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Abstract—In order to overcome drawbacks of standard particle
swarm optimization (PSO) algorithm, such as prematurity and easily
trapping in local optimum, a modified PSO algorithm which adopts a
global best perturbation, is used to optimize the pattern of cylindrical
conformal antenna array for sidelobe level (SLL) suppression and null
control in certain directions. The convergence speed and accuracy of
the algorithm are improved. Compared with genetic algorithm and
simulated annealing, The PSO algorithm is much easier to understand
and implement. Firstlypattern formula of conformal array is provided,
then, the standard and modified PSO algorithm are introduced, at last,
application examples and simulation results are presented. The results
show that the Modified PSO algorithm is an effective and efficient
method to solve multi-dimension and nonlinear problem.

1. INTRODUCTION

Conformal antenna arrays with low profile have widest application
prospect for low RCS and small effects on aerodynamic performance
of the carrier. Because of its curved structure and conformal to
the carrier, the synthesis problem of the type of antenna array
is multidimensional and nonlinear problem, which is more difficult
than the synthesis of linear and planar array. There are a wide
variety of techniques that have been developed for the synthesis of
linear and planar arrays [1–15]. The more complicated problem
of synthesizing radiation patterns of conformal antennas has also
been considered. The least-squares method is used to synthesize
low sidelobe beams from conformal array consisting of few elements
and large radius of curvature [16]. An iterative full polarimetric



416 Lu, Zhang, and Hou

least-square synthesis technique was presented for the optimization
of the element excitations of an active conformal array antenna
[17]. [18] uses an aperture projection method with mutual coupling
compensation to synthesis low sidelobe pattern of the conformal
array. [19] uses the alternating projection method for synthesizing
a low sidelobe pattern for a conformal array of 116 microstrip patch
elements wrapped around a representative aircraft wing profile. An
efficient algorithm based on adaptive array method is used to synthesis
arbitrary array pattern [20, 21]. In addition, a simulated annealing
technique previously developed for circular arc arrays is presented for
the synthesis for three-dimensional conformal arrays in [22]. Based
on the computationally efficient domain decomposition /reciprocity
procedure, Allard et al. apply genetic algorithm to pattern synthesis
of conformal array [23].

In the paper, a modified PSO algorithm is used to optimize the
pattern of cylindrical conformal antenna array. That is to say, in the
case of the known geometry distribution of array element, excitation
amplitude of every array element is optimized to realize desired average
SLL in certain regions and null control in the prescribed direction.

2. PATTERN FORMULA OF CONFORMAL ARRAY

For conformal antenna array with arbitrary geometry distribution, its
far field pattern formula may be expressed as

F (θ, φ) =
N∑

n=1

Ane
jβnEn(θn, φn)eikRn·er (1)

where En(θn, φn), An, βn and Rn are the element pattern, the
excitation amplitude, the excitation phase and position vector of nth
element respectively.

Rn and er are expressed as follow

Rn = 	exx(n) + 	eyy(n) + 	ezz(n) (2)
er = 	ex sin θ cosφ+ 	ey sin θ sinφ+ 	ez cos θ (3)

It is assumed that (θ0, φ0) is the desired steering angle, So then,

βn = −kRn · er0 (4)

where
er0 = 	ex sin θ0 cosφ0 + 	ey sin θ0 sinφ0 + 	ez cos θ0 (5)
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According to above mentioned formula, formula (1) may be
written in the form

F (θ, φ; θ0, φ0) =
N∑

n=1

AnEn(θn, φn)eikRn·(er−er0) (6)

The element pattern is expressed as in the spherical coordinate

E(θ, φ) = 	eθEθ(θ, φ) + 	eφEφ(θ, φ) (7)

where Eθ and Eφ are θ and φ components respectively.
Although all of the elements have identical radiation patterns,

they are in fact not identical in the same coordinate for the influence of
the shape of the platform. A more general superposition computation
must be performed in terms of formula (6). Therefore, to compute
the whole array pattern, it is first necessary to transform individual
element pattern in respective local coordinate into element pattern in
a uniform coordinate. The concerning knowledge are seen in [24].

In this design, the dipole element is used for simplifying the
analysis, the normalized element pattern function of which is expressed
as follow

E(θ, φ) = 	eφ

√
cos θ (8)

3. PSO ALGORITHM

3.1. Standard PSO Algorithm

The PSO algorithm is an evolutionary algorithm capable of solving
difficult multidimensional optimization problems in various fields.
Since its introduction in 1995 by Kennedy and Eberhart [25], the PSO
has gained an increasing popularity as an efficient alternative to genetic
algorithm and simulated annealing in solving optimization design
problems in antenna arrays [26]. As an evolutionary algorithm, the
PSO algorithm depends on the social interaction between independent
agents, here called particles, during their search for the optimum
solution using the concept of fitness. After defining the solution
space and the fitness function, the PSO algorithm starts by randomly
initializing the position and velocity of each particle in the swarm, That
is Xm = (xm1, xm2, . . . , xmN ), Vm = (vm1, vm2, . . . , vmN ), 1 ≤ m ≤ M
(M is the number of particles in the swarm).

For an N -dimensional problem, the iterative formula of standard
PSO algorithm as follows:

vt
mn = ω · vt−1

mn + c1 · U t
n1 · (pt

mn − xt−1
mn ) + c2 · U t

n2 · (gt
n − xt−1

mn ) (9)
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xt
mn = xt−1

mn + k · vt
mn (10)

where formula (9) is particle’s velocity updating equation, formula (10)
is particle’s position updating equation, the superscripts t and t − 1
refer to the time index of the current and the previous iterations. pt

mn
is the personal best position which defines the position at which each
particle attained its best fitness value up to the present iteration. gt

n
is the global best position which defines the position in the solution
space at which the best fitness value was achieved by all particles. Un1

and Un2 are two uniformly distributed random numbers in the interval
[0, 1]. The parameters c1 and c2 specify the relative weight of the
personal best position versus the global best position. Previous work
has shown that a value of 2.0 is a good choice for both parameters [27].
The parameter ω is a number, called the “inertial weight,” in the
range [0, 1], and it Specifies the weight by which the particle’s current
velocity depends on its previous velocity and how far the particle is
from its personal best and global best positions. Previous work [28]
has shown that the PSO algorithm converges faster if ω is linearly
damped with iterations starting at 0.9 and decreasing linearly to 0.4
at the last iteration. In addition, k is constrained factor for the
purpose of controlling convergence speed, which value depends on
specific problem. For current design, a value of 1.0 is chosen.

3.2. Modified PSO Algorithm

To avoid the problem of prematurity and easily trapping in local
optimum, a modified PSO algorithm is proposed, that the only global
best particle is perturbed in every iteration of the algorithm and other
particles are updated according to original updating method. However,
a modified PSO algorithm in [29] is based on fitness distance ratio,
which is different from the updating formula (9) of this design.

During the iteration, the current global best particle is updated
as follow

vt
mn = 0 (11)

xt
mn = xt−1

mn + xt−1
mn · pp · (U − 0.5) (12)

where Pp is perturbation parameter, the value of which determines the
speed of convergence and the ability of deviating from local optimum.
If its value is too small, the solution will easily trap into the local
optimum again; if it is too big, the original best particle will enter
into the position at which the fitness value is worse. Many different
optimization experiments using MPSO algorithm have shown that the
value of 1.3 is a good choice for the parameter. In addition, U is
random number in the interval [0, 1].
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By using formula (11) and (12), stagnant particle may be activated
again so that it is more probability to find the global best.

3.3. Fitness Function

In antenna problems, there are many factors that can be used to
evaluate the fitness such as directivity, gain, SLL, size, and weight,
depending on the application. For the current problem, the geometry
layout of array element is first assumed to be known, and then optimize
excitation amplitude distribution of array element with minimum
average SLL and null control in specific directions. To achieve this
goal, the following function is used to evaluate the fitness

Fitness = w1 ·
∑

i

1
∆φi

φui∫

φli

|F (90◦, φ)/F (90◦, 0◦)|2dφ+

w2 ·
∑
k

|F (90◦, φk)/F (90◦, 0◦)|2 (13)

where [φli, φui] are the spatial regions in which the SLL is suppressed,
∆φ = φui−φli, and φk are the directions of the nulls. w1 and w2 stand
for the weight coefficients which are 0.3 and 0.7 respectively. For the
problem at hand, the particle’s position vector that resulted in the
minimum value of the fitness function given in formula (13) is chosen
as the global best position vector up to the current iteration.

4. DESIGN EXAMPLES

The modified PSO algorithm(MPSO) presented in the previous section
is applied to the synthesis of antenna arrays uniformly placed on a
circular cylinder which has a radius of 15λ (λ is operating wavelength).
The spacing between the rows is assumed to 0.5λ; the interelement
spacing along the arc is also assumed to 0.5λ. The geometry layout of
the array is seen in Fig. 1.

The first example illustrates the synthesis of a 4-by-24 element
array for SLL suppression in the regions [−90◦, −6◦] and [6◦, 90◦]
and prescribed nulls at −50◦, 50◦. For the design, only one dimension
scan in azimuth direction is considered. The excitation amplitude of
four array elements at the same column along axial direction is the
same. The excitation amplitude of 24 elements in azimuth direction is
optimized only. The PSO algorithm which uses 20 particles starts by
randomly initializing the position matrix X and the velocity matrix V .
By iterations of about 2000 steps, the amplitude distribution results
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Figure 1. Uniformly spaced cylindrical array.

of array elements are obtained, which are seen from the Table 1.
The corresponding pattern is shown in the Fig. 2. In addition, the
simulation results using chebyshev amplitude distribution based on
linear and planar array synthesis are also provide in the Fig. 2. Its
corresponding convergence curve is shown in Fig. 4.

Figure 2. Normalized pattern of 4-by-4 element array.

The second example illustrates the synthesis of a 3-by-30 element
array for SLL suppression in the regions [−90◦, −5◦] and [5◦, 90◦]
and prescribed nulls at −60◦, −20◦, −20◦, 46◦. Only one dimension
scan in azimuth direction is also considered. By iterations of about
2000 steps, the amplitude distribution results of array elements are
obtained, which are seen from the Table 2. The corresponding pattern
is shown in the Fig. 3. Its corresponding convergence curve is shown
in Fig. 5.
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Figure 3. Normalized pattern of 3-by-30 element array.

Table 1. Normalized amplitude distribution of array element in
azimuth direction.

Array
Element

No.

Amplitude
Excitation

Array
Element

No.

Amplitude
Excitation

1 0.1934 13 0.9983
2 0.2661 14 0.9718
3 0.3505 15 0.9381
4 0.4446 16 0.8747
5 0.5384 17 0.8012
6 0.6312 18 0.7214
7 0.7277 19 0.6238
8 0.8063 20 0.5309
9 0.8800 21 0.4388
10 0.9425 22 0.3439
11 0.9736 23 0.2604
12 1.0000 24 0.1891
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It can be seen from Fig. 2 and Fig. 3 that chebyshev amplitude
distribution and MPSO algorithm offer very similar 3-dB beamwidth,
but chebyshev amplitude distribution can not realize prescribed nulls
and the corresponding average SLL will become much larger.

In addition, optimization designs using standard PSO algorithm
and genetic algorithm are also made. These optimization algorithms
can attain similar results, and but standard PSO algorithm and genetic
algorithm need more larger number of the iterations than MPSO
algorithm, namely, slower convergence speed than MPSO algorithm.
In the design, the simulation results using standard PSO algorithm and
genetic algorithm are not provided. However, the convergence curves
using standard PSO algorithm and genetic algorithm are provided in
Fig. 4 and Fig. 5 for comparison.

Table 2. Normalized amplitude distribution of array element in
azimuth direction.

Array
Element

No.

Amplitude
Excitation

Array
Element

No.

Amplitude
Excitation

1 0.1052 16 1.0000
2 0.1520 17 0.9843
3 0.1753 18 0.9438
4 0.2523 19 0.8937
5 0.3145 20 0.8473
6 0.4278 21 0.7745
7 0.4901 22 0.6929
8 0.5783 23 0.6155
9 0.6572 24 0.5322
10 0.7394 25 0.4807
11 0.8213 26 0.3610
12 0.8728 27 0.2863
13 0.9198 28 0.1967
14 0.9680 29 0.1707
15 0.9947 30 0.1275
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Figure 4. Convergence curve of the fitness value of 4-by-24 element
array.

Figure 5. Convergence curve of the fitness value of 3-by-30 element
array.

5. CONCLUSION

This paper illustrated the use of the modified particle swarm
optimization algorithm in the pattern synthesis of cylindrical conformal
array for the purpose of suppressed sidelobe in certain regions and
null placement in prescribed directions. The modified PSO algorithm
was successfully used to optimize the excitation amplitude of array
elements to realize the array pattern with desired sidelobe level and
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null placement in prescribed directions. More flexible control of the
array pattern can be achieved by using the modified or multi-objective
PSO algorithm to optimize, not only the excitation amplitude, but also
the excitation phase and location of each element in the array.
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