
Progress In Electromagnetics Research, PIER 80, 197–224, 2008

METHOD OF EDGE CURRENTS FOR CALCULATING
MUTUAL EXTERNAL INDUCTANCE IN A
MICROSTRIP STRUCTURE

M. Y. Koledintseva, J. L. Drewniak, T. P. Van Doren
D. J. Pommerenke and M. Cocchini

Electromagnetic Compatibility Laboratory
University of Missouri-Rolla
1870 Miner Circle, Rolla, MO 65409-0040, USA

D. M. Hockanson

Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, USA

Abstract—Mutual external inductance (MEI) associated with
fringing magnetic fields in planar transmission lines is a cause of so-
called “ground plane noise”, which leads to radiation from printed
circuit boards in high-speed electronic equipment. Herein, a Method of
Edge Currents (MEC) is proposed for calculating the MEI associated
with fringing magnetic fields that wrap the ground plane of a microstrip
line. This method employs a quasi-magnetostatic approach and
direct magnetic field integration, so the resultant MEI is frequency-
independent. It is shown that when infinitely wide ground planes
are cut to form ground planes of finite width, the residual surface
currents on the tails that are cut off may be redistributed on the
edges of the ground planes of finite thickness, forming edge currents.
These edge currents shrink to filament currents when the thickness
of the ground plane becomes negligible. It is shown that the mutual
external inductance is determined by the magnetic flux produced by
these edge currents, while the contributions to the magnetic flux by
the currents from the signal trace and the finite-size ground plane
completely compensate each other. This approach has been applied to
estimating the mutual inductance for symmetrical and asymmetrical
microstrip lines.
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1. INTRODUCTION

Planar transmission lines are widely used in high-speed digital and
analog electronic devices, from signal traces on printed circuit boards
(PCB), to feeding networks in active and passive IC components.
Nowadays, there are many books and papers on planar transmission
line design and analysis of various intrinsic parameters of microstrip
structures, such as their RLCG parameters (see e.g., [1–5] and
references therein). There are also many publications in PIER and
JEMWA on the design of complex functional devices on the basis
of planar transmission lines, including those with multiple signal
conductors, where the problem of signal coupling is the most important
[6–13]. Microstrip structures with comparatively narrow ground
planes (GP) have various applications in modern high-speed electronic
equipment, for example, to increase product assembly density, for
interboard connector design, or for microstrip on-chip interconnects
on silicon [3, 14, 15]. A major problem in most of the structures with
narrow ground planes, or when signal traces come close to the edge
of a printed circuit board is so-called “ground plane noise”, which
is actually a common-mode voltage, that appears on the reference
plane due to fringing magnetic fields wrapping the plane [16–21].
This voltage drives unintentional “antennas” formed by parts of the
electronic equipment, such as PCB reference planes, cables, and the
conducting chassis that are connected to the reference plane of the
microstrip structures. The common-mode voltage is related to the
differential-mode (signal) current in the trace at the same frequency
[18]

VCM (ω) = Zt · IDM (ω), (1)

where Zt ≈ Rgp+jωM is the transfer impedance per unit length. If the
ground plane resistance Rgp is negligible, then the transfer impedance
is represented mainly by the mutual inductance M associated with
fringing magnetic fields wrapping the ground plane. This inductance
is further called the mutual external inductance (MEI).

Common-mode source identification and conducted emission
calculations depend on the accuracy with which the above mutual
inductance is known for the particular geometry — relative position of
traces, vias, and signal return paths. At frequencies where the PCB
structures must be modeled using distributed parameters, quantifying
the inductive coupling mechanism is an important, but a difficult
problem. Recently, there have been many publications aimed at this
problem [16–24].

An analytical method of calculating the MEI associated with
fringing magnetic fields in microstrip structures, both symmetrical
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and asymmetrical, is represented in this paper. This method employs
a quasi-magnetostatic approach, image theory and direct integration
of the magnetic field, and is based on the concept of edge currents.
These edge currents are formed, when an infinitely wide ground plane
is cut to form a ground plane of finite width. Herein, it is shown
that it is the edge currents that contribute mainly to the MEI of
interest. The presented method can be applied to planar transmission
line structures with many signal traces and many ground planes, too.
The analysis of mutual external inductance related to the radiation
of planar structures with finite-size ground planes can also be useful
when designing microstrip patch antennas [25–31] and other radiating
devices [32].

One of the approaches for estimating any inductance is calculating
a ratio of the total magnetic flux penetrating through a well-defined
loop to the amplitude of current that produces this flux. Unlike
capacitance or resistance, inductance is always associated with a
closed current loop. The MEI is defined here as the mutual
inductance between the signal current loop and the common mode
(CM) “antenna” current loop, as shown in Figure 1.
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Figure 1. Differential- and common-mode current loops for
determining the MEI associated with fringing magnetic fields in a
microstrip geometry.

To define this inductance, assume that the ground plane is in
the horizontal (xy) plane, and the signal trace is at y = 0. If the
structure has a finite ground plane, but is infinite and homogeneous
in the direction of wave propagation (x-direction), then the per-unit-
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length (p.u.l.) mutual external inductance can be defined as

Mp.u.l. =
Ψ

I · �x
=

1
I
·
∫
z

Bydz, (2)

where the integration is taken along the z-axis below the ground plane.
Because of the translational invariance of the cross-sectional geometry
along the x-axis, the integration along x in (2) is omitted. If the origin
of the coordinate system is in the center of the ground plane of finite
thickness d, then the integral is taken in the limits z = (−∞,−d

2), and
it must converge at both z → −∞ and z → −d

2 .
There are different ways to calculate the inductance of interest.

The classical book by Grover [33] on inductance calculations describes
many methods, such as the Newmann formula [34], energy conservation
approaches developed by the classical physicists Faraday, Helmholtz,
Thomson, and Maxwell, as well as Maxwell’s Geometric Mean Distance
(GMD) approach [35]. However, the GMD method is used mainly for
symmetric finite geometries, and cannot be used for per-unit-length
parameters, unless the assumption that the structure is infinitely
long and translationally invariant is made. Conformal mapping and
the complex potential method was developed by Kaden and applied
to magnetic coupling in translationally invariant and infinitely long
structures along one axis, with a non-uniform current distribution in
the cross-sectional plane [36]. Kaden obtained an explicit formula
for the mutual inductance of two filaments separated by a shield of
finite width [36]. Grover’s partial inductance approach for treating
complex geometries was further developed by Ruehli [37], and splits
a complex structure into filaments. Van Horck considers the mutual
inductance between two signal traces shifted from the center and placed
on different sides of a ground plane [16], using Carson’s approach
for calculating the return current distribution over a wide ground
plane [38]. For a ground plane of finite size, closed-form expressions
are available only for the microstrip case with either a non-shifted
strip [16–20], or a strip shifted to the very edge of the ground
plane [16]. Some papers contain numerical or simplified analytical
evaluations of the ground plane internal impedance of microstrip lines
using the quasistatic current density distribution in the ground plane
produced by a signal trace [16, 18, 22, 39, 40]. Reference [23] contains a
general dual integral approach for the analysis of the finite-size ground
plane self-inductance of a microstrip, which takes into account wave
propagation effects. However, there are only implicit expressions for
inductance associated with the flux through the loop between the
signal trace and the ground plane. Moreover, the resultant value
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of inductance is frequency-dependent in principle, and it cannot be
associated with a lumped-element analog.

The method proposed herein for calculating MEI for microstrip
lines uses a quasi-magnetostatic approach and the direct analytical
calculation of the magnetic flux penetrating through the desired loop
area is considered. This approach is denoted the Method of Edge
Currents (MEC), since it will be shown below that only edge currents
on the ground planes are responsible for the mutual inductance under
study. It is known that this inductance gives rise to the radiation from
cables due to the common-mode voltage associated with a finite size
signal reference plane. The results of the computations obtained from
the proposed method are compared with the literature results based on
the Schwarz-Christoffel (SC) conformal mapping transformation [41],
as well as some experimental data, and some results of full-wave
numerical modeling fulfilled using the CST Microwave Studio (CST
MWS ) software. The external mutual inductance is found from the
CST MWS calculations as

Mp.u.l = µ0

N∑
i=1

H0(zi)
Itrace

∆zi = µ0

N∑
i=1

10αi/20∆zi, (3)

where H0(zi) is the magnitude of the magnetic field at the cross-
section zi, and the value αi = 20 · log

(
H0(zi)
Itrace

)
is the corresponding

magnetic probe magnitude, “measured” in dB. The “p.u.l.” subscript
is omitted during further consideration. To assign (3) as a per-unit-
length distributed element characteristic of a microstrip structure, it is
necessary that this value be constant in the frequency range of interest,
or at least at lower frequencies. The frequency is limited by the validity
of the quasistatic approximation for the magnetic field, i.e., when the
cross-sectional dimensions of the transmission line are at least one
order smaller than the wavelength in the dielectric of the line, or when
Ex, Hx ≈ 0.

2. MODEL DESCRIPTION

The mutual external inductance associated with the fringing magnetic
fields in a microstrip structure with a ground plane of finite size
is considered in this Section. For the analytical considerations it
is assumed that all the cross-sectional dimensions are much smaller
than the wavelength of the electromagnetic field, so that a quasi-TEM
approach is valid [13, 15]. The substrate in the microstrip line is a non-
magnetic dielectric. The length of the transmission line is much greater
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than the other dimensions, so that per-unit-length parameters can be
calculated. Both the ground plane and a signal trace are assumed to be
perfect electric conductors, so that no magnetic energy is stored within
them, and image theory can be used. In the presented model, a finite
thickness of the ground plane and a finite width of the signal trace
are taken into account. Both symmetrical and asymmetrical (with
non-centered signal trace) microstrip structures are studied.

2.1. Symmetrical Microstrip Structure

Let the microstrip geometry be translationally invariant along the x-
axis, resulting in a two-dimensional (2D) cross-section as shown in
Figure 2.
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Figure 2. Application of image theory for the differential-mode
and common-mode current loops mutual inductance extraction in the
microstrip case.

First, for simplicity, let the microstrip signal trace be a thin
filament. Initially assume that the ground plane is infinitely wide. For
an infinite perfect electric conducting (PEC) ground plane, according
to image theory, there are two sources +IS (initial current source)
and −IS (image source). The initial and image sources produce equal
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y-components of the static magnetic field along the y-axis given by
Ampere circuital law,

H±
y =

IS · h
2π(h2 + y2)

. (4)

Here it is convenient to introduce the notion of edge currents for a
ground plane of finite width wg.

Assume that the fringing magnetic flux that wraps the ground
plane in a microstrip geometry is produced by current filaments ∆I1
and ∆I2 placed at the points y = ±wg/2, parallel to the signal current.
These edge currents correspond to the total current in the “tails”
distributed along |y| > wg/2 for the infinitely wide case [19]. They
are found by integrating the corresponding surface current density as

∆I1,2 =

+∞∫
wg/2

(H+
y +H−

y )dy =
IS · h
π

· arctan
(y

h

)∣∣∣+∞

wg/2

=
IS
π

·
(π

2
− arctan

(wg

2h

))
. (5)

For small ratios h
wg

� 1, that is, when the ground plane is substantially
wide as compared to the height of the transmission line, the edge
currents are approximately

∆I = ∆I1,2 ≈ I

π
· 2h
wg

. (6)

The current on the ground plane of finite size is

Ig =

+wg/2∫
−wg/2

(H+
y +H−

y )dy =
2I
π

· arctan
(wg

2h

)
. (7)

There is a current balance in the geometry,

IS + Ig + 2∆I = 0. (8)

However, in reality, the signal trace is of non-zero width ws, so this
is not a filament current. Though the realistic distribution of the
current on the signal trace is not even, let us assume in the first-order
approximation that the current density in the strip is distributed evenly
[40, 42, 43],

JS =
IS
ws

. (9)
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The magnetic field on the surface of the ground plane at the distance
h from it is

H±
y =

JSh

2π

ws/2∫
−ws/2

dy′

(y − y′)2 + h2
, (10)

where y′ is the point on the signal strip, and y is the point of
observation on the ground plane.

The density of the current induced on the infinite ground plane is

Jg(y) = 2Hy =
JSh

π

ws/2∫
−ws/2

dy′

(y − y′)2 + h2
. (11)

Then the edge currents ∆I1 = ∆I2 = ∆I are found by the integration

∆I =

+∞∫
wg/2

Jg(y)dy =
JSh

π

+∞∫
wg/2




ws/2∫
−ws/2

dy′

(y − y′)2 + h2


dy. (12)

The finite thickness d of the ground plane might have a substantial
effect on the mutual inductance under study, so it is reasonable to take
it into account in the present model. Assume that the edge currents
are not filaments at the very edges of the ground plane, but they are
distributed with the current density Jedge on the surface of the rounded
edges of radius R = d

2 , so that

Jedge =
∆I

πR
. (13)

The current balance (8) must still be fulfilled.
Now the flux that contribute to the mutual external inductance

under study must be determined. The contour for the magnetic
flux calculation is {x = const; y = 0; z ∈ (−∞; −R)}, as is shown in
Figure 3. The integration limits are then z ∈ (−∞, −R). The total
magnetic flux penetrating the contour under the ground plane is

ΨΣ = ΨS + Ψg + 2Ψedge, (14)

where ΨS is the flux produced by the current on the signal trace, Ψg is
the flux produced by the current distributed on the finite ground plane,
and 2Ψedge is the flux produced by the edge currents. It is easy to show
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Figure 3. Currents contributing to the fringing magnetic flux
wrapping the ground plane.

that the only flux responsible for the mutual external inductance is the
flux produced by the edge currents. Indeed, when the ground plane is
infinitely wide, flux produced by all the elemental currents completely
compensates for the flux produced by the signal trace, so that there is
no fringing magnetic field below the ground plane,

ΨS + Ψg∞ = 0. (15)

However, the flux from the infinite ground plane is comprised of flux
from the finite ground plane and flux from the “tails” (distributed tail
currents), formed when a ground plane of finite size is cut out of the
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infinite plane,

ΨS + Ψg + Ψtails = 0. (16)

Due to the redistribution of the currents in the structure with finite
ground planes and added lumped edge currents, the resultant flux
below the ground plane is

Ψ = ΨS + Ψg + 2Ψedge �= 0. (17)

Then, this non-zero flux Ψ is obtained by subtracting (16) from (17),

Ψ = 2Ψedge − Ψtails. (18)

This means that it is sufficient to calculate only the flux from the
lumped edge currents and the flux from the distributed tail currents
on the infinite ground plane.

The flux from the “tails” can be calculated as

Ψtails = µ ·
−R∫

−∞

Hy tailsdz, (19)

where the magnetic field due to the “tails” is calculated through current
density on the infinite ground plane as

Hy tails =

−wg/2∫
−∞

Jg(y) · (R− z)dy
π · ((R− z)2 + y2)

, (20)

and µ = µr · µ0 is the absolute permeability of the media (µ0 =
4π · 10−7 H/m), and R is half of the thickness of the ground plane. As
further analysis using numerical calculations shows, the contribution
of the tail currents is negligible compared to the contribution by the
edge currents (the tail current flux is at least two orders smaller than
the edge current flux).

The next step is to find the fluxes produced by the edge currents.
If the edge currents are considered as filamentary, the magnetic flux
through the loop in the plane y = 0 for (−∞,−R) beneath the ground
plane will be

Ψedge =
µ · ∆Iedge

2π
·

−R∫
−∞

z

z2 + (wg/2)2
dz. (21)
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However, the results of the computations using this formula
substantially diverge from those obtained using the other methods
(e.g., Schwarz-Christoffel conformal mapping [41]), especially when the
thickness of the ground plane increases, and when the width of the
ground plane decreases. This suggests that the edge current should be
considered as a distributed current, rather than a lumped filamentary
current. Indeed, when the ground plane is comparatively narrow, the
surface current induced by the signal trace on the ground plane may
also appear on the opposite side of the ground plane close to the edges
(Figure 4). Assume that this edge current is distributed evenly on the
surface of a rounded edge (of course, this is an approximation).

 
 
 
 
 
 

 

 
 
 
 
 

0- 
-wg/2 wg/2 

  

α   

H

-R 

R 
 

z

Z

Hy 

R   

Y

α 

Jedge 

Figure 4. Calculation of the magnetic field from distributed currents
on the rounded edges of a ground plane.

The contribution from any elemental current on the edge can be
calculated as

dHy edge = dHtop
y edge + dHbot

y edge, (22)

where the index “top” corresponds to the upper half of the ground
(0 ≤ z ≤ R), and the index “bot” corresponds to the lower half of the
ground plane (−R ≤ z < 0).
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These elemental magnetic fields are

dHtop
y edge =

JedgeR
(wg

2
+ R sinα

)
π

((wg

2
+ R sinα

)2
+ (R cosα− z)2

)dα; (23)

dHbot
y edge =

JedgeR
(wg

2
+ R sinα

)
π

((wg

2
+ R sinα

)2
+ (R cosα + z)2

)dα, (24)

and the resultant magnetic field is

Hy edge =

π/2∫
0

(
dHtop

y edge + dHbot
y edge

)
. (25)

Then the corresponding magnetic flux is

2Ψedge = 2µ ·
−R∫

−∞

Hy edgedz. (26)

The resultant p.u.l. MEI of the symmetrical microstrip line is

Mms
0 =

Ψ
IS

=
2Ψedge − Ψtails

IS
. (27)

The results of computations using the above approach for
a symmetrical microstrip line are presented in Figure 5. The
computations were made using the mathematical software tool, Maple
10, that allows for direct analytical integration (both symbolic and
numerical). For these graphs, the width of the trace was taken as
ws = 0.1 mm, and half of the thickness of the ground plane was
R = 0.01 mm. As is seen in Figure 5(a), the results of the analytical
integration using Maple and the calculations using a formula, following
from the Schwarz-Christoffel (SC) conformal mapping [18, 41],

Mms
0 =

µ

π
· h

wg
, (28)

match very well for higher ratios wg/h > 3 (discrepancy is less than
1%). When wg/h < 3, there is a discrepancy between the results based
on the SC conformal mapping and the proposed method, as is shown in
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Figure 5(b). Figure 5(c) demonstrates that for the microstrip geometry
the two curves for the mutual inductance versus the parameter wg/h
almost coincide, when the “tail” flux Ψtails are taken and not taken into
account. The reason is that the “tail” flux Ψtails are negligibly small
compared to the flux Ψedge, produced by the lumped edge currents.

Figure 6 shows the effect of the signal trace width on the external
mutual inductance in a symmetrical microstrip line. The mutual
inductance increases as the signal trace becomes wider. Figure 7
demonstrates how the ground plane thickness affects the mutual
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Figure 5. Mutual external inductance associated with the fringing
magnetic fields wrapping the ground plane for a centered microstrip
geometry: (a) at larger ratios wg/h; (b) at smaller ratios wg/h; (c)
with and without the “tail current” flux accounted for.
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inductance under consideration: when the ground plane is wide
enough, the effect of the ground plane thickness is negligible; and when
the ground plane is narrow, the thickness of the ground plane leads to
some decrease in external mutual inductance.

3. ASYMMETRICAL MICROSTRIP STRUCTURE

Let the signal trace of a microstrip line be shifted from the center of
the ground plane at the distance ∆y = s, as is shown in Figure 8.

Also assume that the signal trace is of a non-zero width w1, and
the surface current density on it is the same as (9). Then, taking into
account the offset s, the surface current induced on the ground plane
is

Jg(s, y) = 2H+
y =

JSh

π

s+ws/2∫
s−ws/2

dy′

(y − y′)2 + h2
, (29)

where y′ is the point on the signal trace, and y is the point of
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Figure 8. Application of image theory for the mutual inductance
extraction in the asymmetrical microstrip case.

observation on the ground plane. The edge currents then are

∆I1(s) =

+∞∫
wg/2

Jg(s, y)dy; ∆I2(s) =

−wg/2∫
−∞

Jg(s, y)dy. (30)

If the signal trace is a filamentary current, then the ground plane
current density is

Jg(s, y) =
IS
π

· h

h2 + (y − s)2
, (31)



Progress In Electromagnetics Research, PIER 80, 2008 213

and the edge currents can be calculated as

∆I1 =
IS
π

·
(
π

2
− arctan

(
wg − 2s

2h

))
;

∆I2 =
IS
π

·
(
π

2
− arctan

(
wg + 2s

2h

))
.

(32)

If s = 0, these currents are equal. But in the general case of a non-zero
s they are not equal. If they are distributed approximately evenly on
the ground plane edges of radius R, then the corresponding current
densities are calculated as

Jedge 1,2(s) =
∆I1,2(s)

πR
. (33)

The magnetic field from the current tails of the infinite ground plane
is

Hytail1 =

−∞∫
−wg/2

Jg(y) · zdy
2π · (z2 + y2)

;

Hytail2 =

−wg/2∫
−∞

Jg(y) · zdy
2π · (z2 + y2)

.

(34)

The magnetic field from the edge currents is calculated as before, but
depends on the offset s and is different for the right and left edge
currents.

Htop
y edge 1,2 =

π/2∫
0

Jedge 1,2R ·
(wg

2
+ R sinα

)
2π

((wg

2
+ R sinα

)2
+ (R cosα− z)2

)dα;

Hbot
y edge 1,2 =

π/2∫
0

Jedge 1,2R ·
(wg

2
+ R sinα

)
2π

((wg

2
+ R sinα

)2
+ (R cosα + z)2

)dα.

(35)

Then the corresponding magnetic flux from the tails and from the edge
currents are

Ψtails = µ ·


 −R∫
−∞

Hytail1dz +

−R∫
−∞

Hytail2dz


 , (36)
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Ψedges = µ ·


 −R∫
−∞

Hy edge 1dz +

−R∫
−∞

Hy edge 2dz


 . (37)

The p.u.l. MEI of the asymmetrical microstrip is then

Mms(s) =
Ψedges − Ψtails

IS
. (38)

The analytical results obtained using the proposed MEC approach
are presented in Figures 9(a), (b) and 10(a), (b). Mutual inductance
in a microstrip line is shown versus the normalized offset (s/wg) for a
signal trace from the center. In the computations shown in Figure 9(a),
the ground plane width is wg = 10 mm, the height of the signal trace
with respect to the ground plane is h = 1 mm (the ratio wg/h = 10),
the width of the signal trace is ws = 1 mm (the ratio ws/h = 1), and
the thickness of the ground plane is d = 2R = 0.02 mm.

In Figure 9(b), the width of the ground plane is wg = 100 mm,
so that the ratio wg/h = 100. The results are compared with those
obtained using the SC conformal mapping approach [41],

Mms
s =

µ

2π
· ln

∣∣∣∣∣∣2
(
s + jh

wg

)
+

√
4

(
s + jh

wg

)2

− 1

∣∣∣∣∣∣ , (39)

and the approximation function in [24],

Mms
s ≈ µ

π
· h

wg
· 1√

1 − 4
(
1 − 2 h

wg

) (
s
wg

)2
, (40)

as well as the mutual inductance for a trace under the very edge of the
ground plane |y| = s = wg/2, z = −h, as in [16],

Mms
edge ≈

µ

π
·
√

h

2wg
. (41)

The value of Mms
0 (at s/wg = 0) is the same for all the graphs

calculated using different approaches, as Figures 9(a) and (b) show.
However, when the trace is shifted from the central position to the edge,
the discrepancy between the corresponding graphs in these figures
increases, especially for a wider ground plane. This can be explained by
the fact that the papers [16, 24, 41] do not take into account the width
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Figure 9. Mutual external inductance in a 50-Ohm microstrip line
versus the normalized offset (s/wg) for a signal trace from the center.
(a) width of the ground plane is wg = 10 mm; (b) width of the ground
plane is wg = 100 mm.
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of the trace and the thickness of the ground plane, while the approach
presented herein does. The other reason for overestimating the mutual
inductance value in the MEC is concentrating an edge current close
to the edge, while in reality it will be more spread under the ground
plane towards the center.

Another example is shown in Figure 10. The height of the
transmission line is h = 1.143 mm (45 mils), the width of the ground
plane is wg = 100 mm (corresponding to the ratio wg/h = 87.5),
the width of the signal trace is ws = 0.635 mm, or 25 mils (the ratio
ws/h = 0.556), and the thickness of the ground plane is approximately
d = 0.2 mm. The dielectric is FR-4 with εr = 4.5 and tan δ = 0.02.

Figure 10(a) represents only computations that use different
approaches, including full-wave numerical modeling by the CST
Microwave Studio (MWS) software. Figure 10(b) contains the
comparison with some experimental results as well. These
experimental results are taken from [44], and they characterize EMI
produced by a microstrip structure due to the mutual inductance in
terms of the relative increase of the common-mode current ICM in
a microstrip geometry with a signal trace shifted from the center.
This increase is equivalent to the MEI normalized to its value at
the center (Mms/Mms

0 ), and Figure 10(b) shows the normalized
mutual inductance curves. Measurements in [44] were conducted at a
frequency of 100 MHz. As is seen from Figure 10(b), the experimental
results [44] are close to the calculations based on the MEC method.
The analogous results that also agree well with the MEC predictions
were obtained in [45] for the frequency of 350 MHz, both theoretically
and experimentally.

The results of the numerical simulations using the CST MWS
were the closest to the experimental results in [44]. The CST MWS
software was used to calculate fringing magnetic field at different
positions of magnetic probes under the ground plane. Then the
MEI of interest was calculated using (3). The dependence of the
magnetic field on the distance from the ground plane was obtained,
and the resultant magnetic flux was calculated as an area under
the curve. Initially, the computational domain in CST MWS was
chosen as 2080 mm × 300 mm × 500 mm. Then the computational
domain was increased to 2080 mm × 500 mm × 700 mm to “capture”
more of the fringing magnetic flux. In the CST MWS modeling it
was noticed that the edge value of M increases with the increase of
the computational domain (10% difference for two abovementioned
computational domains). This is because more fringing magnetic flux
is captured within the computational domain of a bigger volume,
especially, when it increases in the y-direction and in the negative z-
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Figure 10. Mutual external inductance in a microstrip line versus
offset for a signal trace from the center: (a) non-normalized, and (b)
normalized and compared with experimental data in [35].
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direction. Also, the calculated external inductance in the CST MWS
is slightly higher at d.c. than at higher frequencies (∼ 140 MHz), and
this difference is around 2%. In Figures 10(a) and (b) the results
for the bigger computational domain and d.c. case are shown. All the
results of modeling using the CST MWS lie between the curve obtained
by MEC, and the curves calculated using SC conformal mapping [41]
and approximation in [24]. In the CST MWS, some of the fringing
magnetic flux is absorbed by a perfectly matched layer used to limit
the computational domain, so the results of computations might be
underestimated. In the conformal mapping method the results are
underestimated as well, since the width of the trace and thickness of
the ground plane are not taken into account. The MEC gives the
highest results, since the integration in this method is accomplished in
an almost infinitely large space around the microstrip structure.

Figure 11 demonstrates by the arrows the magnetic field picture
near the microstrip geometry.

Figure 11. CST Microwave Studio modeling of magnetic field near
the microstrip geometry with a finite-size ground plane.

Figure 12 shows the surface current distributions on the top and
the bottom of the ground plane. These figures are obtained using the
CST MWS software. The geometry of the structure is the same as
discussed above, and the trace is shift by 15 mm from the center of
the ground plane. It is seen that there are regions of enhanced surface
current on the bottom of the ground plane close to the edges, and it is
this current that is responsible for the mutual external inductance of
interest.
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Figure 12. CST Microwave Studio modeling of surface current
distributions (a) on the top, and (b) on the bottom of the ground
plane in a microstrip geometry.

It should be mentioned once more that the MEC might
overestimate the mutual external inductance for very narrow ground
planes, since it considers edge currents distributed evenly only on the
rounded edges of the ground plane. As Figure 12 shows, in reality
the cut-off “tails” are redistributed on the bottom side of the ground
plane, with the current density decreasing exponentially staring from
the very edge towards to the center of the ground plane. This may be
a direction for the further improvement of the model.
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4. CONCLUSION

A Method of Edge Currents is proposed for calculating the mutual
external inductance associated with fringing magnetic fields in
microstrip structures. This method employs a quasi-static (quasi-
magnetostatic and quasi-TEM) approach, image theory, superposition,
and a direct magnetic field integration technique. It is shown that
the residue surface currents on the tails that are cut off may be
redistributed on the edges of the ground planes of finite thickness.
When the ground plane is of zero thickness, these edge currents shrink
and become filamentary. It is also shown that the mutual external
inductance is determined mainly by the magnetic flux produced by
these edge currents, while the contributions to the magnetic flux by the
currents from the signal trace and the finite-size ground plane totally
compensate each other. This approach has been applied to estimating
mutual inductance for both symmetrical and asymmetrical microstrip
lines as well. There is a good agreement with published experimental,
as well as with full-wave numerical simulations.

The practically important conclusion is the following. The results
of the presented computations show that, from an electromagnetic
immunity (EMI) point of view, it is not acceptable to have a signal
trace in a microstrip line closer than 20% of the ground plane width
from the edge. This is a general and approximate recommendation for
a designer. However, mutual external inductance should be evaluated
for every particular case, since it depends on the offset of the signal
trace from the center, on the width of the ground plane, height of
the transmission line, width of the trace, and the thickness of the
ground plane. The presented Method of Edge Currents gives the upper
limit (worst case) of the possible mutual inductance associated with
fringing magnetic fields. The practical edge values of MEI should be
below the values calculated by the present method. This is beneficial
for a designer. The resultant MEI is frequency-independent, since the
method is limited by the quasi-static consideration, when the TEM
mode is the only propagating mode in the structure.

The presented approach may also be used for the analysis of
striplines and multiconductor planar transmission lines, since it is
based on the superposition principle. Generalization for the multimode
regime of the wave propagation is also possible.
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