objects, it is customary to
express field quantities in elliptic cylindrical coordinates (u, v, z), where
x = F coshu cos v, y = F sinhu sin v. The incident electric field, in
terms of angular and radial Mathieu functions may be written in the
form [9]

eik0(x cos φ0+y sin φ0) =
∞∑

n=0

2 in Mc(1)n (u, q0) cen(φ0, q0) cen(v, q0)

+
∞∑

n=1

2 in Ms(1)
n (u, q0) sen(φ0, q0) sen(v, q0) (2)

where q0 = (k0F/2)2, k0 = ω
√
ε0µ0, cen and sen are, respectively,

the even and odd angular Mathieu functions of order n, Mc
(1)
n and

Ms
(1)
n are even and odd radial Mathieu functions of first kind [10].

Scattered field in the region outside semi-elliptic channel (u > u1)
is decomposed into specularly reflected and diffracted field [3, 6]. By
taking into account that sum of the incident and scattered electric field
† eiωt time convention is assumed and suppressed.
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must vanish at v = 0 and v = π the total electric field in free space
region (medium I), may be written as

E(I)
z (u, v) = Einc

z + Ediff
z + Eref

z

=
∞∑

n=1

B(s)
n Ms(4)

n (u, q0) sen(v, q0)

+
∞∑

n=1

4 in Ms(1)
n (u, q0) sen(φ0, q0) sen(v, q0) (3)

where B
(s)
n is unknown scattered field coefficient and Ms

(4)
n is the

Mathieu function which corresponds to Hankel function of the second
kind in circular coordinates and has the relationship of Ms

(4)
n =

Ms
(1)
n − iMs

(2)
n . In (3), Ediff

z and Eref
z have been taken as

Ediff
z (u, v) =

∞∑
n=1

B(s)
n Ms(4)

n (u, q0) sen(v, q0) (4)

Eref
z (u, v) = −Einc

z (u, v) with φ0 → 2π − φ0 (5)

The electric filed inside the elliptical channel is expanded in terms of
Mathieu functions as

E(II)
z =

∞∑
n=0

[
Ae(II)

n Mc(1)n (u, q1) + Be(II)
n Mc(2)n (u, q1)

]
cen(v, q1)

+
∞∑

n=1

[
Ao(II)

n Ms(1)
n (u, q1) + Bo(II)

n Ms(2)
n (u, q1)

]
sen(v, q1) (6)

where q1 = (k1F/2)2, k1 = ω
√
ε1µ1 and Mc

(2)
n , Ms

(2)
n are radial

Mathieu functions of second kind. From Maxwell postulates, the
v−components of magnetic field may be represented as

H(I),(II)
v (u, v) =

−i

ωµ0hv

∂E
(I),(II)
z

∂u
(7)

where hv = F
√

cosh2 u− cos2 v. Unknown coefficients Be
(I)
n and Bo

(I)
n

in (6) may be eliminated by applying boundary condition on the surface
of impedance elliptic cylinder (u = u2) which can be written

E(II)
z (u2, q1) = Zs(v)H(II)

v (u2, q1) (8)

In (8) the surface impedance Zs is assumed to be independent of axial
direction z.
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For a perfectly conducting cylinder coated with an imperfectly
conducting or absorbing layer of thickness ∆ and relative permittivity
and permeability εc and µc, the surface impedance on the outer surface
of a thin coating is given by [11]

Zs(v) = ik1∆(v)µcZ1 (9)

where Z1 is the characteristic impedance of the dielectric region
wherein impedance surface is located. For a thin coating, ∆(v) can
be expanded in terms of metric coefficient hv and δu, a small variation
of u about u2 [12]. Thus surface impedance can be written as

Zs(v) = ηs(cosh2 u2 − cos2 v)1/2Z1 (10)

where ηs = 2 i
√
q1 µc δu2 sinhu2/(cosh2 u2 − 1) is a complex quantity.

Substituting E
(II)
z and H

(II)
v into (8) and using orthogonality of

angular Mathieu functions over [0, 2π] interval, the electric field in
region (II) may be expressed as

E(II)
z =

∞∑
n=0

Men(u, q1)cen(v, q1) +
∞∑

n=1

Mon(u, q1)sen(v, q1) (11)

where

Men(u, q1) = Mc(1)n (u, q1) − Pen Mc(2)n (u, q1) (12)

Mon(u, q1) = Ms(1)
n (u, q1) − Pon Ms(2)

n (u, q1) (13)

and

Pen =
Mc

(1)
n (u2, q1) +

iηs

2
√
q1

Mc(1)n

′
(u2, q1)

Mc
(2)
n (u2, q1) +

iηs

2
√
q1

Mc(2)n

′
(u2, q1)

(14)

Pon =
Ms

(1)
n (u2, q1) +

iηs

2
√
q1

Ms(1)
n

′
(u2, q1)

Ms
(2)
n (u2, q1) +

iηs

2
√
q1

Ms(2)
n

′
(u2, q1)

(15)

In (12) and (13) when ηs = 0, the expressions for Men(u, q1) and
Mon(u, q1) become

Men(u, q1)
∣∣∣
ηs=0

= Mc(1)n (u, q1) −
Mc

(1)
n (u2, q1)

Mc
(2)
n (u2, q1)

Mc(2)n (u, q1) (16)

Mon(u, q1)
∣∣∣
ηs=0

= Ms(1)
n (u, q1) −

Ms
(1)
n (u2, q1)

Ms
(2)
n (u2, q1)

Ms(2)
n (u, q1) (17)
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Thus the z-component of electric field expression in the case of ηs = 0
is the same as reported in [6].

Other unknown coefficients Ae
(II)
n , Ao

(II)
n and B

(s)
n can be deter-

mined with boundary conditions at u = u1 of zero tangential electric
field on the channel (π < v < 2π) and tangential fields continuity
across the aperture (0 < v < π). Applying orthogonality condition of
angular Mathieu functions and eliminating Ao

(II)
n , simultaneous equa-

tions may be obtained which in block matrix form can be written as

(
Amn Bmn

Cmn Dmn

) (
Ao(II)

m

B(s)
m

)
=

(
Gm

Hm

)
(18)

where

Amn = 2Men(u1, q1) Isc
mn(q1, q1) (19)

Bmn = −Ms(4)
n (u1, q0) Iss

mn(q1, q0) (20)

Cmn =
[
Me

′
n(u1, q1) + ∆om Men(u1, q1)

]
Isc
mn(q1, q1) (21)

Dmn = −µ1

µ0
Ms(4)

n

′
(u1, q0) Iss

mn(q1, q0) (22)

Gm =
∞∑

n=1

4 in Ms(1)
n (u1, q0) sen(φ0, q0) Iss

mn(q1, q0) (23)

Hm =
µ1

µ0

∞∑
n=1

4 in Ms(1)
n

′
(u1, q0) sen(φ0, q1) Iss

mn(q1, q0) (24)

∆om =
Mo

′
m(u1, q1)

Mom(u1, q1)
(25)

and

Isc
mn(q1, q2) =

∫ π

0
sem(v, q1) cen(v, q2) dv (26)

Iss
mn(q1, q2) =

∫ π

0
sem(v, q1) sen(v, q2) dv (27)

Normalization integrals (26) and (27) can be expressed in terms of
Mathieu expansion coefficients and is given in appendix A.

3. NUMERICAL RESULTS

Once unknown coefficients are known all near and far field quantities
can be calculated. The scattered far field at very large distances from
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semi-elliptical structure may be deduced by noting that at far zone,
the following limits can be made

lim
u→∞ 2

√
q coshu = k0ρ, and v → φ (28)

where ρ is cylindrical radial distance. Using the above limiting values,
the expression for Ediff

z at large distances is given by

Ediff
z =

√
2 i

πk0ρ
e−ik0ρF (v, q0) (29)

where the far field pattern is

F (v, q0) =
∞∑

n=1

in B(s)
n sen(φ, q0) (30)

To check the validity and accuracy of the propose method and
computation, far field pattern of present geometry with small
eccentricities (e = 0.01) with ηs = 0 was computed versus channel
electrical size variation and is shown in Fig. 2. Excellent agreement
between all results is apparent except for one point which may be
attributed to approximating a large circle (a1 = 2λ0) by an ellipse of
small eccentricity.
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Figure 2. Far field pattern for core loaded semi-elliptic channel with
a2 = 0.2λ0, e = 0.01 and ηs = 0 versus channel electrical size.
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Figure 3. Far field pattern for loaded semi-elliptic channel with
ε = 3ε0, a2 = λ0, a1 = 2λ0, e = 0.01 and ηs = 0 versus incident
angle.

In order to solve for the unknown field coefficients, the infinite
block matrix system of equations (18) must be truncated appropriately
for convergence. In order to study convergence of infinite system of
equations, two problems are considered. First the convergence for
the case of small eccentricity. Fig. 3 demonstrates the dependance of
angular distribution of far field pattern of a loaded semi-elliptic channel
with small eccentricity and a1 = 2λ0, a2 = λ0 for different number of
truncation terms N . For N = 16 and N = 17 semi-elliptic curves
converge to semi-circular one except for some critical points which is
the result of small eccentricity approximation for such a fairly large
structure. Any further increase in N results in singularity of block
matrix (18) due to rapidly vanishing property of Mathieu functions.
Fig. 4 is the dependance of angular distribution of far field pattern of
a loaded semi-elliptic channel with e = 0.5 and ε = 4ε0 for different
number of truncation terms. It is apparent that the curves for N = 24
and N = 25 are completely overlapped, which means the matrix
equation (18) is convergent for N = 25 which corresponds to 2k0a1.
Fig. 5 is as same as Fig. 4 except for ηs = 0.5− 0.5i and demonstrates
the independency of number of truncation terms on surface impedance
value. It has been found through lots of simulations that N = 2k0a1

is sufficient for most problems excluding extreme cases such as small
eccentricity or very high permittivity and is independent of surface
impedance.
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Figure 4. Far field pattern for loaded semi-elliptic channel with
ε = 4ε0, a2 = λ0, a1 = 2λ0, e = 0.5 and ηs = 0 versus incident
angle for different truncation terms.
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Figure 5. Far field pattern for loaded semi-elliptic channel with
ε = 4ε0, a2 = λ0, a1 = 2λ0, e = 0.5 and ηs = 0.5 − 0.5i versus
incident angle.
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Figure 6. Far field pattern for loaded semi-elliptic channel with
ε = 4ε0, a2 = 0.7λ0, a1 = λ0, e = 0.5 versus incident angle.
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Figure 7. Far field pattern for loaded semi-elliptic channel with
ε = 3ε0, a2 = 0.7λ0, a1 = λ0, e = 0.5 versus surface reactance.

Fig. 6 shows the dependence of the backscattered field on
the angle of incidence for different surface impedances. For all
direction of incidence, it is apparent that both conducting (ηs =
0.5 − 0.5i) and resistive (ηs = 0.5) coatings tend to decrease the
backscattering compared with the perfectly conducting case with no
coating. However, an inductive coating (ηs = 0.5i) tends, for a wide
range of incident angles, to increase the backscattering field pattern.

Far field pattern of semi-elliptic channel loaded with impedance
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Figure 8. Far field pattern for loaded semi-elliptic channel with
ε = 2ε0, a2 = 0.7λ0, a1 = λ0, e = 0.5 versus surface resistance.
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Figure 9. Far field pattern for loaded semi-elliptic channel with
ε = 2ε0, a2 = 0.7λ0, e = 0.5, φ0 = 45◦ versus channel electrical size.

core versus reactive coating (ηs = iXs) and resistive coating (ηs = Rs),
are depicted in, respectively, Fig. 7 and Fig. 8 for three different
observation angles. The resonant-like behavior in Fig. 7 may be
attributed to interference of the surface wave with the wave reflected
back at the front of cylinder [12]. The resistive coating, however,
reduces the far field pattern monotonically. As Fig. 8 shows resistive
coating may be used to reduce substantially the interaction of channel
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with adjacent EM structures.
Dependance of backscattered far field pattern of loaded semi-

elliptic channel on channel electrical size for different coatings are
depicted in Fig. 9. The result demonstrates that both magnitude
and width of the resonance depend on coating parameters. Resistive
coating has the least backscattering magnitude of all results shown.

APPENDIX A. EXPANSION OF NORMALIZATION
INTEGRALS

Since angular Mathieu functions with different parameters are not
fully orthogonal, some normalization integrals may occur. Expansion
of such integrals over [0, 2π] interval in terms of Mathieu expansion
coefficients were treated in [13]. In problems involving boundary
conditions over half ellipse, normalization integrals occur on [0, π]
interval which can be computed by Mathieu expansion coefficients as
follows

Iss
mn(q1, q2) =




π

2

∑
k=1,3,...

Bm
k (q1)Bn

k (q2), m,n odd;

π

2

∑
k=2,4,...

Bm
k (q1)Bn

k (q2), m,n even;

0, otherwise.

(A1)

Isc
mn(q1, q2) =




∑
p=2,4,...

∑
k=1,3,...

2p
p2 − k2

Bm
p (q1)An

k(q2), m even,n odd;

∑
p=1,3,...

∑
k=0,2,...

2p
p2 − k2

Bm
p (q1)An

k(q2), m odd,n even;

0, otherwise.
(A2)

where

Isc
mn(q1, q2) =

∫ π

0
sem(v, q1) cen(v, q2) dv (A3)

Iss
mn(q1, q2) =

∫ π

0
sem(v, q1) sen(v, q2) dv (A4)

These expressions are also valid for complex parameter case.
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