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Abstract—In this paper, a nondestructive technique for determining
the complex permittivity and permeability of magnetic sheet materials
using two flanged rectangular waveguides is presented. The
technique extends existing single probe methods by its ability
to simultaneously measure reflection and transmission coefficients
imperative for extracting both permittivity and permeability over all
frequencies. Using Love’s Equivalence Principle, a system of coupled
magnetic field integral equations (MFIEs) is formed. Evaluation
of one of the two resulting spectral domain integrals via complex
plane integration is discussed. The system, solved via the Method
of Moments (MoM), yields theoretical values for the reflection and
transmission coefficients. These values are compared to measured
values and the error minimized using nonlinear least squares to find
the complex permittivity and permeability of a material. Measurement
results for two magnetic materials are presented and compared to
traditional methods for the purpose of validating the new technique.
The technique’s sensitivity to uncertainties in material thickness and
waveguide alignment is also examined.

1. INTRODUCTION

Waveguide probes, whether coaxial, rectangular, or circular, have been
extensively researched. Existing applications of waveguide probes
include subsurface crack detection; electromagnetic characterization
of materials, especially liquids and biological tissue; and microwave
hyperthermia treatment [1–19]. Nearly all published waveguide probe
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research focuses on obtaining the reflection coefficient, using a single
probe, from an unknown material. While this arrangement is perfect
for nondestructively determining complex permittivity of an unknown
dielectric, it fails when one wants to fully characterize a magnetic
material. Several researchers have developed methods — two thickness
method, frequency varying method, and sample added method —
to overcome this shortfall; however, these techniques are not always
applicable [15–19]. A suitable alternative would be a system which
allows the measurement of reflection and transmission coefficients since
such measurements are independent over all wavelengths and are the
most efficient means of simultaneously determining permittivity and
permeability [20]. The focus of this paper is the development of such
a system.

In order to fully characterize a planar layer of material, theoretical
expressions for the reflection and transmission coefficients must be
found. Figure 1 shows the structure analyzed in this paper. Using
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Figure 1. Side (top) and top (bottom) views of the flanged waveguides
measurement geometry.
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Love’s Equivalence Principle, the waveguide apertures in Figure 1
can be replaced with equivalent magnetic currents emanating in a
parallel-plate environment [21, 22]. Making use of these currents and
the parallel-plate Green’s function, one can find an expression for the
magnetic field in the parallel-plate region. Enforcing the continuity
of tangential fields at the waveguide apertures produces a system of
coupled MFIEs, which when solved via the MoM [22], yields theoretical
values for the reflection and transmission coefficients. These theoretical
values can then be compared to measured data and the system
optimized via nonlinear least squares to yield complex permittivity
and permeability values.

In this paper, a thorough analysis of Figure 1 will be presented,
including the development of the system of coupled MFIEs and
spectral domain integration via complex plane analysis. Lastly,
measurement results of two magnetic materials comparing the flanged
waveguides technique to standard waveguide methods [23, 24] will be
shown. Included in these measurement results will be the technique’s
sensitivity to probe misalignment and sample thickness.

2. DERIVATION AND SOLUTION OF COUPLED
MAGNETIC FIELD INTEGRAL EQUATIONS

Material characterization requires one to solve forward and inverse
problems. The forward problem involves finding theoretical expressions
for the reflection and transmission coefficients; whereas, the inverse
problem involves finding the complex permittivity and permeability,
by some means, using the results of the forward problem. In very rare
instances closed-form expressions can be found that directly relate the
forward and inverse problems, i.e., relate complex permittivity and
permeability to reflection and transmission coefficients [23, 24]. In
most cases (including the one presented in this paper), the inverse
problem is solved using numerical techniques such as Newton’s method
or nonlinear least squares. The purpose of the next two sections will
be to solve the forward problem.

Consider the measurement geometry shown in Figure 1. In order
to find theoretical expressions for the reflection, Γ, and transmission,
T, coefficients, one must find expressions for the electric and magnetic
fields in the waveguide and parallel-plate regions. The transverse fields
in the waveguide regions take the form of transverse electric (TE) and
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transverse magnetic (TM) rectangular waveguide modes:
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when z > d [21]. In (1) and (2), ⇀
emn and

⇀

hmn are the transverse modal
distributions of the electric and magnetic field, respectively; they are
shown in the appendix. If the waveguides in Figure 1 are perfectly
aligned, only higher order modes with symmetric distributions about
the center of the waveguides (m = 1, 3, 5, . . . ; n = 0, 2, 4, . . . ) will be
generated. This is due to the symmetry of the TE10 incident field and
the structure. On the other hand, if the waveguides in Figure 1 are
misaligned, all higher order modes, with the exception of TE0n modes,
will be generated.

The transverse fields in the parallel-plate region of Figure 1 can be
found by replacing the waveguide apertures with equivalent magnetic
currents,

⇀

M1 and
⇀

M2 [21, 22]. Using the parallel-plate Green’s function
and the electric vector potential, the transverse magnetic field can be
found from the following expression
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k = ω
√
µε is the material’s complex-valued wavenumber, and ∇t is

the transverse gradient operator. In (4),
↔
G is the dyadic, parallel-plate
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Green’s function derived in [25, 26]:
↔
G = x̂Gtx̂ + ŷGtŷ + ẑGnẑ
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where Gt and Gn represent the transverse and normal components
of the Green’s function, respectively, and p =

√
ξ2 + η2 − k2 is the

spectral domain, z-directed wavenumber [4].
With expressions for the fields in the waveguide and parallel-plate

regions of Figure 1, a system of coupled MFIEs can be formed by
enforcing the continuity of transverse magnetic fields at the waveguide
apertures. Setting the transverse magnetic fields of (1) and (2) equal
to (3) at z = 0 and z = d, respectively, results in the desired coupled
MFIEs:
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(6)

where s1 and s2 have been introduced to represent the limits of
integration in (4).

Solving (6) for Γ and T can be accomplished via the MoM. The
first step in the MoM is to choose suitable basis functions to represent
the unknown currents.

⇀

M1 and
⇀

M2 in (6) are related to the transverse
electric fields at the waveguide apertures by the following expressions
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Since the transverse electric fields must be equal across each aperture
interface, it is logical to substitute the electric field expressions of (1)
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and (2) into (7) resulting in the following expressions for
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Substituting (8) into (6) results in a system of 2 equations and 2N
unknowns. To make the system well defined, testing functions must
be chosen (the last step in the MoM) and applied to (6). The choice of
testing functions is somewhat subjective; however, in this case, it makes
sense to test with

⇀

hmn to take advantage of the orthogonal properties
of the waveguide modes. Application of the testing function

⇀

hmn and
subsequent integration over the guide cross section results in a 2N by
2N matrix equation, Ax = b, where the matrix A is the impedance
matrix, x is a vector containing the unknown modal reflection and
transmission coefficients, and b is a vector containing the incident field
excitation. Inspection of A reveals the following form
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m̃ñ,10 · · · A21
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(9)

where the submatrix A11 represents a “self” term, i.e., the source and
observer are at z = 0. Likewise, A22 is also a “self” term — source
and observer are at z = d. The off-diagonal submatrices, A12 and A21,
are “coupling” terms. They describe how a source at z = d influences
the fields at z = 0, A12, and vice versa, A21. Submatrices A12 and
A21 are found to be equal as expected by reciprocity. It is also found
that A11 and A22 are equal, regardless of waveguide misalignment, as
anticipated by symmetry. The subscript of each submatrix element
describes how a certain waveguide mode couples into another. For
example, the m̃ñ,mn elements describe how the mnth source mode
couples into the m̃ñth field mode.

In the next section, it is shown how complex plane integration
can be utilized in evaluating the matrix elements in (9). By using the
spectral domain representation of the parallel-plate Green’s function,



Progress In Electromagnetics Research, PIER 79, 2008 373

closed-form solutions to all spatial integrals in (6) and an infinite series
representation of one of the spectral integrals in (5) are obtained
which greatly accelerate convergence and enhance physical insight.
For the sake of brevity, only the evaluation of the A12

m̃0,m0 elements
is demonstrated.

3. SPECTRAL DOMAIN INTEGRATION

In the previous section, the forward problem for the measurement
geometry in Figure 1 was introduced. Analysis ultimately led to a
system of coupled MFIEs for the modal reflection and transmission
coefficients. Applying the MoM to the system of MFIEs resulted in a
matrix equation, Ax = b, where A was the impedance matrix, x was
a vector containing the unknown modal reflection and transmission
coefficients, and b was a vector containing the incident field. This
section will complete the forward problem of Figure 1 by calculating
the A12

m̃0,m0 elements of the impedance matrix. This class of elements
provides an excellent example of the role waveguide misalignment plays
in the integration. The remaining elements of the impedance matrix
can be evaluated in an analogous manner.

The impedance matrix elements, A12
m̃0,m0, have the following form
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The spatial integrals in (11) can be evaluated in closed-form and are
shown in the appendix. Substituting the results of (11) into (10)
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produces the following expression
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Inspection of the η integrand in (12) yields a double pole at η = 0

and simple poles at η = ±
√

k2 − ξ2 − ("π/d)2 (" = 0, 1, 2, . . . ). The
double pole at η = 0 comes from a combination of the TEm0 basis
and TEm̃0 testing functions. If the y-directed waveguide misalignment
is zero (∆y = 0), this double pole becomes a simple pole since the
structure in Figure 1 becomes perfectly symmetric in y. The simple
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k2 − ξ2 − ("π/d)2 are a result of the Green’s function
and physically represent the natural modes of the parallel-plate region.
Because the η integrand is even in p =
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points, η = ±
√

k2 − ξ2, and associated branch cut contributions are
removable [4]. This result is intuitive since the infinite parallel-plate
structure in Figure 1 is closed and consequently non-radiating [4].
Expanding the product in the η integrand produces the following
integral
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To ensure convergence of (13), proper integration contours must be
chosen. Letting η = ηre + jηim, reveals that the magnitude and sign of
the y-directed waveguide misalignment (∆y) are extremely important.
For instance, if ∆y > b, then lower half plane (LHP) closure is required
to ensure (13) converges; however, if 0 < ∆y < b, then a combination
of LHP and upper half plane (UHP) closure is required. Since the
former represents an extreme misalignment case, certainly noticeable
to the unaided eye, it will not be investigated. The remainder of this
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section will deal with the latter case, 0 < ∆y < b, since it presents
a much more realistic misalignment scenario. Under the assumption
that 0 < ∆y < b, (13) should be split into the following two integrals
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Figure 2. Complex η-plane (branch cuts are removable).
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where the first integral in (14) requires UHP closure and the second
LHP closure. Figure 2 shows the complex η-plane complete with the
appropriate integration contours. Using Cauchy’s Integral Theorem
and Jordan’s Lemma,
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where C±0 are semi-circular contours around the double pole at η =
0 [27]. By utilizing Cauchy’s Integral Formula and the following residue
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formulas [27]
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Note that the parallel-plate mode poles η� become branch points
in the ξ-plane resulting in irremovable branch cut contributions [4]. It
is for this reason that the ξ integral is calculated numerically using
real-axis integration instead of Cauchy’s Integral Theorem. It is worth
noting that the integral can be simplified for numerical computation
by taking advantage of the evenness of the integrand. It can be easily
shown that when m̃ + 1 and m + 1 sum to an even number, (12)
simplifies to
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Similarly, when m̃+ 1 and m+ 1 sum to an odd number, (12) reduces
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Figure 3. 6′′ × 6′′ × 0.25′′ aluminum flanges attached to X-band
rectangular waveguides.

4. MEASUREMENT RESULTS

In this section, measurement results will be shown for the
nondestructive technique derived in the previous sections. The results
will be compared with those returned from traditional destructive
waveguide techniques [23, 24]. Figure 3 shows a picture of the
measurement apparatus. The flanges were constructed from aluminum
and measure approximately 6′′ × 6′′ × 0.25′′. They were attached
with screws to X-band rectangular waveguides. The apparatus
was calibrated using a thru-reflect-line (TRL) calibration [3]. For
this experiment, two lossy, magnetic materials (ECCOSORB r©
FGM-40 and FGM-125) were measured using an HP 8510C vector
network analyzer (VNA). The relative complex permittivity, εr, and
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permeability, µr, values for FGM-40 and FGM-125 were found by
solving the following system of equations,∣∣∣Sthy

11 (εr, µr) − Smeas
11

∣∣∣ ≤ δ

∣∣∣Sthy
12 (εr, µr) − Smeas

12
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21
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22 (εr, µr) − Smeas

22

∣∣∣ ≤ δ

Sthy
11 = Sthy

22 = Γ10, Sthy
12 = Sthy

21 = T10

, (20)

within some tolerance, δ, using nonlinear least squares. It should be
noted that while the development shown in the previous sections is
applicable to any material, the technique, in practice, should only be
used to extract the parameters of lossy materials. This consideration is
due to the finite truncation of the flanges in order to make the method
practical. Dominant mode propagation in the parallel-plate region of
Figure 1 is cylindrical in nature with propagation constant k, i.e.,∣∣∣⇀

E
∣∣∣ , ∣∣∣⇀

H
∣∣∣ ∼ ∣∣∣H(2)

0 (kρ)
∣∣∣ (21)

where H
(2)
0 is a zeroth-order Hankel function of the second kind. It is

possible to introduce measurement error from detecting waves reflected
from the edges of the flanges. Depending on the dynamic range of
the VNA used, the cross sectional dimensions of the flanges should
be large enough or the material lossy enough to ensure that waves
emanating from the waveguide apertures are sufficiently decayed as to
approximate infinite flanges. Figure 4 shows the two-way attenuation
of the materials measured in this experiment as well as that of acrylic.
The dynamic range of the HP 8510C is listed at 90 dB [28]. It is
clear from Figure 4 that 6′′ × 6′′ flanges are sufficient to characterize
both magnetic materials with negligible two-way reflection error. This,
however, is not the case for acrylic. In order to negate any possible
two-way reflection error for a low loss material like acrylic, one needs
flanges on the order of 200′′ × 200′′.

Complex permittivity and permeability results for FGM-40
are shown in Figure 5. In the figure, the flanged waveguides
technique, when 1, 5, and 10 modes are modeled, is compared to
standard waveguide extraction methods [23, 24]. The error bars
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Figure 4. Attenuation of fields propagating to and from the edges of
6′′ × 6′′ PEC flanges filled with FGM-125, FGM-40, and acrylic.

on the waveguide method traces show the effect of a ±0.002′′
material thickness uncertainty; whereas, the error bars on the
flanged waveguides technique traces show the combined effect of
a ±0.002′′ material thickness uncertainty and a ±0.01′′ waveguide
alignment uncertainty. Although both sources of error are combined
in the flanged waveguides technique traces, the material thickness
uncertainty drives the overall uncertainty. The technique is quite
resistant to uncertainty in waveguide alignment even to a large
degree. For instance, when accounting for 10 modes, a waveguide
alignment uncertainty of ±0.01′′ accounts for an average uncertainty
in permittivity and permeability of approximately ±0.0257. On the
other hand, a material thickness uncertainty of ±0.002′′ accounts for an
average uncertainty in permittivity and permeability of approximately
±0.6646, or 26 times greater than that of the waveguide alignment
uncertainty. Overall, the flanged waveguides technique does very well
when compared to results returned by traditional waveguide methods.
Since FGM-40 is a relatively thin material (≈ 0.040′′), the benefit of
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Figure 5. Complex permittivity and permeability results for FGM-
40 comparing the flanged waveguides technique to standard waveguide
methods. Real parts are positive and imaginary parts are negative.

including higher order modes is not readily apparent. The link between
sample thickness and higher order mode contribution will be discussed
later.

Figure 6 shows the complex permittivity and permeability results
for FGM-125. As in Figure 5, the flanged waveguides technique,
when 1, 5, and 10 modes are modeled, is compared to standard
waveguide extraction methods [23, 24]. The error bars represent the
exact same uncertainties as they did in Figure 5. As before, the flanged
waveguide technique does very well when compared to results returned
by traditional waveguide methods. Since FGM-125 (≈ 0.125′′) is
roughly three times thicker than FGM-40, the benefit of including
higher order modes is apparent.

The link between sample thickness and higher order mode
contribution, evident when one compares Figures 5 and 6, deserves
attention. Consider once again the structure in Figure 1. As the
sample thickness, d, goes to zero, the waveguide apertures move
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Figure 6. Complex permittivity and permeability results for FGM-
125 comparing the flanged waveguides technique to standard waveguide
methods. Real parts are positive and imaginary parts are negative.

closer and closer together. At d = 0, the apertures merge and the
structure behaves like a traditional rectangular waveguide supporting
the dominant TE10 mode only. Keeping this simple physical picture
in mind, it makes sense that the permittivity and permeability of
thicker materials would benefit more from the inclusion of higher order
modes than that of thinner materials. This is shown experimentally
in Figure 7. The figure shows the magnitudes of the first 10 modal
reflection coefficients at 10 GHz when the waveguides are misaligned.
While both FGM-40 and FGM-125 share a nearly equal reflected
TE10 mode, the magnitudes of most other higher order modes are
significantly greater for FGM-125 than for FGM-40. The most
significant higher order mode, as it pertains to permittivity and
permeability results, is the TE12/TM12 mode pair. The magnitude of
FGM-125’s TE12/TM12 mode pair is approximately three times that
of FGM-40’s. This is why there is a noticeable difference in FGM-125’s
permittivity and permeability results when 10 modes are modeled as
compared to the same FGM-40 traces.
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Figure 7. Magnitudes of the first 10 modal reflection coefficients for
FGM-40 and FGM-125 at 10 GHz when the waveguides are misaligned.
TE and TM modes of the same index are counted as one mode.

5. CONCLUSION

In this paper, a nondestructive technique for determining both complex
permittivity and permeability of magnetic sheet materials using two
flanged rectangular waveguides was presented. This paper began with
a theoretical analysis of the measurement geometry in Figure 1. It
was shown that replacing the waveguide apertures with equivalent
magnetic currents, in accordance with Love’s Equivalence Principle,
resulted in a system of coupled MFIEs. This system was then
transformed into a matrix equation using the MoM. It was also shown
that the spatial integrals of the matrix elements can be evaluated
in closed-form and one of the spectral integrals can be represented
as an infinite series using complex plane integration. This resulting
analysis accelerated convergence and led to enhanced physical insight.
Lastly, this paper concluded with experimental results of two magnetic
materials comparing the technique to traditional destructive waveguide



Progress In Electromagnetics Research, PIER 79, 2008 383

methods [23, 24].
The main contribution of the flanged waveguides technique is

that it allows for the simultaneous measurement of reflection and
transmission coefficients. Since reflection and transmission coefficients
are independent over all wavelengths and are the most efficient means
of determining both permittivity and permeability of a material,
the ability to simultaneously measure these parameters is a major
enhancement over existing single probe methods [1–19]. Another
beneficial aspect of the flanged waveguides technique is in sample
preparation. Compared with traditional waveguide methods, which
require samples to be machined, fully-fill the waveguide cross section,
and be normal to the guiding axis, the flanged waveguides technique
only requires that samples be lossy enough, or the flanges large enough,
to ensure negligible two-way reflection error. The flanged waveguides
technique’s most promising application would be in the RF materials
industry. Its ability to nondestructively measure permittivity and
permeability of large sheets of magnetic material would be invaluable
as a quality assurance tool.

APPENDIX A.
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when z > d. In (A1) and (A2),

kx = mπ
a , ky = nπ

b , γmn =
√

k2
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y − k2
0

ZTE
mn = jωµ0

γmn
, ZTM

mn = γmn

jωε0

. (A3)

The integrals fm̃0(ξ, η) and gm0 (ξ, η) evaluate to
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