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Abstract—1In this paper, an efficient method to obtain the elements
current distribution for a non uniformly spaced array is presented.
For a given far field pattern, after sampling the array factor the
proposed method uses the least mean square error technique to solve
the system of equations rather than solving the previously published
Legendre function method. It’s shown that the average side lob level
obtained by this proposed method is some 5dB lower in comparison
with the existing Legendre function method of solution. If the Legendre
function method published in the literature is to be used to solve for
the current distribution, in the final part of this paper, a criteria on
how to choose suitable vectors that would result in a 3dB lower side
lobe level performance will be provided.

1. INTRODUCTION

Over the last decade non uniformly spaced arrays have received a lot
of attention. This is mainly due to the fact that the degree of freedom
that such arrays provide results in reduction in array size, weight and
number of elements.

The original work done on non uniformly spaced array pattern
synthesis goes back to Unz [1]. In that paper the current distribution
for the array geometry was obtained with matrix formulation.
Following that, Harrington, [2], worked on displacement of elements
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from the uniformly spaced case and finds the appropriate displacement
by minimizing the SLL. In this way the side lobe level reduces to
about 2/N times the intensity of the main lobe (where N is the total
number of elements) without increasing the main lobe beam widths.
Ishimaro [3], used the Poisson sum expansion to design an unequally
spaced uniform amplitude array with any desired SLL along with
grating lobe suppression.

Besides the analytical methods, several techniques based on
optimization and iterative processes for minimizing SLL have also
been reported. In [4] the density of elements located within a given
array length is made proportional to the amplitude distribution of the
conventional equally spaced array. [5] used statistical thinning of arrays
with quantized element weights to reduce side lobe level considerably
in large circular arrays. Another algorithm that has been used recently
is the Genetic Algorithm for optimizing the array spacing [6,7]. An
optimization method based on real-coded genetic algorithm (GA) with
elitist strategy is represented in [7]. This method is used for thinning
a large linear array of uniformly excited isotropic antennas to yield the
maximum relative sidelobe level (SLL) equal to or below a fixed level
and the percentage of thinning is always kept equal to or above a fixed
value.

An analytic method that enables a designer to determine for
a given pattern the appropriate element spacing and a given array
current distribution is by means of a Legendre transformation of the
array factor, as given by Kumar [8]. [9] presents a new pattern
synthesis algorithm for arbitrary arrays based on adaptive array theory.
With this algorithm, the designer can efficiently control both main lobe
shaping and side lobe levels. In comparison to Olen and Compton’s
method [10], the new algorithm provides a great improvement in main
lobe shaping control.

An efficient method based on bees algorithm (BA) for the pattern
synthesis of linear antenna arrays with the prescribed nulls is presented
in [11]. Nulling of the pattern is achieved by controlling only the
amplitude of each array element and numerical examples of Chebyshev
pattern with the single, multiple and broad nulls imposed at the
directions of interference are given to show the accuracy and flexibility
of the BA in this paper.

Another method for the pattern synthesis of the linear antenna
arrays with the prescribed null and multi-lobe beam-forming is based
on controlling of phase. In this method multi-lobe pattern and adaptive
nulling of the pattern is achieved by controlling only the phase of
each array element. The method is based on the Sequential Quadratic
Programming (SQP) algorithm and the linear antenna array synthesis
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was modeled as a multi-objective optimization problem [12]. In [13],
the synthesis of linear arrays that produce radiation patterns with
arbitrary envelopes is considered. A newly developed point-matching
method is used to obtain a set of excitation coefficients for a linear
array with nonisotropic elements and with nonuniform spacing between
elements, that generates a desired radiation pattern.

In this paper, based on the work of Kumar, for non uniformly
spaced arrays with 2N + 1 elements, an analytic method in matrix
form to obtain the elements current distribution is presented. For
a given pattern, after sampling the array factor at M points the
proposed method uses the Least Mean Square error technique to solve
the system of M equations in N variables. The technique results in
a better pattern synthesis with lower side lobe level performance in
comparison with the existing Legendre function method of solution.
Also, consideration to choose suitable vectors for the Legendre function
method of solution will be provided.

2. THEORETICAL BACKGROUND
2.1. The LMS Method

The schematic of non uniform linear 2N + 1 element array is shown
in Fig. 1. The goal is to obtain the current distribution from desired
pattern for the prescribed geometry.

Figure 1. Geometry of non uniformly spaced linear symmetric array.

The theory behind the proposed method is based on the work of
Kumar [8] that uses Legendre functions. Initially, the Kumar method
modified in matrix form will be presented and show that with solving
the system of M equations in N variables by pseudo inverse method
leads to a less error and better SLL than that of [8].

The array pattern related to Fig. 1 with uniform quantization is

N
E(um):ZIncos(mﬁn), m=0,..., M —1 (1)
n=0
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where
u=cos(d), 0<O6<m

This pattern is equal to the desired pattern at quantized points, i.e.,

E(tm) = Eq(um) (2)
which in matrix form is represented as
E(uo) 1 1 1 I
E(uy) cos 31 cos 39 cos By I
E(up—1) cos(M — 1)/ cos(M —1)Bn]| |INn

Kumar [8] obtains the current distribution from the element spacing
by transforming the two sides of Equation (1) to Legendre function via

M-1
F(ap) = Z 5mEd(um)Pm_1/2(COS ap)
m=0
p=20,12...,N (4)

It is obvious that this is equivalent to the product of the following
matrix with that of (3)

P,1/2(cosa1) P171/2(COSOJ1) - PM,l/Q(cosal)
P_l/Q(COS 012)

P_y5(cos ay) . .« Pyqja(cosan)

using the limiting relation

F(B.0) = 3 emPruyjalcos @) cos(mB)
m=0
_ { [2/(cosﬁ—cosa)]1/2 0<B<a (6)
0 a< <

And choosing the « vector inside of the 3 vector we can get the I s
from the following Equation (8)

B space (1 B2 ... BN (7)

«a space @ @ ... Qp
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F(an) S, B1) 0 0 . 0 L
F(az) flag, 1) flaz,B2) O . 0 I
- . 0 (8)
0
F(ay) flan,B1) flan,B2) . . flan,Bn)] [N

With careful view of expression (3) it is realized that finding of
I s is same as solving the system with M equations in N variables.
Such a system is M super planes in R™ space that do not necessarily
intersect at the same point, i.e., finding an N dimension vector that
has minimum distance from maximum number of planes, as such the
least error can be obtained.

Rewriting (3) as

[E] = [A][1] 9)

[R] = [E] = [A][]] (10)

where A is a non square “tall” matrix, the unknown I is a “short”
vector, and F is a “tall” vector as stated bellow

E(ul):lel—i-IgXl—i-...—i-INXl
E(ug) =11 x cos 31 + Ia x cos By + ...+ In X cos By
: (11)

E(uy) =11 x cos(M — 1)ﬁ1.+ oo+ Iy xcos(M —1)8n

which denotes an over determined system of M equations because
M > N. Also recall that the /s and E(u;)'s are given and that
the Is are the unknowns. By forcing N of the equations to be exactly
satisfied we may cause the others to exhibit large errors. Therefore, we
would like to choose unknown values that allow all of the equations to
be approximately satisfied instead of forcing Nof them to be exactly
satisfied. The least-square problem, Equation (10) becomes

min [|[E — All|2 (12)

where ||.||2 represents the norm of the error vector. Representing each
column of the [A] matrix as {a1,az,as,...,axy} we wish to combine
these vectors with those of [In] linearly in order to obtain the best
possible approximation to a given vector E. In that case, a matrix
A with columns given by the a; and a vector] whose entries are
the unknown coefficients I; can be defined. There is a geometric
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interpretation to the general least square problem. We are seeking
an element of the subspaceSspanned by the a; which is closest to F.
The solution is the projection of E on to S. Therefore, the error
vector should be orthogonal toSwhich is equivalent to being orthogonal
to each of the a;. Thus, the optimal solution vector/must satisfy
a;.(AI—E) = 0 for all i or equivalently, in matrix form, AT (AI—E) = 0
or

ATAI = ATE (13)

Note that the independence of the columns of A implies the invertibility
of AT A. Now, we have
I=(ATA)ATE (
ATAI = ATE (
I = Peseudo Inverse(A)E

—~
— =
S U
= Z

2.2. Consideration for Choosing a Vector in Legendre
Method for Better SLL

In previous section, Kumar method [8] of Legendre functions was
presented in matrix form. In [8] a constant value for a vector has
been used and no criteria in that paper was given on how to choose
this vector. In this section, we present how to choose the a vector for
a better SLL. As given in (13) if we multiply both sides of the matrix
Equation (3) with the transpose of matrix A and solve the resulting
equation with the pseudo inverse method results in the least error and
thus lower SLL.

Therefore in Equation (2) we can choose « values such that the
matrix P becomes close to the transpose of matrix A, i.e.,

[P] ~ [A]" (17)

P _1/2(cos ayp) = cos(m — 1), (18)
If we look carefully at the limiting relation of (3) and from formula
bellow for the f function,

Qp

1 cos(m0)

m.J y/cosf — cosay,
0

P _12(cosap) = de (19)
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realize that the half integer m order Legendre functions are the m/th
harmonic polynomials in cosine Fourier series expansion of function f.

The schematic of the f function is given in Fig. 2. As can be seen
from this figure, for 3s values near the o, limit, the f function is very
much like a Dirac delta function.

12

f(ap: fg ]

Figure 2. Schematic of the f function.

The m/th harmonic of Dirac delta function in cosine expansion is
as follow:

(P —a)= Z cos((m — 1)a) x cos((m —1)7) (20)
m=0

Therefore by choosing the 3, very close to «,, we can get
ap = S
Pr_1/2(cosap) = m’th harmonic of f function ~
m/th harmonic of ¢ function & cos((m — 1)ay)
— [P] =~ [A]" (21)

The following figures show the peak side lobe level for several « vector,
and as it seen for the 8 vector near « vector, the peak side lobe level
is much better.

3. SIMULATED RESULTS

Based on the above theory, the LMS method, the array of Fig. 1 with
N =9 (i.e., 19 elements) and with N = 19 (39 elements) have been
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Figure 3. Desired pattern and the simulated patterns for LMS and
Kumar methods N = 9. Desired pattern (green), simulated patterns:
Legendre method (black), LMS method (blue), (a) narrow pattern and
(b) wide pattern.

simulated and results are shown in Figs. 3 and 4, respectively. In
each of these figures, the part (a) shows the relevant results for a
narrow desired pattern while the part (b) shows the results for a wide
desired pattern. Also shown on these figures are the results obtained
by the authors based on the Kumar [8] method. It is obvious from
these figures that the proposed method gives a better SLL, on average
better than 5 dB. If a wider or narrower desired pattern is given it can
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be shown that the simulated pattern that can be obtained from the
LMS method would be closer to the desired pattern in comparison to
the Legendre method of Kumar [8].
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Figure 4. Desired pattern and the simulated patterns for LMS and
Kumar’s method N = 19. Desired pattern (green), simulated patterns:
Legendre method (black), LMS method (blue), (a) narrow pattern and
(b) wide pattern.

As stated in Section 2.2 above, if the Legendre function method
published in [8] is to be used to solve for the current distribution, a set
of new « vectors as given by Equation (21) will result in better SLL.
Fig. 5 shows the peak side lobe level for several « vectors. It can be
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Figure 5. Desired and Simulated patterns for 4 different alphas in
legendre method.

seen from this figure that the closer 3 vector becomes to the a vector,
the peak side lobe level reaches that of the desired pattern.

4. CONCLUSION

A simple and more accurate method of determining the current
distribution in an unequally spaced linear array is presented in this
paper. The proposed method uses the least mean square error
technique to solve the system of equations resulting in a better pattern
synthesis and result in lower side lobe level about 5dB in comparison
with the existing Legendre function method of solution. Also, if the
Legendre function method is used to solve for the current distribution,
a criteria on how to choose suitable vectors has been provided that
results in a better SLL, about 3dB.
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