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Abstract—We present an efficient boundary element method to
solve electromagnetic scattering problems relative to an impedance
boundary condition on an obstacle of arbitrary shape in the frequency
domain. In particular, the technique is based on a Combined Field
Integral Equation (CFIE) and is well adapted to treat the partially
coated objects. Some methods are then proposed in order to eliminate
the magnetic current and to treat correctly the rotation operator
n × · (where n is the unit outward normal). After discretization, the
final system is solved by an iterative method coupled with the Fast
Multipole Method (FMM). Finally, a numerical comparison with a
well-tried method to solve this kind of problem proves that we have
proposed an attractive technique in terms of memory storage and CPU
time.

1. INTRODUCTION

This paper is concerned with the solution of electromagnetic scattering
problems by an obstacle whose surface is covered by thin layers of
imperfectly conductor materials. This type of materials is generally
taken into account by imposing an impedance boundary condition
like the Leontovitch condition [1] on the surface of the object. This
latter connects the tangential component of the magnetic field with
the tangential trace of the electric field. More precisely, the boundary
condition is: n × (E × n) = Z0η(n × H) where E and H are the
electric and magnetic fields respectively, n is the outgoing unit normal
to the surface of the object, Z0 is the intrinsic impedance of the
vacuum and η(x) is the impedance. More sophisticated models can
be derived, replacing the function η(x) by some operator acting on the
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currents [22, 29]. It was recognized that this type of boundary condition
can be extensively used to get a tractable problem in numerous complex
situations. A first example can be found in radar applications: objects
are often partially coated by a thin dielectric layer to reduce their
radar cross section; in this case, the direct scattering problem amounts
to a mixed boundary value problem with Maxwell’s equations posed on
an unbounded domain and where on the coated part of the boundary
the electromagnetic field satisfies an impedance boundary condition
while on the remaining part of the boundary the tangential component
of the total electric field vanishes. An other domain of application
is the use of this condition as an absorbing boundary condition to
limit the computational domain of a finite elements method [2]. This
condition plays also a major role in the domain decomposition methods
for Maxwell’s equations [3–5]. Thus, it appears crucial to have efficient
numerical methods well suited for such boundary conditions. Although
these IBC models are adequate for many numerical simulations, the
way used to derive them implies a range of validity [30] and their use
to model bounded materials can pose some problems because of the
presence of breaks between the different materials. One can emphasize
that the research of correct models to take into account this situation
is still an open problem and that requires a fine comprehension of the
behavior of the solution near breaks.

In the frequency domain, the total electromagnetic fields are
expressed in terms of the equivalent electric and magnetic currents
flowing on the surface of the scatterer, these currents being determined
via the boundary condition. This is the basic principle of Boundary
Integral Methods (BIM) which are often used to solve this kind of
problems. It is known that different integral equations can be derived
to get the currents and a first problem is to choose the good one. For
the impedance problem, the main difficulty comes from the fact that
the electric J and magnetic currents M are linked by a relation which
it is difficult to take into account numerically. It is well known that the
flux continuity of M and J across the edges of the mesh is crucial to
ensure a “good” approximation. Generally, one directly imposes it in
the approximate space. For example, one uses the Rao-Wilton-Glisson
finite elements space (RWG) [6]. But, in this case, one cannot ensure
the IBC in a strong way, since the flux continuity is not preserved
when the application φ → n × φ is applied. For example, the finite
elements space n×RWG only ensures a tangential continuity. To treat
this difficulty, there are several possibilities. A first uses an integral
formulation which only ensure the IBC when the convergence (i.e.,
when the spatial step tends toward zero) is achieved [9]. A second
is to impose the IBC via a Lagrange multiplier [7]. Unfortunately,
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these equations generally degenerate to an Electric Field Integral
Equation (EFIE) when η = 0, i.e., for perfectly metallic part of Γ.
Consequently, some problems can appear when one wants to treat
partially coated objects for example. Indeed, it is known that the
convergence rate of many iterative solvers is low for the EFIE. That
is why, we have decided to study the possibility to use an equation
like a Combined Field Integral Equation (CFIE). Since, one knows
that this type of equation is well-conditioned for the perfectly metallic
case. For this formulation, the IBC is imposed in a weak way and
we have proposed some techniques to eliminate the magnetic current
during the iterative process. Moreover, we will see that the choice of
an adequate parameter β to combine the EFIE and Magnetic Field
Integral Equation (MFIE) i.e., CFIE = EFIE +βMFIE also leads to
good iterative behaviors when the impedance operator is not equal to
zero. Finally, our approach will avoid any additional development in
comparison with the classical metallic CFIE in particular when one
uses the Fast Multipole Computation.

The paper is divided as follows. In Section 2, we present the
scattering problem to be solved. In Section 3, we first briefly introduce
the classical techniques used to construct the boundary integral
equations in electromagnetism and then we introduce a new technique
based on a CFIE. We also explain the different difficulties induced
by its implementation. Section 4 is devoted to the discretization of
this method. In particular, some techniques to eliminate the magnetic
current and to treat the rotation operator n × · are described. In
Section 5, we also propose a construction of a SPAI preconditioner
associated to this formulation. Finally, in Section 6, some numerical
experiments are exposed. A comparison with a well-tried method
allows us to show the advantages of the proposed method in terms
of robustness, memory storage and CPU time. In particular, we will
see that it is particularly well adapted to treat the cases where the
objects are only partially coated.

2. THE SCATTERING PROBLEM

Let Ω− be a bounded open set of IR3 with a smooth boundary Γ. The
open complement of Ω− in IR3 is Ω+. Vector n denotes the unit normal
to Γ pointing into the exterior domain Ω+ of Ω−. The problem is to
find the electromagnetic fields E and H solution to the time harmonic
Maxwell system (with e−iωt time dependence)

rotE − ikZ0H = 0 in Ω+,

rotH + ikZ−1
0 E = 0 in Ω+, (1)
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completed with both the Silver-Müller radiation condition at
infinity [18] and the impedance boundary condition on the surface Γ

n × (E|Γ × n) − Z0η (n × H|Γ) = 0. (2)

Here, k > 0 is the wavenumber, Z0 is the intrinsic impedance of the
vacuum and η(x) is an impedance function which is complex with a non
negative real part. The variations of η(x) allows us to take into account
the presence of different materials on the surface Γ of the obstacle.

A strict positivity condition on the real part of η is required in the
case where the scatterer is absorbing but also for theoretical reasons
(well-posedness) [8]. In what follows, we suppose that the impedance
operators considered verify this condition.

3. DERIVATION OF AN IMPEDANCE CFIE

3.1. Integral Representation of the Solution

Any electromagnetic field (E,H) in Ω+ which is a sum of a plane
wave (Einc,Hinc) and of a radiating field is uniquely determined by
the knowledge of the two equivalent currents,

J(x) = n × H|Γ(x) and M(x) = − 1
iZ0

n × E|Γ(x)†, (3)

through the well known Stratton-Chu formulae [10],


E(x) = Einc(x) + iZ0

(
T̃J(x) + K̃M(x)

)
x ∈ Ω+

H(x) = Hinc(x) − K̃J(x) − T̃M(x) x ∈ Ω+,
(4)

where the respective potentials T̃ and K̃ are defined by


T̃J(x) = k
∫

Γ
G(x, y)J(y)dΓ(y)

+
1
k

∫
Γ

�∇xG(x, y)divΓJ(y)dΓ(y)

K̃J(x) =
∫

Γ

�∇yG(x, y) × J(y)dΓ(y).

(5)

G(x, y) is the Green kernel for the radiating solution of the 3-D
Helmholtz equation and divΓJ denotes the surface divergence of J.
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The tangential traces on Γ of the potentials T̃ and K̃ are known;
when x in Ω+ approaches the boundary Γ in (4), we get [10],



−(n × (Einc)|Γ × n)(x) = iZ0

(
TJ(x) +KM(x)

−1
2
n × M(x)

)
(6a)

(n × (Hinc)|Γ × n)(x) = +KJ(x) + TM(x)

−1
2
n × J(x) (6b)

(6)

where T and K are defined by

TJ(x) = lim
y→x

n(x) × (T̃J(y) × n(x)),

KJ(x) =

(∫
Γ
n(x) × (∇yG(x, y) × J(y))dΓ(y)

)
× n(x) (7)

These two relations hold whatever the boundary condition on Γ is.
There are not independent: except for some exceptional values of k
(interior resonance), they are indeed equivalent. When impedance
boundary condition is considered, we have to add the boundary
condition (2) or equivalently

n × M(x) = −iη J(x) (8)

The two unknowns J,M have to be determined using the previous
equations. Several boundary integral equations can be constructed to
determine the currents, all of them amounts to combine (6) and (8)
to get an equation with a unique solution. The derivations of some of
these equations can be found for example in [7]. In particular, there
exists a efficient method using the two currents as unknowns and in
which the impedance condition is imposed in a implicit way [9, 7, 25].
In what follows, BGLF will denote this method. We will use BGLF to
evaluate the new technique that we are going to propose. The main
drawback of BGLF is that it degenerates into an EFIE on the metallic
objects nevertheless at our knowledge, it is currently the most efficient
method to solve the impedance problems.

3.2. An Impedance Combined Field Integral Equation
Formulation (ICFIE)

It is well known that, in the case of perfectly metallic object, the CFIE
leads to linear systems that can be solved by iterative methods with
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a good convergence rate. That is why, we have decided to construct
a CFIE to solve the impedance problem that we have considered. We
expect that the good convergence rate for the CFIE will remain true
for the impedance case.

We use a simple combination of (6) and (8) to derive our
Impedance Combined Field Integral Equation formulation (ICFIE).
More precisely, we normalize (6a) by Z0 then apply a rotation of

π

2
around the normal to (6b) (i.e., n × ·)


− 1
Z0

(n×(Einc
|Γ × n))(x) = i

(
TJ(x) +KM(x)−1

2
n × M(x)

)

(n × Hinc
|Γ )(x) = +n ×KJ(x) + n × TM(x) +

1
2
J(x)

(9)

and we make a linear combination of these two equations


− 1
Z0

(n × (Einc
|Γ × n))(x) + β(n × Hinc

|Γ )(x)

= i
(
TJ(x) +KM(x) − 1

2
n × M(x)

)

+β
(
n ×KJ(x) + n × TM(x) +

1
2
J(x)

)
.

(10)

This equation is commonly called in the literature the CFIE [7, 26].
We get the ICFIE system



−Einc
t

Z0
+ βn × Hinc

t =
(
iT + βn ×K +

β

2

)
J

−iβn ×
(
iT +

1
β
n ×K +

1
2β

)
M

0 = iη J + n × M.

(11)

If Aξ
cfie = iT+ξn×K+ ξ

2 denotes the classical integral operator for the
CFIE in the metallic case, we remark that the two integral operators

involved in the first equation of (11) are simply Aβ
cfie and A

1
β

cfie ; we have


 −Einc

t

Z0
+ βn × Hinc

t = Aβ
cfieJ − iβn ×A

1
β

cfieM

0 = iη J + n × M
(12)
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Note that (12) can not straightforwardly be discretized by a finite
elements method. Indeed, if one multiplies the first equation of (12)
by a test function J′, one must be able to evaluate both (TJ,J′) and
(n × TM,J′) in the same fashion. In particular, after an integration
by parts, one must correctly approximate two terms:

A1 =
∫

Γ

∫
Γ
G(x, y)divΓJ(y) div ΓJ′(x)dΓ(y)dΓ(x)

A2 =
∫

Γ

∫
Γ
G(x, y)divΓM(y) div Γ(n × J′(x))dΓ(y)dΓ(x) (13)

So, div ΓJ′ and div Γ(n×J′) = curlΓJ′ must be defined. Consequently,
J′ must rigorously belong to a finite elements space where the
tangential and normal continuity are ensured. To our knowledge, no
finite-element method is yet available which, while remaining simple
enough, at the same time satisfies such a degree of continuity constraint
and applies to a surface of arbitrary shape.

In order to overcome this difficulty two simple ways to approach

(n × TM,J′) (and consequently (n × A
1
β

cfieM,J
′)) without new

developments for the integral operators are proposed in this paper.

More precisely, only the discretization of CFIE operator A
1
β

cfie is needed.
These two techniques are based on projections on classical finite
elements spaces.

The first choice is natural and intuitive. We first decide to
determine an approximate V ∈ RWG of A

1
β

cfieM and then simply
compute (n × V,J′). It can be formally described by the augmented
system noted by the ICFIE1 system


−Einc

t

Z0
+ βn × Hinc

t = Aβ
cfieJ − iβn × V (a1)

V = A
1
β

cfieM (b1)

n × M = −iηJ (c1)

(14)

The second choice appears when one interests to how the operator
T acts on functional spaces. It is well known that the range of T is
included in H−1/2(curlΓ,Γ) [18] where

H− 1
2 (curlΓ,Γ)={(n×(u×n))|Γ : ∀u such that u, ∇×u ∈ [L2(Ω−)]3}

In this space, the curlΓ operator is well-defined and consequently one
has the tangential continuity. So, if one wants to respect the functional
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framework (TM ∈ H− 1
2 (curlΓ,Γ)), it is natural to approach TM by

an element belonging to a finite elements space which ensures such
continuity. It is not the case in the first technique where TM is
approached by an element of RWG for which only the normal flux
continuity is ensured. The first idea is to find V ∈ n × RWG ≈ TM
since n×RWG is a subspace of H−1/2(curlΓ,Γ). This consists to solve
the problem: find V = n ×W ∈ n × RWG such that ∀W ′ ∈ RWG,∫

Γ
n × W · W ′dΓ = (TM,W ′). But, it is well-known that the left

integral leads to a non-invertible matrix. In [15], it is proposed a
technique which allows to correctly realize such duality. We will briefly
describe it in IV-B and we will then explain how to use it. This second
technique can be formally described by the augmented system noted
by the ICFIE2 system



−Einc
t

Z0
+ βn × Hinc

t = Aβ
cfieJ − iβX (a2)

n ×X = −A
1
β

cfieM (b2)

n × M = −iηJ (c2)

(15)

One can ask the question: why to have kept the first approach? In fact,
we will see that the first technique provides an interesting response in
practice. Moreover, it can be easy and quickly implemented.

Finally, note that after discretization, it is easy to compute a

matrix-vector product Aβ
cfieJ and A

1
β

cfieM , using twice times, the FMM
algorithm applied to the “classical” CFIE equation.

Remark: Another process, denoted by ICFIE3 in the following,
can also be considered; it is based on the following system of equations
−Einc

t

Z0
+βn×Hinc

t =Aβ
cfieJ+

(
βn×T+iK− i

2
n ×

)
M (b3)

n × M = −iηJ (c3)
(16)

Indeed, one can numerically evaluate A2 (13) all the same and it is even
the classical way to compute n× T . For that, one writes divΓ(n× J′)
in this way

divΓ(n × J′) =

{
divKi(n × J′

|Ki
) on triangle Ki

(J′j · νij + J′i · νji)δij on Ki ∩Kj

(17)

where δij is the Dirac measure associated to the edge Ki ∩Kj of the
mesh, νij is the unit outward normal to Ki ∩ Kj and tangential to
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Ki, divKi is the surface divergence operator computed on the Ki and
J′j = J′

|Kj
(the same thing for i).

Now, splitting up A2 on each triangle and using (17), one obtains for
sufficiently smooth tangential vector fields on each triangle

A2 =
∑
Ki

∫
Ki

∫
Γ
G(x, y)divΓJ(y)divKi(J

′(x) × n(x))dΓ(y)dΓ(x)

+
∑

Ki∩Kj

∫
Ki∩Kj

∫
Γ
G(x, y)divΓJ(y)((J′j × nj) · νij

+(J′i × ni) · νji)dΓ(y)dAij(x) (18)

where dAij is the linear measure of the edge Ki ∩ Kj and ni ou j =
n|Ki ou j

.
Formula (18) shows that one can now calculate the term n × T

after discretization by the RWG finite elements. However, even if this
approach may be possible, it presents a drawback when multipoles are
considered: since the new formulation involves integral over edges in
addition to integrals over triangles, we will have to compute far fields
with respect to clusters of Gauss points located on edges in addition to
the classical far fields with respect to Gauss points located to triangles,
what will imply a cost multiplied by 2. This is why we decide to give
up this formulation. However, it will appear to be useful to construct
a preconditioner (see Section 5.1).

4. DISCRETE SCHEME

The discrete problem is obtained by means of Galerkin’s method; the
scatterer’s surface Γ is meshed with triangles, and the surface electric
and magnetic currents are expanded as J(x)  Jh(x) =

∑N
j=1 J

h
j φj(x)

and M(x)  Mh(x) =
∑N

j=1M
h
j φj(x), where the φj(x)’s are the RWG

basis functions associated to the mesh [6].
In the following, Jh (resp. Mh) denotes the column vector which

contains the degrees of freedom of the electric current (resp. magnetic
current).

4.1. Discretization of the ICFIE1

We consider first the system given by (14). The new auxiliary variable
V is also approximated by a element in RWG. Vector V h corresponds
to the column vector which contains the degrees of freedom of V. The
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discretization is proceeded in the usual way. It leads to a linear system
in the unknowns (Jh,Mh, V h). Different steps can be drawn

(a)-Discretization of the operator Aβ
cfie = iT + βn ×K +

β

2
:

The term
(
iT + βn × K +

β

2
)
J is transformed into Aβ

h,cfieJ
h where

Aβ
h,cfie is the usual matrix of the interactions between the basis

functions for the CFIE equation in the metallic case:(
Aβ

h,cfie

)
i,j

= ik

∫
Γ

∫
Γ
G(x, y)

(
φi(x) · φj(y)

− 1
κ2
�∇Γ · φj �∇Γ · φi

)
dΓ(x)dΓ(y)

+
β

2

∫
Γ
φj(x) · φi(x)dΓ(x)

+β
∫

Γ

∫
Γ
∇yG(x, y)×φj(y)·(φi(x)×n(x))dΓ(y)dΓ(x) (19)

(b)-Elimination of the magnetic current (see Equation (c1) of
(14)):
The first idea to determine the current Mh when Jh is assumed to be
known, is to project the impedance condition directly onto the space
n × RWG: for all test functions in RWG, Equation (c1) of (14) leads
to ∫

Γ
Mh · M′dΓ =

∫
Γ
(n × Mh) · (n × M′)dΓ

= −i
∫

Γ
ηJh · (n × M′)dΓ, (20)

which corresponds to the following matrix relationship between the
discrete electric and magnetic currents

MhM
h = −iMη

div/rot,hJ
h (21)

Mh is the mass matrix of the finite elements space n × RWG while
Mη

div/rot,h is the matrix

(
Mη

div/rot,h

)
i,j

=
∫

Γ
ηφi · (n × φj)dΓ.

(c)-Discretization of the the operator A
1
β

cfie :
Multiplying Equation (b1) of (14) by a RWG basis function and



Progress In Electromagnetics Research, PIER 80, 2008 11

integrating over the surface, we obtain a relation between V h and Mh,

MhV
h = A

1
β

cfie,hM
h (22)

Knowing V h, all that is left to do is to carry out the sparse matrix-
vector product Mrot/div,hVh where Mrot/div,h is the matrix of the
interactions (n × φi, φj).
Formally, we can write the system corresponding to the solution of the
ICFIE1 by using the steps (a), (b) and (c):(

Aβ
cfie,h−βMrot/div,hM−1

h A
1
β

cfie,hM−1
h Mη

div/rot,h

)
Jh=Binc,h, (23)

where the vector column Binc,h corresponds to the second member. We
solve system (23) by an iterative solver with Jh as the only unknown.
Both the magnetic current Mh and the auxiliary variable V h are
eliminated during the matrix-vector product needed at each iteration
by using the strategy (b) and (c). Systems (21) and (22) can be
solved by means of a sparse solver which allows a quick and low cost
inversion. In our numerical experiments, we have used MUMPS [19],
(i.e., Multifrontal Massively Parallel sparse direct Solver). The

matrix vector products involving the matrices Aβ
cfie,h and A

1
β

cfie,h are
performed using the Multilevel Fast Multipole Method [23, 24]. We
have chosen GMRES as our iterative solver (more precisely, we use the
free GMRES solver described in [14]). GMRES is known to be the
iterative method with the minimal rate of convergence.

4.2. Discretization of the ICFIE2 System (15)

We now described the technique proposed in [15] in order to do an

efficient approximation of n × A
1
β

cfie . This technique is based on a
discrete analogue of the Helmholtz decomposition of the tangential
fields. Let us recall the Helmholtz decomposition of a tangential field
u of Γ [27]:

u = u1 + u2

where div Γu1 = curlΓu2 = 0.
The idea of [15] is to separately carried out the rotation (n × ·)

of u1 and u2 in order to obtain a mathematically stable evaluation of
n×u. The technique is completely analyzed in [15]. We are going only
to explain the different steps:



12 Collino, Millot, and Pernet

Let lh be a linear form defined on RWG; the problem is to
construct some Θhlh that mimics n×lh. In what follows, P o

0 denotes the
space of scalar functions whose restriction to any triangle is constant
and whose mean value is null on Γ and P o

1 denotes the space of scalar
functions, piecewise linear on each triangle of the mesh and whose
mean value is null on Γ.

• First, we consider the following saddle-point problem:
Find (uh, qh) ∈ RWG × P o

0 such that for all (u′, q′) ∈ RWG × P o
0 ,



∫
Γ
uh · u′dΓ +

∫
Γ
qh div u′dΓ = lh(u′)∫

Γ
q′ div uhdΓ = 0.

(24)

(24) realizes an discrete Helmholtz decomposition of lh. Indeed,
one can formally write that lh = uh − (∇Γ)∗qh where div uh = 0
and ((∇Γ)∗qh, u′) = −

∫
Γq

h div u′dΓ. (∇Γ)∗qh approaches the curl-
free part of the exact linear form l.

• Once this system is solved, we associate to (uh, qh) the following
element of RWG :

vh = Θhlh = PRWG(uh × n) − n ×∇PP o
1
(qh), (25)

where PX denotes the L2-projection on the finite element space
X.
PRWG(uh ×n) gives an approximation in RWG of the rotation of
the divergence-free part and n × ∇PP o

1
(qh) an approximation of

the rotation of the curl-free part. So vh is an approximation of
lh × n in RWG.
We use twice the linear operator Θh to construct our ICFIE:

• We take lh(u′) =
∫
ΓηJ

h·u′dΓ = Mη
hJ

h andMh = −iΘhlh provides
us the magnetic current.

• We take lh(u′) = (A1/β
cfieM

h, u′) and Θhlh corresponds to an
approximation of the unknown X in (25). Then, we simply
compute the product

∫
Γ Θhlh · J′dΓ to obtain the discrete

equivalent to (n ×A1/β
cfieM

h,J′).

Finally, we get the system

(
Aβ

cfie,h − βMhΘhA
1
β

cfie,hΘhMη
h

)
Jh = Binc,h, (26)

One possesses two techniques to carry out the intermediate
computations in order to obtain the ICFIE formulation. Both are
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solved by using the sparse solver MUMPS, but one can see the latter
requires more inversions (i.e., solution of (24) and two projections in
(25) ⇒ two additional inversions whereas the first only requires one
inversion). From numerical experiments, we will show that the second
technique allows to obtain a more accurate solution.

5. ITERATIVE SOLUTION

5.1. SParse Approximate Inverse (SPAI) Preconditioner for
the ICFIE Formulation

To speed up the convergence of our iterative solver, we construct a
right preconditioner following [17, 28]. Its design follows the following
lines: first, we scatter the degrees of freedom into nb boxes. The side
length of the boxes is generally taken to be a fraction of the wavelength.
If B is a box, we define, V(B), the set of the neighboring boxes of B
(B included) and V2(B) the set of boxes B′ for which it exists a box
b such that both B and B′ are in V(b). We fix the profile of the
preconditioner as the set of the (j, k)’s with j in V(B) with B the box
of k. The coefficients of the preconditioner pj,k are defined by

p = Argmin


∑

B

∑
k∈B

∑
i∈V2(B)


δki −

∑
j∈V(B)

ai,jpj,k




2 
 .

The solution can be found by solving nb independent least square
problems: let nbdof be the number of degrees of freedom located inside
box b; if B is a given box, the number of linear equations of the
associated least square problem is nBdof × ∑

b∈V2(B) n
b
dof while the

number of unknowns is nBdof ×
∑

b∈V(B) n
b
dof .

The main difficulty to construct a sparse inverse of systems (23) and
(26) is the presence of the inverses of some matrices. If we want to
take into account them exactly, we have to increase the size of the
system by a number of unknowns equals to the number of inversions.
For example, the system (23) would be rewritten in form:


Aβ

cfie,h −iβMrot/div,h 0

0 Mh −A
1
β

cfie,h

iMη
div/rot,h 0 Mh






Jh

Uh

Mh


=


Binc,h

0
0




(27)
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If we represent the sparse inverse of (27) by the block matrix
 P11 P12 P13

P21 P22 P23

P31 P32 P33


 , (28)

the term P11 is a preconditioner for (23). If one considers system
(26) corresponding to ICFIE2, the size of the equivalent system (27)
becomes larger. To avoid this problem, we have decided to construct
the preconditioner of ICFIE1 and ICFIE2 by using the matrix which
is derived from the ICFIE3 system (16). It is legitimate to think that
this choice is sufficient to construct an “approximate” inverse. With
regards to the elimination of the magnetic current, we keep the process
(21). Indeed, it is judicious to keep it since as we have specified above
a direct elimination of M via the impedance condition poses problems.
Finally, we compute a sparse inverse of the system:(

Aβ
cfie,h ZM

h

iMη
div/rot,h Mh

) (
Jh

Mh

)
=

(
Binc,h

0

)
(29)

where ZM
h corresponds to the direct discretization of the operator

βn × T + iK − i

2
n×.

5.2. Algorithm

This part describes the main steps of the algorithm of the ICFIE:
• Calculation of the preconditioner and storage on disc.

• Calculation of close matrices for the Aβ
cfie,hJ

h and the A
1
β

cfie,hM
h

which are needed by the FMM algorithm and storage on disc.
• Calculation of matrices which are necessary to the elimination of

M and to do the matrix-vector product corresponding to n × V
or n ×X.

• For each iteration:
• Calculation of Mh (Mh = −iM−1

h Mη
div/rot,hJ

h or Mh =
ΘhMη

h J
h),

• Calculation of A
1
β

cfie,hM
h by using a two components fast

multipole algorithm,
• Calculation of n × V or X,
• Calculation of Aβ

cfie,hJ
h by using a two components fast

multipole algorithm.
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Remark: Let us make a remark on the memory storage for the BGLF
and the ICFIE. When one uses a FMM, the main storage comes from
the preconditioner and the close matrices:

• For the preconditioner, if we denote by αp the number of neighbors
by electric degree of freedom, the required memory is (αpN +
αpN)2 = 4αpN complex numbers (where N is the number of
electric degrees of freedom) for BGLF (because there are two
currents J an M) and αpN complex numbers for the ICFIE.

• For the close matrices, if we denote by αc the number of neighbors
by electric degree of freedom, the required memory is (αcN +
αcN)2/2/2 = αcN real numbers for BGLF (the first division by
2 corresponds to the necessity to store uniquely the real part and
the second comes from the symmetry of the system) and 2αcN
complex numbers for the ICFIE (the factor 2 is due to the fact

that we have the two dense matrices Aβ
cfie and A

1
β

cfie).

Denote α =
αc
αp

, we obtain global memory storages equal to

Nαp(8 + α) for BGLF and 2αpN(1 + 2α) for ICFIE. This implies the
ratio

BGLF memory
ICFIE memory

=
8 + α

2(1 + 2α)

which belongs to the interval ]
1
4
; 2[. In the next section, we will be able

to see that it is equal to 1.5 for the case of the sphere. To finish, we
point out to the reader that the two methods have not the same degree
of maturity and that ICFIE may be surely improved with regard to
the close matrix.

6. NUMERICAL EXPERIMENTS

In this section, several numerical experiments are presented to show the
ability of the ICFIE method to effectively solve an impedance problem.
To carry out this work, a comparison is done with results obtained
using BGLF, which is a well-tried numerical method to solve this kind
of problems. The frame of this analysis is the following:

• Cost of the preconditioner: we evaluate the density (the number of
non-zero values divided by the square of the number of unknowns)
and the CPU time of construction of the preconditioner.

• Accuracy: in order to quantify the accuracy of our new
formulations, we compare the result obtained with the reference
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solution and compute the relative errors between the two solutions.
The reference solution can be in some cases analytical or given by
the BGLF.

• Robustness and cost: we evaluate the robustness (number of
iterations necessary to obtain a solution with a residual equal
to 10−4) and the CPU time spent for different values of the
impedance.

For all examples, the discretization complies with the criterion of
around 10 points per wavelength. We consider three scattering objects
illuminated by a plane wave with a wavenumber k:

• Object 1: A sphere of radius 1 m. Its mesh is made of 338000
triangles that corresponds to 507000 edges.We have fixed the
wavenumber equal to k = 63 m−1. Three impedance values will
be considered:

– Case 1: η = 1
– Case 2: η = 8.55 · 10−2(1 + i)
– Case 3: η = 0.34 + 0.29i

• Object 2: A cube whose the mesh is composed of 3240
triangles.The wavenumber k is equal to 15.82 m−1 and η = 1.

• Object 3: A cylinder of height 360 m and radius 120 m. The
mesh is composed of 347324 triangles that corresponds to 520986
edges. The wavenumber is fixed to k = 0.63 m−1 and we have
considered two configurations which are summed up in Table 1.
The first one corresponds to a constant impedance while, in the
second one, we have divided the cylinder in three sections with
three distinct values of the impedance. In particular, one of the
sections is assumed to be perfectly conducting (η = 0). For this
example, the GMRES residual is equal to 10−3.

Table 1. Case description.

case η
case 1 0.34 + 0.29i

case 2 0.34 + 0.29i
0 < z < 120

0.
120 < z < 240

0.34 + 0.29i
240 < z < 360

In what follows, objecti-j denotes that we treat the case j of the
object i.
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Figure 1. Spectrum in the case of the sphere of radius a with a
constant impedance η = 2 + 2i and ka = 100. The up panel is for
β = −1, the down panel for β = 4.
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6.1. Choice of the Parameter β

β acts upon both the robustness and the accuracy of the scheme. For
the perfectly metallic case, it is commonly admitted that β = 4 is,
in most cases, the best compromise. It is not clear that this value
remains still the best choice for the impedance condition. In fact, it
is not the case. On can prove theoretically on spherical geometry that
β = −1 allows the best clustering of eigenvalues of the ICFIE system
in the complex plane [12]. Figure 1 clearly shows the bringing together
around a point of the eigenvalues for the case β = −1 whereas for β = 4
the spectrum is more dispersed and turns around the origin. In terms of
iterative performance, we have subjected these systems of eigenvalues
to a GMRES solver. Table 2 sums up the number of iterations obtained
for η = 2+2i and several values of the wavenumber. The value β = −1
seems to be a good choice for the robustness. Moreover, it is well
known that the MFIE term penalizes the CFIE in term of accuracy.
The choice β = −1 is a priori less penalizing than β = 4.

Table 2. Number of iterations (residual less than 10−5).

η=2+2i β = −1 β=4
ka =5 19 28
ka =10 28 54
ka =100 39 241

Table 3 contains the number of iterations needed to obtain the
solution for Object1-3 and Object3-2 and for β = −1 or 4. The gain is
less important because the systems are preconditioned. In conclusion,
we can see that β = −1 stays good compromise for other types of
geometries and for variable impedance operators. In what follows, we
only use the parameter β = −1.

Table 3. Influence of the weight parameter β for two test cases.

Case number of iterations
β = −1

number of iterations
β = 4

Object1-3 22 28
object3-2 17 21
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6.2. A Comparison between the ICFIE1 and ICFIE2 in
Term of Accuracy

In this section, we present a simple example which has motivated us
to propose the ICFIE2 technique. For this purpose, we consider the
object2. In this kind of problem (η = 1), we know that the BGLF
is very accurate and consequently, it will be our reference method.
Figure 2 shows the Radar Cross Section (RCS). The solution obtained
by using the BGLF, ICFIE1 and ICFIE2 are very close except in the
shaded region (see Figure 3). It is a zone which can be difficult to be
restored correctly. One can clearly see the advantage to use the ICFIE2
in term of accuracy. In conclusion, the ICFIE2 could be needed to treat
complex problems where an accurate solution is required.

0 40 80 120 160 200 240 280 320 360
-80

-60

-40

-20

0

20

Figure 2. Comparison of the RCS of the cube obtained by different
ICFIE algorithm for η = 1: – · BGLF, ·· ICFIE2, – – ICFIE1.

6.3. Comparison with an Analytical Case

We consider the situations described by Object1-1 and Object1-2.
The density of the preconditioner is identical for the formulations
(BGLF and ICFIE) and is about 0.02%. Recall that we use the same
preconditioner for the ICFIE1 and ICFIE2. The computing time of
the preconditioner for the formulation ICFIE is about 9h and is more
important than this obtained for the BGLF formulation (5h). It is due
to the fact that we did not take into account that a part of the matrix
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Figure 3. Zoom on the previous figure.

Table 4. Relative errors on the RCS for two values of η in the sphere
case.

η relative error on the RCS
BGLF ICFIE1 ICFIE2

case 1 0.02% 0.4% 0.1%
case 2 0.02% 0.4% 0.1%

is sparse (see (29)); moreover, for the BGLF, the symmetry of the
matrix has been used. Figure 4 gives the RCS for the three methods.
It shows that the RCS are similar for the two cases. In the sphere
case, the exact RCS can be computed using the Mie series. Table 4
contains the relative errors on the RCS. The three techniques give a
numerical solution with a good accuracy. The relative error on the
RCS is less than 0.5%. Moreover, we note that the ICFIE2 solution is
slightly more accurate than the one of ICFIE1.

In order to compare the CPU time costs needed to obtain the
solution, we have only considered the time coming from the matrix-
vector products noted t1 . Indeed, it represents the intrinsic cost of the
method whereas the rest of the cost may be improved. More precisely,
the BGLF CPU time directly is linked to t1 whereas for the ICFIE
we take into account the FMM calculation, the inversion of the sparse
matrices and communications between the processors. The time due



Progress In Electromagnetics Research, PIER 80, 2008 21

0 20 40 60 80 100 120 140 160 180
-100

-50

0

50

0 20 40 60 80 100 120 140 160 180
-5

0

5

10

15

20

25

30

35

40

45

Figure 4. RCS of the sphere for the case 1 (up) and the case 2 (down)
(–: Mie, –.: BGLF, –: ICFIE1, ..: ICFIE2).
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to the vector product by the sparse matrices in the case of the ICFIE1
or ICFIE2 is noted by t2 and is also given. The CPU times (t1, t2) and
the iteration number niter are given in Table 5. The largest part of the
time is taken by the FMM computation. With regard to the inversion
of sparse matrices, ICFIE1 is better by a factor equal to about 10 in
comparison with ICFE2. The time difference t1 − t2 for ICFIE1 is not
the same as this obtained for the ICFIE2. It may be probably due to
the communications between the processors. These latter are greater
for the ICFIE2 method. For Object1-2, the CPU time for ICFIE1
and ICFIE2 is better by a factor about 4 in comparison with BGLF.
Besides, for Object1-1, the performances are almost identical. Indeed,
in this case, the BGLF system spectrum lies on a unique zone of the
complex plane whereas for η �= 1 it is scattered on two distinct zones.
The phenomenon is due to the presence of the terms η and 1/η in the
BGLF: these terms are the same when η = 1.

Table 5. Results obtained for the three methods in the sphere case.

BGLF ICFIE1 ICFIE2
case 1 case 2 case 1 case 2 case 1 case 2

niter 28 166 15 23 16 23
t1 4h33 47h55 5h53 10h05 7h02 12h12
t2 - - 130s 203s 1155s 1646s

Table 6 contains the memory storage needed for the preconditioner
and the close matrices. There is a factor equal to about 1.5 between
the two methods in favor of BGLF.

Table 6. Memory storage needed for the preconditioner and the close
matrices.

Memory (Gbytes) BGLF ICFIE
Preconditioner 12.484 3.1211
Close matrices 7.2802 26.776

Total 19.7642 29.8971

In conclusion, ICFIE1 and ICFIE2 are similar in terms of accuracy,
robustness and CPU time spent for the case of the sphere with a
constant impedance operator. Moreover, ICFIE is competitive for the
two cases and is less expensive in time when the value of the impedance
is different of 1.
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6.4. Variable Value of Impedance

We consider the cases described by Object3. In particular, we want to
study the effect of the impedance variation.
The density of the preconditioner is identical for the formulations
(BGLF and ICFIE) and is about 0.07%. Again, as it is observed for
the sphere case (see Section 6.3), the CPU time of the preconditioner
for the formulation ICFIE is about 5h37 and is greater about a factor
1.8 than this obtained for the BGLF formulation (3h). Figure 5 shows
the RCS for Case 1 and 2: all curves are very close. For the case 2,
the BGLF solution has been obtained by using a flexible GMRES [20]
which allows us to achieve the convergence. The CPU time needed to
get the solution is about 241h.

Note that the BGLF solution is taken as the reference solution.
The accuracy results are summed up in Table 7. We can notice that
the two solutions are similar in terms of RCS. One can also see a little
increase of the error when the impedance becomes non constant.

Table 7. Relative error between the currents and the RCS in function
of the value of the impedance operator.

Case relative error on the currents error on the RCS
ICFIE1 ICFIE2 ICFIE1 ICFIE2

case 1 4.8% 3.8% 0.9% 0.79%
case 2 11.7% 11.67% 2.06% 1.7%

Table 8 gives the number of iterations niter and the CPU times
t1 and t2 needed for the construction of the solution. These times are
defined in Section 6.3. One notices that:

- The number of iterations for the ICFIE does not depend very
much on the value of the impedance. On the contrary, the BGLF
is very sensitive to the variations of η and particularly when there
is a perfectly conducting part on the surface of the obstacle.

- The important gain is obtained by using ICFIE1 or ICFIE2.
Moreover, one can notice that it is directly connected to the gain
in term of number of iterations.

In conclusion, the ICFIE is well appropriated to treat the partially
coated objects.
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Figure 5. RCS of the cylinder for the case 1 (up) and the case 2
(down) (–.: BGLF, –: ICFIE1, ..: ICFIE2).
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Table 8. Results obtained in the cylinder case when the impedance
value is variable.

BGLF ICFIE1 ICFIE2
case 1 case 2 case 1 case 2 case 1 case 2

niter 45 300 15 18 15 18
t1 7h16 38h38 6h48 7h55 7h13 9h18
t2 - - 144s 177s 1071s 1468s

7. CONCLUSION

In this paper, we have studied a technique based on the CFIE
formulation to solve electromagnetic scattering problems relative to
an impedance boundary condition on an obstacle of arbitrary shape
in the frequency domain. This formulation can be written with two
terms, one which is directly linked to the CFIE term when the obstacle
is perfectly conducting Aβ

cfieJ and another term which is related to

n×A
1
β

cfieM. This choice allows anyone who possesses a metallic CFIE
solver to implement the ICFIE at lower cost. The magnetic current
is computed via the impedance relation. Note that in the impedance
relation, a n× term appears. Two approaches have been proposed in
order to treat correctly this term. We have proposed to eliminate the
magnetic current and to keep only the electric current as unknown.
After discretization, the final system is solved with an iterative solver
coupled with a FMM algorithm. We have proposed the construction
of a SPAI preconditioner for this formulation.
The numerical results obtained show that ICFIE1 and ICFIE2 allow
us to obtain accurate solutions which are close to BGLF’s. Moreover,
when the impedance value is small or variable, ICFIE algorithms
converge faster and a CPU time gain is observed. In particular, we
have shown that the ICFIE allows us to treat efficiently the partially
coated objects. Finally, we get a more accurate solution for ICFIE2 in
some cases.
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22. Engquist, B. and J.-C. Nédélec, “Effective boundary conditions for
acoustic and electro-magnetics scattering in thin layers,” research
report CMAP, Ecole Polytechnique, Palaiseau, France, 1993.

23. Chew, W.-C., J. Jin, E. Michielssen, and J. Song, Fast and
Efficient Algorithms in Computational Electromagnetics, Artech
House, 2001.

24. Collino, F. and F. Millot, “2-components algorithm for the
multilevel fast multipole method for solving large scale diffraction
problems,” JEE02 (European Symposium on Numerical Methods
in Electromagnetics), Toulouse, France.

25. Collard, B., M’B. Fares, and B. Souny, “A new formulation for
scattering by impedant 3D bodies,” J. of Electromagn. Waves and
Appl., Vol. 20, No. 10, 1291–1298, 2006.

26. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, “A survey of
various frequency domain integral equations for the analysis of
scattering form three-dimensional dielectric objects,” Progress In
Electromagnetics Research, PIER 36, 193–246, 2002.



28 Collino, Millot, and Pernet

27. Zhou, X., “On Helmoltz’s theorem and its interpretations,” J. of
Electromagn. Waves and Appl., Vol. 21, No. 4, 471–483, 2007.

28. Carpentieri, B., “Fast-iterative solution methods in electro-
magnetic scatteting,” Progress In Electromagnetics Research,
PIER 79, 151–178, 2008.

29. Bartoli and Bendali, “Robust and high-order effective boundary
conditions for perfectly conducting scatterers,” IMA J. Appl.
Math., Vol. 67, 479–508, 2002.

30. Wang, D.-S., “Limits and validity of the impedance boundary
condition on penetrable surfaces,” IEEE Trans. Ant. Prop.,
Vol. 35, 453–457, October 1987.


