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Abstract—In this work, we present a marching-on in degree finite
difference method (MOD-FDM) to solve the time domain Helmholtz
wave equation. This formulation includes electric and magnetic current
densities that are expressed in terms of the incident field for scattering
problems for an open region to implement a plane wave excitation.
The unknown time domain functional variations for the electric field
are approximated by an orthogonal basis function set that is derived
using the Laguerre polynomials. These temporal basis functions are
also used to expand current densities. With the representation of the
derivatives of the time domain variable in an analytic form, all the time
derivatives of the field and current density can be handled analytically.
By applying a temporal testing procedure, we get a matrix equation
that is solved in a marching-on in degree technique as the degree of
the temporal basis functions is increased. Numerical results computed
using the proposed formulation are presented and compared with the
solutions of the conventional time domain finite difference method
(TD-FDM) and analytic solutions.

1. INTRODUCTION

The finite difference method in the time domain proposed by Yee has
been extensively employed to analyze transient scattered fields from
conducting and dielectric materials [1–7]. This technique is often called
the finite-difference time-domain (FDTD) method [2, 3]. Recently, a
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marching-on in degree finite difference method (MOD-FDM) with the
entire domain temporal orthogonal basis using the associated Laguerre
functions was proposed to obtain an unconditionally stable solution [8].
This is in contrast to the conventional FDTD analysis. The MOD-
FDM methodology has been successfully implemented in time domain
integral equations [9–11], and time domain finite element method [12].
Based on this scheme [8], various works have been published [13–20].
However all the previous works were developed to solve the first-order
Maxwell’s curl equations.

In this paper, we present a new method to solve the second-order
time domain Helmholtz wave equation in a lossy media with the MOD-
FDM to obtain transient electromagnetic scattering responses [21, 22].
The formulation uses the volume electric and magnetic current
densities for scattering problems in an open region to implement a
plane wave excitation [23]. These current densities are expressed in
term of the incident field. The time domain unknown coefficient of
the electric field is approximated by a set of orthogonal basis functions
that are derived from the Laguerre polynomials [24]. The Laguerre
polynomials are defined only over the temporal interval from zero to
infinity, and hence, are considered to be more suited for the transient
problems, as they naturally enforce causality. The temporal basis
functions used in this work are completely convergent to zero as
time increases. Therefore this basis may never cause any late time
instabilities in the solution as is often the case in solving time domain
problems. So, the transient response spanned by these basis functions
is also convergent to zero as time progresses. These temporal basis
functions are used to expand the various current densities. Since all
these temporal basis functions have analytical derivatives, in the time
domain formulation, all the time derivatives of the fields and current
densities can be handled analytically. Use of this temporal expansion
function characterizing the time variable also decouples the space-time
continuum in an analytic fashion. By applying a temporal testing
procedure, we get a matrix equation that is solved using a marching-
on in degree as the degree of temporal basis functions is increased.

This paper is organized as follows. In the next section we present
the conventional finite difference scheme using the Yee algorithm for
the Helmholtz wave equation briefly, and then derive the MOD-FDM
formulation with a plane wave incidence for scattering problems in
an open region. In Section 3, numerical results computed using the
proposed formulation are presented and compared with the solutions
of the conventional time domain finite difference methods (TD-FDM)
and compared with analytic solutions. Finally, in Section 4, we present
some conclusions drawn from this work.
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2. FORMULATION

In the time domain, the general Maxwell’s equations in a lossy
dielectric media can be written as

∇× H(r, t) = ε (r)
∂E(r, t)

∂t
+ σ (r)E(r, t) + J(r, t) (1)

∇× E(r, t) = −µ (r)
∂H(r, t)

∂t
− ρ (r)H(r, t) − M(r, t) (2)

where ε, µ, σ and ρ are the permittivity, the permeability, the electric
conductivity, and magnetic conductivity, respectively [2, 3]. These
parameters in the first place are considered independent of time. E is
the electric field and H is the magnetic field. J and M are the volume
electric and magnetic current densities, respectively, that are included
to implement a plane wave excitation. From the two curl Equations (1)
and (2), we obtain a vector Helmholtz wave equation for the electric
field in a divergence free region without any net charge as [21, 22]

∇2E(r, t) − µ(r)ε(r)
∂2E(r, t)

∂t2
− [µ(r)σ(r) + ε(r)ρ(r)]

∂E(r, t)
∂t

−σ(r)ρ(r)E(r, t) = µ(r)
∂J(r, t)

∂t
+ ρ(r)J(r, t) + ∇× M(r, t). (3)

For simplicity, we consider the one-dimensional problem with the
field component Ey propagating along the x-direction. Then the wave
Equation (3) becomes

∂2Ey(x, t)
∂x2

− µ(x)ε(x)
∂2Ey(x, t)

∂t2
− [µ(x)σ(x) + ε(x)ρ(x)]

∂Ey(x, t)
∂t

−σ(x)ρ(x)Ey(x, t) = µ(x)
∂Jy(x, t)

∂t
+ ρ(x)Jy(x, t) −

∂Mz(x, t)
∂x

. (4)

Following Yee’s notation and discretizing the space and the time with
the cell size ∆x and time step ∆t, respectively [1], we can express (4)
at x = xi = i∆x and t = tn = n∆t as

∂2

∂x2
Ey|ni − µiεi

∂2

∂t2
Ey|ni − (µiσi + εiρi)

∂

∂t
Ey|ni − σiρi Ey|ni

= µi
∂

∂t
Jy|ni + ρi Jy|ni − ∂

∂x
Mz|ni (5)

where Ey|ni = Ey (xi, tn). Applying the second-order central finite
difference approximation to (5) yields

Ey|ni+1 − 2 Ey|ni + Ey|ni−1

(∆x)2
− µiεi

Ey|n+1
i − 2 Ey|ni + Ey|n−1

i

(∆t)2
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− (µiσi + εiρi)
Ey|n+1

i − Ey|n−1
i

2∆t
− σiρi Ey|ni

= µi
Jy|n+1/2

i − Jy|n−1/2
i

∆t
+ ρi Jy|ni −

Mz|ni+1/2 − Mz|ni−1/2

∆x
. (6)

Solving for Ey|n+1
i and rearranging terms, we get an alternate equation

with changing n + 1 to n as

Ey|ni =
2 (∆t)2

2µiεi + ∆t (µiσi + εiρi)

[
1

(∆x)2
Ey|n−1

i−1

+

(
µiεi

(∆t)2
− 2

(∆x)2
− σiρi

)
Ey|n−1

i +
1

(∆x)2
Ey|n−1

i+1

−2µiεi−∆t (µiσi+εiρi)
2 (∆t)2

Ey|n−2
i − µi

∆t

(
Jy|n−1/2

i −Jy|n−3/2
i

)

−ρi Jy|n−1
i +

1
∆x

(
Mz|n−1

i+1/2 − Mz|n−1
i−1/2

)]
. (7)

This is generally the equation used in a TD-FDM to obtain the electric
field.

Now we derive a MOD-FDM formulation. To carry out the time
derivatives analytically, we expand all the temporal quantities in terms
of the associate Laguerre polynomials given by

φp(st) = e−st/2Lp(st) (8)

where s is a time scale parameter which takes care of the units along
the time axis [25], and Lp is the Laguerre polynomial with degree p [24].
This temporal basis functions are orthogonal as∫ ∞

0
φp(st)φq(st)d(st) = δpq (9)

where δpq is Kronecker delta with value 1 when p = q and 0 otherwise.
A continuous function F (x, t) defined for any value of time t ≥ 0

can be expanded by the associate Laguerre basis functions as

F (x, t) =
∞∑

p=0

Fp(x)φp(st) (10)

where Fp is the coefficient which can be obtained from

Fp(x) =
∫ ∞

0
F (x, t)φp(st)d(st). (11)
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The first and second derivatives of the function F (x, t) can be written
as [9]

d

dt
F (x, t) = s

∞∑
p=0


1

2
Fp(x) +

p−1∑
m=0

Fm(x)


φp(st) (12)

d2

dt2
F (x, t) = s2

∞∑
p=0


1

4
Fp(x) +

p−1∑
m=0

(p−m)Fm(x)


φp(st). (13)

By expanding Ey, Jy, and Mz with (10), (12), and (13), and putting
them in (4) we have

∂2

∂x2

∞∑
p=0

Ep
y(x)φp(st)

−µ(x)ε(x)s2
∞∑

p=0


1

4
Ep

y(x) +
p−1∑
m=0

(p−m)Em
y (x)


φp(st)

− [µ(x)σ(x) + ε(x)ρ(x)] s
∞∑

p=0


1

2
Ep

y(x) +
p−1∑
m=0

Em
y (x)


φp(st)

−σ(x)ρ(x)
∞∑

p=0

Ep
y(x)φp(st) = µ(x)s

∞∑
p=0


1

2
Jp

y (x)+
p−1∑
m=0

Jm
y (x)


φp(st)

+ρ(x)
∞∑

p=0

Jp
y (x)φp(st) −

∂

∂x

∞∑
p=0

Mp
z (x)φp(st) (14)

where Ep
y , Jp

y and, Mp
z are the coefficients of the associate Laguerre

polynomials basis for Ey, Jy, and Mz, respectively.
To eliminate the variable t and the infinite summation in (14), we

test this equation in a Galerkin’s methodology with φq(st). Due to the
orthogonal property in (9) we have

d2

dx2
Eq

y(x) − µ(x)ε(x)s2


1

4
Eq

y(x) +
q−1∑
m=0

(q −m)Em
y (x)




− [µ(x)σ(x) + ε(x)ρ(x)] s


1

2
Eq

y(x) +
q−1∑
m=0

Em
y (x)


 − σ(x)ρ(x)Eq

y(x)

= µ(x)s


1

2
Jq

y (x) +
q−1∑
m=0

Jm
y (x)


 + ρ(x)Jq

y (x) − d

dx
M q

z (x). (15)
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Using the finite difference in space to approximate the spatial
derivatives is similar to the traditional FDTD method. By using
second-order spatial difference in (15) at x = i∆x, we have

Ey|qi+1 − 2 Ey|qi + Ey|qi−1

(∆x)2
− µiεis

2


1

4
Ey|qi +

q−1∑
m=0

(q −m) Ey|mi




− (µiσi + εiρi) s


1

2
Ey|qi +

q−1∑
m=0

Ey|mi


 − σiρi Ey|qi

= µis


1

2
Jy|qi +

q−1∑
m=0

Jy|mi


 + ρi Jy|qi −

Mz|qi+1/2 − Mz|qi−1/2

∆x
(16)

where Ey|qi = Eq
y (xi),

Jy|qi =
∫ ∞

0
Jy (xi, t)φq(st)d(st) (17)

Mz|qi±1/2 =
∫ ∞

0
Mz

(
xi±1/2, t

)
φq(st)d(st). (18)

Rewriting (16) in a simple form, we have

Ey|qi−1 + αii Ey|qi + Ey|qi+1 = βq
i (19)

where

αii = −
[
2 + µiεi

(
s∆x

2

)2

+
(µiσi + εiρi) s(∆x)2

2
+ σiρi(∆x)2

]
(20)

βq
i = µiεi (s∆x)2

q−1∑
m=0

(q −m) Ey|mi + (µiσi + εiρi) s(∆x)2
q−1∑
m=0

Ey|mi

+(∆x)2

(µis

2
+ ρi

)
Jy|qi + µis

q−1∑
m=0

Jy|mi


−∆x

(
Mz|qi+1/2−Mz|qi−1/2

)
.(21)

We can get a matrix equation form from (19)–(21) with a proper
boundary condition as

[αij ]
[
Ey|qj

]
= [βq

i ] , q = 0, 1, 2 . . . . (22)

Here we use the dispersion boundary condition derived with the
associate Laguerre basis functions in [8]. By solving this matrix
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Equation (22) recursively in a MOD manner and using (10), the electric
field is expressed as

Ey (xi, tn) =
M−1∑
p=0

Ey|pi φp (stn) (23)

where M is a finite number of temporal basis functions. Using the plane
wave injector scheme, the corresponding electric and magnetic current
densities are expressed in term of the incident electric field [23]. When
a plane wave with y-polarization is incident to the x-direction, the
current densities in (17) and (18) are given by [20]

Jy(x, t) = −Einc(x, t)
η∆x

(24)

Mz(x, t) = −Einc(x, t)
∆x

(25)

where η is the wave impedance of free space.
We can also construct a Helmholtz wave equation for the magnetic

field using the two familiar curl Equations (1) and (2), and derive the
matrix equation corresponding to (22) in a similar way. In this case, the
matrix [αij ] is same as in (22), but [βq

i ] is slightly different due to the
duality. Therefore we can obtain the coefficients from the magnetic
field without an additional matrix inversion in this procedure when
computing the electric field coefficients.

3. NUMERICAL EXAMPLES

The geometry to be analyzed here is a one-dimensional dielectric slab
backed by a perfectly electric conductor (PEC). This slab has a relative
permittivity 4, σ = 0.05 S/m, and is 9 cm thick. The permeability is
that of free space and the magnetic loss is assumed to be zero. The
problem space consists of 310 cells with ∆x = 1.5 mm and 250–310 cells
for the slab. The PEC boundary condition is applied at the boundary
x = 46.5 cm. The incident field in (24) and (25) used in this work is
the Gaussian pulse plane wave as defined in [26]

Einc(x, t) = E0
4

T
√
π

e−γ2
, γ =

4
T

(ct− ct0 − x + xs) (26)

where T is the pulse width, c is the velocity of propagation in free
space, t0 is a time delay which represents the time at which the pulse
peak at the origin, and xs is the source position of the plane wave
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incidence. In the computation of the TD-FDM using (7), we set the
time step size ∆t = ∆x/2c. In the numerical computation, the pulse
width is T/c = 400 ps, and xs/∆x = 50. We set the number of
Laguerre basis functions as M = 500 and the time scale parameter

(a)

(b)

Figure 1. Electric field along x-position with the incidence of
Gaussian pulse plane wave. (a) 400 time steps, (b) 800 time steps.



Progress In Electromagnetics Research, PIER 79, 2008 347

is set to s = 1.2×1010. We compare the electric field computed by the
proposed MOD-FDM with the solution obtained using the TD-FDM
and from the analytic solution. The analytic solution is obtained by
the inverse discrete Fourier transform of the frequency domain solution
as described in [27].

For the first example, Fig. 1 shows the electric field along the x-
direction for an incident Gaussian pulse at n = 400 and 800 time steps
of the TD-FDM computation. We set E0 = T

√
π/4. The agreement

between the conventional TD-FDM and the proposed MOD-FDM is
very good. Fig. 2 shows the transient electric field at x = 30 cm
computed by the MOD-FDM and TD-FDM, and inverse Fourier
transform of the analytic solution. All the three solutions agree well,
as is evident from the figure.

Figure 2. Transient electric field at x = 30 cm versus time with the
incidence of Gaussian pulse plane wave.

In the next example, Fig. 3 shows the electric field as a function
of the x-coordinates at temporal locations of n = 400 and 800 time
steps when the derivative of Gaussian pulse with E0 = T 2√π/(32c) is
incident on the slab. Agreement between the solutions obtained using
the proposed MOD-FDM and the conventional TD-FDM is excellent.
Fig. 4 shows the transient electric field at x = 30 cm for an incident
field proportional to the derivative form of the Gaussian pulse. We can
see that the agreement between the solutions obtained by the TD-FDM
and MOD-FDM, and using the analytic solution is very good.
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(a)

(b)

Figure 3. Electric field along x-position with the incidence of the
derivative of Gaussian pulse plane wave. (a) 400 time steps, (b) 800
time steps.
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Figure 4. Transient electric field at x = 30 cm versus time with the
incidence of the derivative of Gaussian pulse plane wave.

4. CONCLUSION

We have proposed a marching-on in degree finite difference method
to solve the time domain Helmholtz wave equation. This formulation
uses the electric and the magnetic current densities to excite a plane
wave source in an open region. The time domain unknown coefficients
for the electric field are approximated by a set of orthogonal basis
functions that are derived from the Laguerre polynomials. With the
representation of the derivatives of the time domain coefficients in
an analytic form, all the time derivatives of the field and current
density can be handled analytically. By applying a temporal testing
procedure, we get a matrix equation that is solved using a marching-
on in degree technique as the degree of the temporal basis functions is
increased. The agreement between the solutions obtained using the
proposed method and the traditional time domain finite difference
method, and the inverse Fourier transform of the frequency domain
analytic solution is excellent as a function of both the spatial and the
temporal variables. The proposed formulation can be extended to two-
and three-dimensional scattering problems directly.
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