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Abstract—Use of Multi-Objective Particle Swarm Optimization for
designing of planar multilayered electromagnetic absorbers and finding
optimal Pareto front is described. The achieved Pareto presents
optimal possible trade-offs between thickness and reflection coefficient
of absorbers. Particle swarm optimization method in comparison
with most of optimization algorithms such as genetic algorithms is
simple and fast. But the basic form of Multi-objective Particle Swarm
Optimization may not obtain the best Pareto. We applied some
modifications to make it more efficient in finding optimal Pareto front.
Comparison with reported results in previous articles confirms the
ability of this algorithm in finding better solutions.

1. INTRODUCTION

Wide spread applications of electromagnetic absorbers, have inspired
engineers to explore about optimal design with available algorithms.
Ideally a thin, light weight and wideband absorber is an optimum
one. But these features are inherently conflicting. For example it is
possible to design an absorber with high reflection suppression, but
high thickness or weight. On the other hand a thin and light absorber
might have low reflection suppression.

Thus for such compulsions of physical realization of absorbers,
engineer often deals with many problems that enforce him to search
about proper trade-offs between conflicting goals. So if instead of one
solution there exist a set of optimal solutions, designer can choose best
trade-offs in each case. This set of optimal solutions is known as Pareto
front in optimization literatures.
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Hitherto, some Pareto optimization methods used to find Pareto
front of absorbers [1, 2]. These methods were on the base of
genetic algorithms (GAs). Recently multi-objective particle swarm
optimization (MOPSO) is also applied to solve this problem. But for
some cases MOPSO showed slightly worse results than Nondominate
Sorting Genetic Algorithm (NSGA-II) [3].

In this study we apply modified MOPSO to multilayer absorbers
Pareto design. The proposed method shows better optimization
results.

2. PARTICLE SWARM OPTIMIZATION

In recent years Particle Swarm Optimization (PSO) was used as an
efficient optimization algorithm for various electromagnetic design
problems [4–6]. The particle swarm optimization (PSO) is a population
based algorithm used to visualize the movement of a bird’s flock [7].

PSO is initialized with a population of random solutions (i.e.,
particles) flown through a hyper dimensional search space. Each
particle in PSO has an adaptable velocity. Moreover, each particle
has a memory remembering the best position of the search space
that has ever been visited. Particles have the tendency to fly
towards a better search area over the course of the search process.
Thus their movement is an aggregated acceleration towards its best
previously visited position and towards the best individual of a particle
neighborhood.

Suppose that the search space is D-dimensional, and the i-
th particle of the swarm can be represented by a D-dimensional
vector Xi = (xi1, xi2, . . . , xiD)T . The velocity of this particle is
represented by another D-dimensional vector Vi = (vi1, vi2, . . . , viD)T .
The best experience of i-th particle (Pbest) is denoted as Pi =
(pi1, pi2, . . . , piD)T . Let g be the index of the best particle in the swarm
(i.e, the g-th is the best), and the superscripts denote the iteration
number, then in global version the swarm is manipulated according to
the following two equations [7]:
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where vt
i(d) and xt

i(d) represent the current velocity and position of the
d-th dimension of the i-th particle respectively and rand is a uniform
random number in the range [0,1]; c1, c2 are positive constants, called
acceleration constants, and ω is the inertia weight.
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Above equations represent basic form of single objective PSO.
In the next section, a fundamental of multi-objective optimization
and modifications that must be applied to appropriate PSO for multi
objective optimization is expressed.

3. MULTI-OBJECTIVE PARTICLE SWAM
OPTIMIZATION

The main objective of every multi-objective optimization algorithm is
to find Pareto-optimal set. This optimal set balances the trade-offs
among the conflicting objectives.

The concept of Pareto optimality was conceptualized by the Italian
economist, Vilfredo Pareto, in his work, Manual of Political Economy
in 1906 [8]. To define Pareto optimality some basic concepts must be
introduced as follow:
Domination: A position vector, x1 dominates a position vector, x2

(x1 ≺ x2), if and only if

fk(x1) ≤ fk(x2), ∀k = 1, . . . nk (3)
fk(x1) < fk(x2) for at least one k. (4)

Pareto optimal: A position vector, x∗ ∈ F is Pareto optimal if there
does not exist a position vector, x �= x∗ ∈ F that dominates it.
Pareto-optimal set: The set of all Pareto-optimal position vectors form
the Pareto optimal set.
Pareto front: All objective vectors corresponding to position vectors
of Pareto optimal set.

First step in any multi objective optimization algorithm is to
minimize the distance between solutions and the Pareto front. For
this objective appropriate fitness functions must be defined.

Traditional type of assigning fitness function is aggregation–based
method, where the fitness function is a weighted sum of the objective
functions [9].

However this classic approach can be very sensitive to precise
aggregation of goals and tend to be ineffective and inefficient [8]
where some researchers proposed using very complex methods such
as neural network to obtain optimal weights of the objective function
[10]. Some newer approaches for fitness assignment are on the base
of Pareto dominance, where fitness is proportional to the dominance
rank of solutions. MOPSO that used in this study is a dominance-
based method that was proposed by Coello Coello et al. [11]. In
this algorithm the best nondominated solutions have ever been visited
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Figure 1. Flowchart of MOPSO.

are stored in a memory space calling archive. The flowchart of this
algorithm is shown in Fig. 1.

The main parts of this algorithm work as follows:
After initialization of population and archive, we must generate
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hypercubes of the search space explored so far, and locate the particles
using these hypercubes as a coordinate system where each particle’s
coordinate are defined according to the values of its objective functions.

Speed of each particle is computed by the following relation:

vt+1
i (d) = ω ∗ vt

i(d) + c1 ∗ rand
(
pt

i(d) − xt
i(d)

)

+c2 ∗ rand
(
archivet

h(d) − xt
i(d)

)
(5)

The term archivet
h is taken from archive. The index h is selected

using following strategy:
Those hypercubes containing more than one particle are assigned

a fitness equal to the result of dividing any number x > 1 (we took it
10) by the number of particles that they contain. This aims to decrease
the fitness of those hypercubes that contain more particles and it can
be seen as a form of fitness sharing. Then we apply roulette wheel
selection using these fitness values to select the hypercube from which
we will take the corresponding particle. Once the hypercube has been
selected, we select randomly a particle within such hypercube.

For avoiding convergence to false Pareto a mutation operator is
proposed. The effect of mutation operator decreases with respect the
number of iterations. It is controlled with the parameter mutrate [11].

After computation of position, each particle’s position must
maintain within the valid search space. So when a position variable
goes beyond its boundaries, we must do two things: (1) the position
variable takes the value of its corresponding boundary (either the lower
or the upper boundary), and (2) its velocity is multiplied by (−1) so
that it searches in the opposite direction.

In updating archive, it must remain always dominate free. The
size of archive is finite. When the archive reaches to its maximum
allowable capacity, those particles located in less populated areas of
objective space are given priority over those lying in highly populated
regions.

In updating memory of each particle, if the current position
dominates the Pbest, Pbest will be updated with current position.

This algorithm presents a good diversity in Pareto front. But
some points in edge of Pareto front may not be found. In practice
we may be interested in finding these points. For example in some
applications, high absorption is very important even if the thickness is
high. To obtain these part of Pareto front, we apply some modifications
to this algorithm. These modifications are discussed briefly in the next
section.
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4. MODIFIED MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION

After applying described MOPSO, for design of various absorbers, two
serious problems were observed: (1) we could not achieve some points
of Pareto front especially in top edge. These points represent absorbers
with high reflection suppression that may be practically important.
(2) Replacement of position variable with its corresponding boundary
(especially lower boundary) to maintain it in the valid space forces
the particles to be trapped in down edge of Pareto front. This part
of Pareto front does not have any practical importance. On the other
hand this dense edge of Pareto front fills the archive with improper
solutions. After reaching to maximum capacity of archive, in any
iteration we must do extra calculations to decide which member of
archive must be removed. And therefore speed of optimizer will be fall
down. Thus to eliminate these problems we applied two changes to the
original algorithm:

(1) In order to obtain upper edge of Pareto front, in some of iterations,
(for example after N iterations) we run the algorithm just for
objective that is important for us (reflection coefficient in this
problem).

(2) To overcome to premature filling of archive with improper
particles, we replaced position variables beyond the boundary with
a random number in the valid range instead of replacement of them
with corresponding boundary.

In applying single objective PSO for first modification, we used
a fast and efficient variant of PSO (MLPSO) in those iterations [12].
MLPSO divides total swarm to some neighborhoods without overlap
and runs PSO to these sub swarms in parallel. Performance of
MLPSO method was confirmed in finding global optimums of absorber
design [12]. In the Section 6 simulation results of this algorithm is
presented.

5. THE ABSORBER MODELING

A multilayered coating absorber backed by a perfect electric conductor
(PEC) is shown in Fig. 2. The layer number zero is the incident media
and layer number M is perfect conductor [13].

Number of layers is fixed in our design. Materials are
chosen from an available database with various frequency dependent
electromagnetic characteristics. Permittivity and permeability of
materials used in our design are listed in Table 1 [14]. For each layer,
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Figure 2. Multilayered coating absorber [13].

thickness and material type must be specified. Thus for an M-layer
absorber there is a 2M dimensional position vector. Thickness of each
layer varies in the range [0, 2] mm. Two objective functions can be
expressed as:

f1 = 20 log10{max(R(f)), |f ∈ B} (6)

f2 =
M∑
i=1

ti (7)

where B is the desired bandwidth. And R is the reflection coefficient
of multilayer structure. ti is thickness of each layer.

We wish to minimize the maximum of reflection coefficient over the
frequency band and total thickness of absorber simultaneously. Since
these goals are conflicting we must search about Pareto-optimal front
of this problem that represents best trade-offs between these objectives.
In the next section, designs resulted from applying Modified MOPSO
are presented and compared with results of other algorithms.

6. SIMULATION RESULTS

In following simulations we attempt to demonstrate the described
algorithm, to design following types of five-layer absorbers in various
frequency ranges for normal incidence using materials listed in Table 1.



360 Chamaani et al.

Table 1. Relative permittivity and permeability of the 16 materials
in the data base [14].

Lossless Dielectric Materials (µr = 1 + j0.)
# εr

0 10
1 50

Lossy Magnetic Materials (εr = 15 + j0.)

µi(f) =
µi(1 GHz)

fβ
,

µr(f) =
µr(1 GHz)

fα
, µ = µr − jµi

# µr(1 GHz), α µi(1 GHz), β
2 5,0.974 10,0.961
3 3,1.000 15,0.957
4 7,1.000 12,1.000

Lossy Dielectric Materials (µr = 1 + j0.)

εi(f) =
εi(1 GHz)

fβ
, εr(f) =

εr(1 GHz)
fα

, ε = εr − jεi

# εr(1 GHz), α εi(1 GHz), β
5 5,0.861 8,0.569
6 8,0.778 10,0.682
7 10,0.778 6,0.861

Relaxation-type magnetic materials

µ = µr − jµi, µr =
µrmf2

m

f2 + f2
m

, µi =
µrmfmf

f2 + f2
m

er = 15 + j0
# µm fm

8 35 0.8
9 35 0.5
10 30 1
11 18 0.5
12 20 1.5
13 30 2.5
14 30 2
15 25 3.5
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1) Low frequency absorber: 0.2 (GHz) < f < 2 (GHz)
2) High frequency absorber: 2 (GHz) < f < 8 (GHz)
3) Wide band absorber: 0.2 (GHz) < f < 10 (GHz)

In all simulations, for MOPSO and Modified MOPSO we set c1

and c2 a random number in [1.49, 2], ω a random number in [0, 1],
mutrate = 0.5. For low frequency absorber both population size and
archive size were chosen 100. Maximum number of generation for
MOPSO was 1800 and for Modified MOPSO was 1200. The total
number of function evaluations in MOPSO was 180000. In Modified
MOPSO we set N, 200 that means every 200 iterations we run single
objective PSO for finding high absorption designs (top edge of Pareto
front). That is we call single objective PSO, 6 times during the
simulation. For this single objective PSO, both population size and
maximum number of generation were set 100. Thus total number of
function evaluations for Modified MOPSO was:

(6 × 100 × 100) + (100 × 1200) = 180000

In NSGA-II we set the population size 100 and maximum number
of iterations 900. Thus the total number of function evaluations was
also:

2 × 100 × 900 = 180000

Since the numbers of function evaluations are equal in these three
algorithms, we can compare performance of them in finding Pareto
front. The Pareto obtained after applying them is shown in Fig. 3.

As it is obvious, Pareto front found with Modified MOPSO
represents better solutions (on the base of dominance terminology)
and better diversity.

The second example is high frequency absorber. Population size
and archive size in MOPSO and Modified MOPSO were 2000 and 200
respectively. Maximum number of iterations for MOPSO and Modified
MOPSO was 1560 and 1300 respectively. In Modified MOPSO N is set
to 100. In single objective PSO the swarm size is 100 and maximum
number of iterations is 400. For NSGA-II the population size is 1000
and maximum number of function evaluation is 1560. Thus the total
number of function evaluations is 3120000 for all algorithms. The
obtained Pareto is shown in Fig. 4.

Figure 4 shows that both NSGA-II and MOPSO in some points
propose better solutions but diversity of Modified MOPSO is better
than other algorithms.

The third example is wide band absorber. Population size for
MOPSO, Modified MOPSO and NSGA-II is 1000. Maximum number
of iterations for MOPSO, Modified MOPSO and NSGA-II is 1010, 800
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Figure 3. Pareto fronts of low frequency absorber found with different
algorithms.

Figure 4. Pareto fronts of high frequency absorber found with
different algorithms.
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Figure 5. Pareto fronts of high frequency absorber found with
different algorithms.

Figure 6. The frequency response for the 2 designs highlighted in
Fig. 5.
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and 505 respectively. In Modified MOPSO we set N 350. Population
size and maximum number of iterations in single objective PSO is 100
and 700 respectively. Total number of function evaluations is 10100000
for all of them. The resulted Pareto is shown in Fig. 5.

In wide band absorber design, solutions obtained by Modified
MOPSO are better than other algorithms. In this case, such as other
examples Modified MOPSO shows better diversity. Since Pareto front
is resulted after only one run of a multi-objective algorithm and all
of these solutions may be stored in a database and used for future
problems with different criteria, the diversity is very important.

High diversity of solutions helps the engineer to have an optimum
selection among a wide and well distributed set. For example two
different designs of Pareto front are shown in Fig. 6. Design No. 2
is very absorbent but quiet thick. Design No. 1 is very thin but
representing lower absorption. Any of them could be proper in a
specific case. Parameters of these designs are listed in Tables 2–3.

Table 2. Structure of Design No. 1.

Design#1 Material number Thickness (mm)
Layer1 3 1.2509
Layer2 2 0.0882
Layer3 4 0.1847
Layer4 3 0.3277
Layer5 15 0.2357

Total thickness (mm) 2.09
Max. Reflectance (dB) −10

Table 3. Structure of Design No. 2.

Design#2 Material number Thickness (mm)
Layer1 3 1.5407
Layer2 5 1.9189
Layer3 4 1.943
Layer4 5 1.697
Layer5 13 0.4092

Total thickness (mm) 7.50
Max. Reflectance (dB) −20.7



Progress In Electromagnetics Research, PIER 79, 2008 365

Among these algorithms, NSGA-II because of inherently sorting
in it has the lowest speed. In comparison with NSGA-II, MOPSO
and Modified MOPSO show better diversity in Pareto front for all
cases. The main reason of this proper diversity is girding strategy. In
Modified MOPSO, applying single objective PSO, finds extreme points
of Pareto (high absorption points) and girding method fills the gaps
during the time. Thus this method in comparison with MOPSO shows
better diversity. In other words, Pareto fronts obtained by MOPSO
and NSGA-II are subsets of Pareto resulted from Modified MOPSO.

7. CONCLUSION

In this study, multilayered absorbers were optimized for two conflicting
objectives: thickness and reflection coefficient. Between optimization
methods, PSO based algorithms have been favored because of
simplicity and high convergence speed. Recently MOPSO was used
to solve Pareto front of multilayered absorbers. For achieving better
diversity, we applied some modifications to MOPSO. In Modified
MOPSO, in some of iterations a fast and efficient single objective PSO
was used to find some extreme points of Pareto that MOPSO could
not achieve them. Then in other iterations because of girding used in
this algorithm we reach to a high dispersion of solutions. This method
was compared with NSGA-II and MOPSO. Results show that in some
finite cases MOPSO and NSGA-II demonstrate better solutions but the
diversity of Modified MOPSO is always better and proposes a wider
set of solutions.
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