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Abstract—A tiny metallic cylinder placed into a planar dielectric
waveguide scatters the field developed by a current-carrying skew strip
centralized at the middle of the slab. Due to the small size of the
scatterer, the induced surface current is taken independent of the
azimuthal angle. The Green’s function of the problem is expressed
in closed form and it is inserted to the scattering integral after the
polar equation of the strip has been determined. The behavior of near-
field quantities in the slab, with respect to geometrical and material
parameters, is observed and examined.

1. INTRODUCTION

Optical waveguiding structures utilizing planar dielectric slabs are
extensively used and analyzed for many years. The treatment of
the original problem is contained in [1], while a modified version is
investigated in [2] where the cut–off wavenumbers and the resonant
frequencies are derived. An interesting study concerning dielectric
loadings in parallel–plate waveguides is presented in [3]. The
formal solution is obtained through Wiener–Hopf equations and
the asymptotic form via approximate evaluation of integrals and
series. Moreover, a two–dimensional magneto–dielectric grating slab
is examined in [4] where the transmission and reflection coefficients of
this two–port system are deduced with use of the generalized scattering
matrix method. In [5] the authors apply the analytical continuity
principle with mode matching technique to compute the reflection and
transmission coefficients for a waveguide terminated in free space with
a tilted facet, whereas in [6] the slab is constructed by a uniaxially
anisotropic dispersive metamaterial. In [7] a study concerning the
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linear mode inside a left-handed dielectric waveguide is provided, and
in [8] the planar slab is illuminated by a plane wave.

Metallic components are commonly incorporated into dielectric
slabs to improve the performance and the operation of the devices. In
[9], the authors inquire into the scattering of guided waves inside the
dielectric waveguide by a metallic cylinder. The S–matrix elements
and the transfer function of such a filter are calculated. Furthermore,
the effect of periodic metallizations, placed at the surface of the slab,
on the propagated waves has been investigated [10]. The array of
patches is considered as a perturbation of the initial structure and
the resonances of this absorbing screen are studied. Also in [11],
a parasitic patch is placed on the dielectric of a resonator antenna
and a rigorous formulation is developed. The input impedance and
the radiation features are determined by implementing an efficient
computational technique. Finally, in [12] a rectangular metallization
assists the radiation of a multi-layered sphere.

Dielectric waveguides as the aforementioned ones can be excited by
a variety of sources such as monopoles, dipoles or plane waves. Strips
flown by arbitrary current are employed as a convenient alternative
source. In [13], a sensor device for an electromagnetic tomography
system is fed by numerous strips. Owing to the independent control of
them, three different excitation protocols can be generated. In general,
slot antennas are usually excited by microstrip feed lines [14]. Also, in
[15] a normal strip of axial current produces the incident field to an
anisotropic cylinder with full permittivity matrix. The distribution of
the current can be defined by any smooth function. In [16] a triangular
microstrip field for ultra wideband applications is analyzed and in [17]
a rectangular dielectric resonator is also excited by a current-carrying
strip.

In this work we suppose a small metallic cylinder (pin) into
the slab, while the whole structure is excited by a skew strip of
constant current embedded in the waveguide. In such a problem, the
issue of scattering by inhomogeneities occurred in dielectric slabs is
combined with a nontrivial excitation source. Due to the tiny size of
the metallic pin, closed–form solution is obtained and therefore the
structure is worth to be investigated. The Green’s function of the
examined problem is comprised of three terms: (a) the singular free–
space one, (b) the primary one expressing the effect of the slab in the
absence of the pin and (c) the secondary one indicating the influence
of the cylindrical scatterer itself. The first term is well–known and
represents a cylindrical wave. The second term is written as a rapidly
converging spectral integral. The third term is computed by supposing
azimuthally independent current around the cylinder because of its
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small radius. The total field is written as a line integral on the strip
which can be numerically evaluated. The polar equation of the strip
is necessary to formulate such an integral and thus it is rigorously
determined. The variations of the distributed energy with respect to
the slab’s material and thickness, to the length and the inclination of
the strip’s line and the spatial parameters are presented and discussed.
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Figure 1. The physical configuration of the analyzed device. A small
metallic pin inside the dielectric slab scatters the field emanating from
a skew strip flown by constant electric current.

2. STATEMENT OF THE PROBLEM

We consider an infinite dielectric slab of thickness 2b constructed by
lossless and magnetically inert material with relative permittivity ε1 >
1. The background medium is vacuum with wavenumber k0 = 2π/λ0

and intrinsic impedance ζ0 = 120π Ω. The symbol λ0 is used for the
free space wavelength, whereas the wavenumber for the slab’s material
is denoted by k1 = k0

√
ε1. A two–dimensional metallic cylinder with

infinitesimal radius a (a � min(b, λ0)) is located in the middle of
the dielectric waveguide. The physical configuration of the device is
depicted in Fig. 1, where the cartesian (x, y, z) and the equivalent
cylindrical (ρ, φ, z) coordinate systems are also defined (their common
origin coincides with the center of the cylinder). The structure is
excited by a strip posed into the slab, infinite towards the z axis, flown
by constant and z–polarized surface electric current I (expressed in
A/m). The length of the strip, which is placed relatively far from the
pin, equals to 2h (h < b), while its center is the point (x = −D, y = 0)
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in cartesian coordinates. The line of the strip forms an arbitrary angle
θ ∈ (0, π) with the x axis.

It should be stressed that both the excitation current and the
shape of the device are invariant along the z axis. Given the fact that
the source is of electric type, the single component of the electric field is
parallel to z axis. The purpose of this work is to provide a closed–form
solution to the described problem, giving the physical insight on the
system under investigation. This is possible if one avoids implementing
numerical techniques (including method of moments [18]) during the
analysis of the problem. We wish to use analytical tools in the most
part of the derivation of the solution and observe its dependencies on
geometrical and material parameters. A harmonic time of exp(+j2πft)
form is adopted and suppressed.

3. PRIMARY GREEN’S FUNCTION DERIVATION

In this section, we are aiming at the determination of the Green’s
function of the reduced problem, formulated in the absence of the
perfectly conducting (PEC) cylinder. The required quantity equals to
the singular excitation plus the so–called “primary” Green’s function.
We will perform the derivation of the axial electric field developed
by a filamentary two–dimensional electric dipole located inside the
dielectric waveguide, across the axis (x = X, y = Y ) or alternatively
(ρ = P, φ = Φ) in cylindrical coordinates. Each of the alternative
positions of the dipole represents a different point of the strip’s line.
The magnitude of the excitation current equals j/(k0ζ0) (expressed
in A) which is dictated by the definition of the Green’s function and
the free space permeability of the slab’s material [19]. The notations
G1,prim, GU

0,prim, GL
0,prim correspond to the field inside the slab, in the

upper vacuum half space and in the lower half one respectively. The
field of the singular source is given by [20]:

G1,sing(x, y,X, Y ) = − j

4
H

(2)
0

(
k1

√
(x−X)2 + (y − Y )2

)

=
1
4π

∫ +∞

−∞
e−js(x−X) exp(−g1|y − Y |)

g1
ds (1)

where H
(2)
u is the Hankel function of second type and u-th order. The

symbols gi = gi(s) =
√
s2 − k2

i with i = 0, 1 stand for the radiation
functions in each area having positive (or zero) real and imaginary
parts �[gi],�[gi] ≥ 0.

The suitable boundary conditions indicating the continuity of the
tangential electromagnetic fields across the separating planes y = ±b
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are given below.

G1,sing(x,±b,X, Y ) + G1,prim(x,±b,X, Y ) =G
U/L
0,prim(x,±b,X, Y )

(2)

∂G1,sing(x,±b,X, Y )
∂y

+
∂G1,prim(x,±b,X, Y )

∂y
=

∂G
U/L
0,prim(x,±b,X, Y )

∂y

(3)

The normal derivatives are continuous because of the magnetically
inert dielectric material of the slab. By using the related integral
representations for the solutions of the homogeneous cartesian
Helmholtz equation (similar to the second line of (1)) and by taking
into account the Sommerfeld’s radiation condition, the expressions (2),
(3) yield to a 4×4 linear system with respect to the unknown coefficient
integrands. Once it is solved, the form of the primary Green’s function
for observation points inside the slab is explicitly specified:

G1,prim(x, y,X, Y ) =
1
4π

∫ +∞

−∞
e−g1b g1 − g0

g1
e−js(x−X)

·e
g1b(g0 + g1) cosh(g1(y + Y )) − e−g1b(g0 − g1) cosh(g1(y − Y ))

2g0g1 cosh(2g1b) + (g2
0 + g2

1) sinh(2g1b)
ds (4)

As in (1), the integration path follows the real s axis.

4. SECONDARY GREEN’S FUNCTION DERIVATION

In this section, the participant functions should be expressed in
cylindrical coordinates with use of the well–known transformation
relations: (x = ρ cosφ, y = ρ sinφ), (X = P cos Φ, Y = P sin Φ).
Our purpose is to find the “secondary” Green’s function, namely the
field owed to the tiny metallic pin, through the scattering theorem
employed in [21]. Consequently, we need the Green’s function of
the coupled cylinder–slab structure and the incident field upon it,
developed by the singular source of the previous section. We note
that both quantities refer to the system in the absence of the cylinder.
The first one is the response of the device by an elementary dipole
placed at the arbitrary position (ρ = r, φ = γ) inside the slab (where
the pin exists). The second one expresses the field produced by an
identical dipole located along the axis (ρ = P, φ = Φ) equalling to
G1,sing(ρ, φ, P,Φ) + G1,prim(ρ, φ, P,Φ). As a result, one easily obtains
the Green’s function of the coupled structure by replacing (P,Φ) with
(r, γ) in the previous formula. To this end, suppose that the developed
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axial electric current on the PEC rod at ρ = a equals to K(γ, P,Φ),
0 < γ < 2π, where γ is the dummy azimuthal integration variable. In
our case, the formula of the scattering integral is specialized to give:

G1,sec(ρ, φ, P,Φ) =

−jk0ζ0a

∫ 2π

0
[G1,sing(ρ, φ, a, γ) + G1,prim(ρ, φ, a, γ)]K(γ, P,Φ)dγ (5)

Due to the small size of the rod and its large distance from the
strip, the current K(γ, P,Φ) can be approximated by an azimuthally
invariant parameter, different for each combination of (P,Φ), that is
K(γ, P,Φ) ∼= K(P,Φ). Its value is determined by substituting (5)
in the boundary condition for vanishing tangential (equaling total)
electric field on the surface of the metallic scatterer ρ = a:

G1,sing(a, φ, P,Φ) + G1,prim(a, φ, P,Φ) + G1,sec(a, φ, P,Φ) = 0 (6)

and suppressing the φ–dependence via integration from 0 to 2π with
respect to φ:

K(P,Φ) =
∫ 2π
0 [G1,sing(a, φ, P,Φ) + G1,prim(a, φ, P,Φ)] dφ

jk0ζ0a
∫ 2π
0

∫ 2π
0 [G1,sing(a, φ, a, γ) + G1,prim(a, φ, a, γ)] dγdφ

(7)
The approximation described above contributes much in receiving the
closed–form solution of the total problem.

By combining (5) and (7), a formula for the secondary Green’s
function is derived:

G1,sec(ρ, φ, P,Φ) = −
∫ 2π

0
[G1,sing(ρ, φ, a, γ) + G1,prim(ρ, φ, a, γ)] dγ ·

∫ 2π

0
[G1,sing(a, φ, P,Φ) + G1,prim(a, φ, P,Φ)] dφ

∫ 2π

0

∫ 2π

0
[G1,sing(a, φ, a, γ) + G1,prim(a, φ, a, γ)] dγdφ

(8)

The singular Green’s function (free space term with wavenumber k1)
can be expanded to the following sum [22, p. 363]:

G1,sing(ρ, φ, α, β) =

− j

4

+∞∑
u=−∞

Ju(k1 min(ρ, α))H(2)
u (k1 max(ρ, α))e−ju(φ−β) (9)

where Ju is the Bessel function of u-th order. With use of (9), the
integrations of (8) involving the singular component are analytically
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carried out:
∫ 2π

0
G1,sing(ρ, φ, a, γ)dγ = −jπ

2
J0(k1a)H

(2)
0 (k1ρ) (10)

∫ 2π

0
G1,sing(a, φ, P,Φ)dφ = −jπ

2
J0(k1a)H

(2)
0 (k1P ) (11)

∫ 2π

0

∫ 2π

0
G1,sing(a, φ, a, γ)dγdφ = −jπ2J0(k1a)H

(2)
0 (k1a) (12)

As far as the integrations of the primary part of the Green’s
function are concerned, the following alternative definitions for the
Bessel function of zeroth order should be taken into account [22, p. 360]:

∫ 2π

0
e±α(g1 sin β+js cos β)dβ =

∫ 2π

0
e±α(g1 sin β−js cos β)dβ = 2πJ0(k1α)

(13)
Mind that the result is free of the spectral s parameter, a fact owing to
our hypothesis for azimuthally independent surface current K(P,Φ).
If one substitutes the harmonic and the hyperbolic functions in (4) by
their exponential expressions and exploits (13), one concludes to the
following simplified forms:
∫ 2π

0
G1,prim(ρ, φ, a, γ)dγ =

J0(k1a)
∫ +∞

0

g1 − g0

g1
· e

−g1b cos(sρ cosφ) cosh(g1ρ sinφ)
g0 cosh(g1b) + g1 sinh(g1b)

ds (14)

∫ 2π

0
G1,prim(a, φ, P,Φ)dφ =

J0(k1a)
∫ +∞

0

g1 − g0

g1
· e

−g1b cos(sP cos Φ) cosh(g1P sin Φ)
g0 cosh(g1b) + g1 sinh(g1b)

ds (15)
∫ 2π

0

∫ 2π

0
G1,prim(a, φ, a, γ)dγdφ =

J2
0 (k1a)

∫ +∞

0

g1 − g0

g1
· 2π
g0 cosh(g1b) + g1 sinh(g1b)

ds (16)

The integration paths of the spectral integrals occupy now only the real
positive semi axis as the functions g0(s), g1(s) are even with respect to
s.

By inspection of (14)–(16), one can notice that the integrands
have the same branch points s = k0, k1 with the radiation functions
g0(s), g1(s) respectively [23]. By supposing that the shape of the
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branch cuts does not change, we understand that all the integrand
functions possess the branch cuts depicted in Fig. 2, which are lying
exclusively on the lower half of the complex s plane for �[s] > 0.
When it comes to the poles of these functions, they equal the zeros of
the common denominator Π(s):

Π(s) =
√
s2 − k2

1

·
[√

s2 − k2
0 cosh

(
b
√
s2 − k2

1

)
+

√
s2 − k2

1 sinh
(
b
√
s2 − k2

1

)]
(17)

In case s < k0 < k1, the aforementioned function is nonzero because
cosh2(g1b) − sinh2(g1b) = 1. In case s > k1, the quantity is positive.
Within the interval (k0, k1), Π(s) has at least one real root except for
the trivial one at s = k1. These roots correspond to the integrands’
singularities which are integrable. Therefore, we are permitted to
bypass them through a well–shaped path beginning at s = k0 − s0

and ending at s = k1 + s1 with s0, s1 > 0. As shown in Fig. 2, this
path is lying on the upper half plane where the integrands are analytic.

Re[s]

Im[s]

O

k0 k1k0-s0 k1+s1

C1

C0

Figure 2. A presentation of the complex s spectral plane. The branch
points s = k0, k1 of the integrands are marked by X and their branch
cuts C0, C1 by dashed lines. The gray line represents the followed
integration path which bypasses the singularities.
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Due to the residue theorem, the value of the integral is not dependent
on s0, s1 or the shape of the bypass.

5. INTEGRATION ALONG THE STRIP

A prerequisite to proceed in the computation of the total electric field is
the polar equation of the strip. The carrier line’s equation on the x−y
plane is written as: y = (x + D) tan θ. Through the transformation
formulas (x = R cosF, y = R sinF ), we retrieve the following polar
expression R(F ):

R(F ) =
D tan θ

sinF − cosF tan θ
, F1 < F < F2 (18)

where F1, F2 are the angles defining the extent of the strip presented
in Fig. 3. With reference to it, we apply the law of cosines to
the triangles (OMP1) and (OMP2) to determine their unspecified
sides. In particular, we obtain (OP1) =

√
D2 + h2 − 2Dh cos θ and

(OP2) =
√
D2 + h2 + 2Dh cos θ. By utilizing the law of sines to each

triangle, the following values for F1, F2 are received:

F1 = π − arcsin
(

h sin θ√
D2 + h2 − 2Dh cos θ

)
(19)

=F1

=F2

-F1

F2-

h

D

-

x ( =0)

y ( = /2)

h

P1

P2

M

Figure 3. The geometric triangle formed by the origin O and the ends
of the strip P1, P2. The angles defining the extent of the source are
denoted by F1, F2.
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F2 = π + arcsin
(

h sin θ√
D2 + h2 + 2Dh cos θ

)
(20)

with arcsin(z) ∈ (−π/2, π/2).
The scattering integral will appear again in manipulating the strip

excitation. The total axial electric field inside the slab is given by:

Ez1(x, y) = −jk0ζ0I

∫ F2

F1

G1(x, y,R(F ), F )
√
R2(F ) + R′2(F )dF (21)

where G1 is the total Green’s function for observation points inside the
dielectric waveguide:

G1(x, y, P, F ) =
G1,sing(x, y, P, F ) + G1,prim(x, y, P, F ) + G1,sec(x, y, P, F ) (22)

The quantity multiplying the Green’s function in (21), is necessary for
the evaluation of a line integral [15]. In our case, it is simplified to
give:

√
R2(F ) + R′2(F ) =

D sin θ

sin2(θ − F )
(23)

6. NUMERICAL RESULTS

6.1. Presentation of Output and Input Parameters

A set of computer programs has been developed for the calculation
of certain quantities describing the operation of the device. The
magnitude of the total electric field |Ez1(x, y)| is evaluated through
(21) and expresses the distribution of the electromagnetic energy in
two or one dimension (for constant x) inside the slab. The current
K(P,Φ) around the pin is specified by (7). However, we introduce
a modified parameter κ to take into account the excitation from the
whole strip:

κ =

∣∣∣∣∣
∫ F2

F1

K(R(F ), F )
√
R2(F ) + R′2(F )dF

∣∣∣∣∣ (24)

The line integral κ is called “total cylinder current” expressed in A.
Another interesting variable will be the propagated power within the
slab given by:

σ(x) =
k1

k0ζ0

∫ b

−b
|Ez1(x, y)|2dy (25)



Progress In Electromagnetics Research, PIER 79, 2008 11

It is defined with respect to the wavenumber s = k1 which is close to
the (always supported and guided) fundamental mode.

When it comes to the input parameters, they should possess
certain values serving the demands of optical waveguide applications.
The typical value for the operating frequency is very high: f =
300 THz and varies within the interval: (100, 500) THz. The relative
permittivity of the slab’s silicon–type material is slightly larger than
unity: ε1 ∈ (1.01, 2) and usually taken equal to 1.5. The thickness of
the slab belongs in (0.5, 2.5)µm so that only few modes will propagate
(typical value: b = 1.5µm) [24]. The length of the strip is basically
picked from the continuous set: (b/20, b/2), while it equals to: h = b/4
for fixed–h applications. In addition, the usual position of the strip
is the vertical one: θ = π/2, even though there is no constraint in
the value of the angle expressing the bevel of the strip: θ ∈ (0, π).
The excitation source is centralized at a fixed point: D = 5µm and we
commonly investigate the region of the slab with: x ∈ (2, 6)µm (typical
value: x = 4µm). The radius of the cylinder is tiny and invariant
throughout the simulations: a = 0.005µm, whereas the magnitude of
the excitation current is kept constant: I = 0.001 A/m.

6.2. Approximate Evaluation of the Integrals

A major part of the computations producing the variation graphs of
the output quantities is the numerical integrations on the spectral
complex plane (4), (7), (14)–(16) and across the strip’s line (21). The
spectral integrals are of infinite interval and therefore the asymptotic
forms for the corresponding integrand functions as s → +∞ should
be extracted. In particular, the integrands of (14), (15) behave
like O [exp(s(|Y | − 2b)/s] , s → +∞. The integrand of (16) follows
the law O [exp(−sb)/s] , s → +∞, while the one of (4) varies as
O [exp(s(|Y + y| − 2b))/s] , s → +∞ for large positive arguments.
These expansions help us in deciding a suitable truncation upper limit
smax. In all the examined cases, a choice smax = 5k0 is appropriate,
even when the ends of the strips are relatively close to the horizontal
bounds and the observation points upon these separating planes.

As far as the parameters s0, s1 are concerned, they are chosen
equal to each other and relatively small compared to k0, otherwise
numerical problems are occurred. That is because the bypass has
semicircular shape with radius (k0 + k1)/2 + s0 = (k0 + k1)/2 + s1

and the imaginary parts of some of the circumvention points are large.
It should be pointed out that we checked if the value of each integral
remains exactly the same for different s0 = s1. Another issue relating
to the spectral integrations is the harmonic factor of the integrands
which is oscillating rapidly when the observation point gets horizontally
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distant from the source. In our applications this is not the case because
x is moderate. To compute the integrals we used the trapezoidal
rule with sppw = 200 points per wavelength λ0 of smax leading to
convergent results for all the investigated cases. The line integrations
with respect to F are carried out more easily because the interval is
finite and the integrands are smooth. That is because θ couples to
angles F1, F2 between which the denominator sin2(θ − F ) is nonzero.
Thus, a straightforward trapezoidal integration with Fppw = 100 points
per wavelength λ0 of the strip’s length is sufficient to ensure reliable
results.

6.3. Numerical Simulations and Discussion

In Figs. 4 we present the variation of the electric field’s magnitude in
two dimensions inside the slab. In Fig. 4(a) the operating frequency
is small (f = 100 THz) and the dielectric owns a low permittivity
ε1 = 1.01. One can observe the weaker field close to the upper
separating plane y = b compared to the lower one’s because of the
skew position of the strip θ = π/4. In addition, the fluctuation of the
quantity with respect to y variable decreases with increasing x distance
from the source. In Fig. 4(b) we examine an optically denser material
with ε1 = 2 excited at higher frequencies f=500 THz. The spatial
oscillations towards both directions are more rapid due to the large
value of k1 and the contour plot is symmetric with respect to y = 0,
reflecting the symmetry of a structure with vertical strip (θ = π/2).

In Figs. 5 we show the variation of |Ez1(x, y)| (for fixed x = 4µm)
with respect to y ∈ (−b, b), for three different inclinations θ. In Fig.
5(a) the length of the strip is small: h = b/20 and thus all the
curves are almost identical. In the limit h → 0, the excitation is
independent from θ. Three maxima of the field are recorded along
the cross section of the slab, one of which at y = 0, while the shapes
are quasi–symmetrical with respect to it. In Fig. 5(b) we choose a
lengthy source with h = b/2 and therefore the values of the field are
significantly increased compared to Fig. 5(a). Once more, the curve
corresponding to θ = π/2 is symmetric, while the other two curves
obey the property of a flip symmetry. The face of the strip is directed
to the side of more substantial magnitudes. It is also notable that the
curves of θ = π/4, 3π/4 vanish close to y = ±1µm respectively.

In Fig. 6(a) are represented graphs of total cylinder current κ as
function of h/b (with fixed b = 4µm) for several θ. With increasing θ
(kept below π/2) the current on the pin gets more substantial. This
is attributed to the greater effect of the excitation on the system.
When h/b is vanishing, the three curves coincide each other for reasons
explained above. It is noteworthy that the current is heavily dependent
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Figure 4. The contour plot of the electric field’s magnitude inside
the slab. (a) f = 100 THz, ε1 = 1.01, θ = π/4, (b) f = 500 THz,
ε1 = 2, θ = π/2. Other parameters: b=1.5µm, h = b/4, a = 0.005µm,
I = 0.001 A, D = 5µm.
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Figure 5. Magnitude of electric field as function of vertical distance
for various strip angles. (a) h=b/20, (b) h = b/2. Other parameters:
f = 300 THz, ε1 = 1.5, b = 1.5µm, a = 0.005µm, I = 0.001 A,
D = 5µm, x = 4µm.
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on h/b for smaller θ. That is because the minimum distance between
the cylinder and the strip varies to greater extent when θ takes lower
values. In Fig. 6(b) are represented graphs of κ as function of ε1
(with fixed h = 0.375µm) for various b. At the leftmost point of
the diagram, namely when ε1 → 1, all the curves concur. This is
sensible as the material of the slab is vacuum in this case, and thus the
thickness b plays no role. In addition, the pin’s current is reinforced
with decreasing b due to the significant concentration of energy into
the slab and around the scatterer. It is also noticed that the curve
for b = 2.3µm is decaying with respect to ε1, contrary to the one
of b = 1.5µm which is upward sloping and the third one which is
oscillating.

In Figs. 7 we depict the propagated power σ(x) for constant
x = 4µm as function of θ for four different ratios h/b. In Fig. 7(a)
the slab’s thickness is chosen relatively small: b = 0.5µm and the
waveguide’s material almost vacuum: ε1 = 1.01. The increasing length
of the strip makes naturally the excitation source more powerful and
thus the energy is proportional to h. A maximum is observed at
θ = π/2 for all the symmetric curves which becomes less apparent for
decreasing h/b. In other words, the influence of the source is maximized
at θ = π/2, where it is strongly affected by the extent of the strip. In
Fig. 7(b) both the slab’s thickness and the permittivity are picked with
large magnitudes: b = 2.5µm, ε1 = 2. The power levels are higher than
in Fig. 7(a) since the greater permittivity of the material increases the
power within the waveguide. Furthermore, the impact of the strip gets
almost negligible for θ → 0, π and suddenly increases at θ ∼= 0.7. With
the exception of the case corresponding to h/b = 1/8, the maximum
value is not single and is not exhibited at θ = π/2 this time. For the
curves with: (h/b = 1/4, 3/8, 1/2) two maxima, getting sharper as h/b
increases, are observed at symmetric positions with respect to θ = π/2.

In Figs. 8 we present the propagated power σ(x) as function of the
slab’s thickness for various material permittivities with fixed x = 4µm.
In Fig. 8(a) we select a low inclination of the strip’s line θ = π/10 for
which all the curves are oscillating and (on average) increasing. That
is because more spatial fluctuations are carried out and more energy
is channeled into the device for higher b. Furthermore, the variation is
more substantial for small b as in these cases the ends of the strip are
close to the separating planes y = ±b. In Fig. 8(b) the strip is vertical
(θ = π/2) and therefore the magnitudes of the power are amplified.
Moreover, the curves for ε1 = 1.5, 1.7, 1.9 seem to have a common
nonzero limit for large b. On the contrary, the curve corresponding to
ε1 = 1.3 is decaying since the permittivity is too low to gather much
power into the waveguide.
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Figure 6. Total cylinder current (a) as function of the normalized
strip length for various line inclinations with ε1 = 1.5, b = 1.5µm,
(b) as function of the material relative permittivity for various slab
thicknesses with θ = π/2, h = 0.375µm. Other parameters: f =
300 THz, a = 0.005µm, I = 0.001 A, D = 5µm, x = 4µm.
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Figure 7. The propagated power as function of the strip’s angle for
various lengths. (a) ε1 = 1.01, b = 0.5µm, (b) ε1 = 2, b = 2.5µm.
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Figure 8. The propagated power as function of the slab’s thickness for
various permittivities. (a) θ = π/10, (b) θ = π/2. Other parameters:
f = 300 THz, h = 0.375µm, a = 0.005µm, I = 0.001 A, D = 5µm,
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7. CONCLUSION

A dielectric waveguide with an embedded metallic pin is excited by
a skew strip flown by constant current. Due to the small size of the
conducting scatterer, a closed–form solution to the described problem
can be found. A polar form of the strip’s line is necessary for the
evaluation of the scattering integral. Numerous graphs of the electric
field into the slab, the surface current on the pin and the propagated
power are presented and discussed.

Similar techniques can be employed to treat a slab problem with
multiple metallic pins inside it. Each of the cylinders could be of
constant current independent from the others due to the infinitesimal
size. Optimization problems with respect to the positions of the pins
may be obtained for various application–defined objectives. The case
of coupled waveguides and the role played by the skew source line to the
interaction of the slabs is also worth to be examined. Finally, excitation
strips of arbitrary shape and their effect to the device’s features could
be an interesting issue for further investigation.
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