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Abstract—Several characteristics of the wire antenna on electrically
large composite body are analyzed by an adaptive multilevel fast
multipole algorithm (MLFMA). Adaptive MLFMA is applied to the
boundary integration of the analysis model. With the basis functions
and testing functions expanded with Dirac functions on different
position, the calculation of impedance integration can be simplified
and all the translation process can be calculated by fast Fourier
transformation (FFT). Good agreement between the computed and
measured results of antenna characters is obtained.

1. INTRODUCTION

In engineering the antenna characteristics are usually obtained in
laboratory by experiment and then the antenna is installed on
carrier directly. In fact the antenna characteristics such as radiation
pattern, input impedance and gain are always affected by the carrier
body, which will influence the work performance and electromagnetic
compatibility of antenna system, that is to say, the carrier body
becomes one part of the antenna system and the new system has new
characteristics. For the profile complexity, large size and material
† Also with National Key Laboratory of Antennas and Microwave Technology, Xidian
University, Xi’an 710071, P. R. China
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characteristics of the carrier, it is always very difficult to obtain
antenna characteristics by experiment after installation. So, the
simulation is usually an effective method.

In this paper the characteristics of antennae on electrically large
composite object is analyzed by an adaptive MLFMA. The boundary-
integral equations of composite object are established first. However,
the use of the conventional boundary-integral method for integral
equations always results in full matrices. MLFMA [1, 2] is always
applied to the integral equation to significantly reduce the memory
requirement and computational time. But some targets are very
electrically large and the electromagnetic simulation of these targets
can not be solved by traditional method on single computer in
engineering, so the performance of traditional MLFMA should be
improved for electrically larger problems.

In the adaptive MLFMA presented, by expanding the basis
functions and testing functions with Dirac functions on different
position, the calculation of impedance integration can be simplified
and all the translation operation can be calculated by FFT and the
CPU time and computer memory are greatly reduced.

2. ANALYSIS MODEL AND FORMULATIONS

We assume there is an antenna on a composite body illustrated in
Fig. 1. The composite body consists of metallic and dielectric medium.
In this paper, antenna is also seen as metal. The integral equations on
the surface of composite object should be established first. In Fig. 1,
the metallic medium is in volume V1 and the surface of V1 is S1. The
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Figure 1. An antenna on a composite object.
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dielectric medium is in volume V2 and the surface of V2 is S2. Volume
V0 is free space and S0 is the boundary surface of free space and the
composite object. Scd denotes the boundary surface of V1 and V2,
Sce denotes the boundary surface of V0 and V2 and Sd denotes the
boundary surface of V0 and V1, so S0 = Sce + Sd and S1 = Scd + Sd.

The equivalent electric current and magnetic current on Si(i =
0, 1, 2) are

Ji = n̂i × Hi (i = 0, 1, 2) (on Si) (1)
Mi = Ei × n̂i (i = 0, 1, 2) (on Si) (2)

where E i and H i are the total electromagnetic field in volume Vi. In
volume V0 the total electromagnetic field is

θ(r)E0(r) = Ei − L0J0(r′) + K0M0(r′) (3)

θ(r)H0(r) = H i −K0J0(r′) − 1
η2
0

L0M0(r′) (4)

where

θ(r) =

{ 1, r ∈ Vi, i = 0, 1
1/2, r ∈ Si, i = 0, 1
0, r /∈ Vi, r /∈ Si, i = 0, 1

(5)

Li and Ki are integration operators and Gi is the Green’s function in
free space

LiZ(r′) = jωµi

∫
S

[
Z(r′) − 1

ω2µiεi
∇∇′ · Z(r′)

]
·Gids′ (6)

KiZ(r′) = −
∫
S

Z(r′) ×∇Gids (7)

Gi =
e−jki|r−r′|

4π |r − r′| (8)

where ki = ω
√
µiεi and ηi =

√
µi

εi
. We applied impedance boundary

condition (IBC) to surface Scd and Sce

E1 − (n̂1 · E1)n̂1 = ηcdη0(n̂1 × H1) (9)
E0 − (n̂0 · E0)n̂0 = ηceη0(n̂0 × H0) (10)

where ηcd and ηce are the normalized surface impedance of Scd and Sce.
On surface Sd the tangential components of electromagnetic field are
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continuous

E1|tan = E0|tan (on Sd) (11)
n̂1 × H1 = −n̂0 × H0 (on Sd) (12)

The combined electric field integration and magnetic field integration
(CFIE) on Scd and Sce can be obtained by (9) and (10),

α

η0
{E1 − (n̂1 · E1)n̂1} = β {ηcdn̂1 × H1} (on Scd) (13)

α

η0
{E0 − (n̂0 · E0)n̂0} = β {ηcen̂0 × H0} (on Sce) (14)

with (3), (4), (13) and (14), we can obtain the CFIE on Scd, Sce and
Sd .

α

η0

{
L1cdJcd − ηcdη0

[
K1cd(Jcd × n̂1) +

1
2
Jcd

]
− L1dJd + K1dMd

}
tan

−βηcd

{
1
2
Jcd + n̂1 ×

[
K1cdJcd + L1cdηcdη0(Jcd × n̂1)/η2

1 −K1dJd

−L1dMd/η
2
1

]}
= 0 (15)

α

η0

{
L0ceJce − ηceη0

[
K0ce(Jce × n̂0) +

1
2
Jce

]
− L0dJd + K0dMd

}
tan

−βηce

{
1
2
Jce + n̂0 ×

[
K0ceJce + L0ceηceη0(Jce × n̂0)/η2

0 −K0dJd

−L0dMd/η
2
0

]}
=

1
η0

{
αEi

tan − βηceη0n̂0 × Hi

}
(16)

1
η0

{−L1cdJcd + K1cdηcdη0(Jcd × n̂1) + L0ceJce −K0ceηceη0(Jce × n̂0)

+(L1d + L0d)Jd − (K1d + K0d)Md}tan =
1
η0

Ei
tan (17)

n̂0 × {−K1cdJcd−L1cdηcdη0(Jcd×n̂1)+K0ceJce + L0ceηceη0(Jce × n̂0)

+(K1d + K0d)Jd +
(

1
η2
1

L1d +
1
η2
0

L0d

)
Md

}
= n̂0 × Hi (18)

Solving Equations (15)–(18), we can obtain the electric currents
and magnetic currents J cd, J ce, J d and M d. MLFMA is very suitable
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for solving integral equations, in MLFMA Green’s function Gi can be
written as

Gi =
e−jki|r−r′|

4π |r − r′| ≈
−jk

16π2

∫
d2k̂e−jk·(rjm−rim′ )TL(k · rmm′) (19)

where

TL =
L∑

l=0

(−j)l(2l + 1)h(2)
l (krm′)pl

(
k̂ · r̂mm′

)
(20)

is the translation operator of MLFMA. The gradient expression of Gi

is

∇Gi = −jk

[ −jk

16π2

∫
d2k̂e−jk·(rjm−rim′ )TL(k · rmm′)

]
(21)

Applying the vector basis function f i and combining (6), (7), (19) and
(21), we can obtain the multipole expansion expressions of L and K
operators

LZ(r′) =
ωµk

16π2

∫
ds

∫
ds′e−jk·(rjm−rim′ )TL(k·rmm′)

(
I−k̂k̂

)
· fi(r′)ai

(22)

KZ(r′) =
k2

16π2

∫
ds

∫
ds′e−jk·(rjm−rim′ )TL(k·rmm′)

(
fi(r′)×k̂

)
ai (23)

where ai is the expansion coefficients of electric current and magnetic
current. Substituting (22) and (23) into (15)–(18), the aggregation
operator and disaggregation operator of MLFMA can be written as

Vsm′i(k̂) =
∫

fi

(r′)e−jk̂·r̂im′ds′ (24)

Vfmj =
M∑

m=1

αm

∫
dse−jk̂·r̂jm

(
I − k̂k̂

)
· fj(r)

+
N∑

n=1

βn

∫
dse−jk̂·r̂jm

(
fj(r) × k̂

)
(25)

in (25), αm and βn are the coefficients of Li and Ki operators , M and
N are the number of Li and Ki operators in Equations (15)–(18).

In traditional MLFMA there are three computation processes that
consume CPU time and memory: 1) the computation of impedance
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integration; 2) the computation of translation process; and 3) the
computation of translation factor TL.

While computing the integral formulation of the near-field
interaction in MLFMA, the basis function f i and testing function f j

can be approximated as linear combinations of Dirac delta functions
on the Gaussian integration points

g ≈ g̃ =
IG∑
s=1

psr′δ
3
s(r − r′) g ∈ {fx, fy, fz} (26)

We let∫
(x− xj0)(y − yj0)(z − zj0) ×

[
g −

IG∑
s=1

psr′δ
3
s(r − r′)

]
ds = 0 (27)

the point (xj0, yj0, zj0) is at the center of f i or f j . According to (27),
a matrix equation of the expansion coefficient psr′ can be obtained and
then psr′ can be derived.∑

WIGr′psr′ = OsIG
(28)

where

OsIG
=

∫
(x− xj0)(y − yj0)(z − zj0)gjds (29)

WIGr′ =
(
x′ − xj0

) (
y′ − yj0)(z′ − zj0

)
(30)

Substituting (26) into the near-field interaction integral formula-
tions, we can see that the calculation speed and precision of integral
formulations are controlled by the Gaussian integral coefficient ws and
the expansion coefficient psr′ of basis and testing functions.∫

fi(r′) · fj(r) ·G(r, r′)ds =
IG∑

si=1

IG′∑
sj=1

wsipsiwsjpsjG (31)

For computing V fmj , testing function f j can be approximated in
the same way as in the near-field integral.

Through the expansion, the integral computation of near-field
interaction and V fmj can be simplified. The speed and precision can
be controlled also. For an arbitrarily shaped body, if the following
rules are used, the calculation error of integral computation can be
controlled within 1%.
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1) For the surface whose curvature is discontinuous, if the distance
between the triangle elements center and curvature center less
than 0.5λ, where λ is wave length, then the normal number of
Gaussian integral points should be employed.

2) For the surface whose curvature is continuous and finite, such
as sphere surface and cylinder surface, the number of Gaussian
integral points employed is less than 0.7 times of normal number.

3) For the surface whose curvature is continuous and infinite, for
example plane surface, the number of Gaussian integral points
employed is less than 0.6 times of normal number.
While computing V sm′i, basis function f i can be approximated

as linear combinations of Dirac delta functions on the centers of grids
grouped uniformly in MLFMA (Fig. 2).

basis function fi

Dirac function 

Figure 2. Expansion of basis function fi.

gi ≈ g̃i =
∑

r′∈Ci

βir′δ
3(r − r′) gi ∈ {fix, fiy, fiz} (32)

where Ci is the number of grid centers around basis f i.
We let∫
(x− xi0)(y − yi0)(z − zi0) ×

[
gi −

IG∑
s=1

βir′δ
3(r − r′)

]
ds = 0 (33)

the point (xi0, yi0, zi0) is at the center of f i. According to (33), a
matrix equation of the the expansion coefficient βir′ can be obtain.ed
and then βir′ can be derived.∑

WCir′βir′ = OiCi (34)
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where

OiCi =
∫

(x− xi0)(y − yi0)(z − zi0)gids (35)

WCir′ = (x′ − xi0)(y′ − yi0)(z′ − zi0) (36)

Through this expansion operation, the integral computation of
V sm′i can be simplified like V fmj and near-field interaction that we
have discussed above and there is another advantage by using this
expansion. We notice that basis function f i is mapped to the grid
centers around f i through this expansion and the grids around f i are
filled by Dirac functions, then the translation formulation of MLFMA
is a discrete circle convolution and can be calculated by FFT.∑

m′∈Gm′

TLSm′ = FFT−1{FFT ([Sm′ ]) × FFT ([TL])} (37)

where

Sm′

(
k̂
)

=
∑

i

Vsm′i

(
k̂
)

ai, (38)

In practice we can enclose every parts of the target by multiple
cubes (Fig. 3). Each cube is divided by grids in uniform size on
connection boundary and at same level of MLFMA, thus the less
empty grids are generated and higher efficiency of FFT can be
obtained. While expanding basis function f i, expansion coefficient can
be calculated at the coarsest level of MLFMA only and the expansion
coefficient of other levels can be obtained by interpolation method.

cube 1 

cube 3 

cube 2 

target 

Figure 3. Target enclosed by multiple cubes.

While computing translation operator TL, the method given by [3]
is used on the base of RPFMA [4], adaptive-RPMLFMA [5] and
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FAFFA-MLFMA [6], thus the TL can be calculated on 1/8 sphere
surface only and the computation complexity of MLFMA can be
reduced significantly.

Using all of the improvement measures we have introduced above,
the MLFMA have adaptive computation performances as follow: 1)
adaptive computation of the integration of near-field interaction, V fmj

and V sm′i by the expansion of basis function and testing function;
2) the empty grid around basis function f i are filled adaptively and
the computation of translation process meets the requirement of FFT
adaptively; and 3) the precision and CPU time of the computation of
TL can be controlled adaptively. So the algorithm we presented is an
adaptive algorithm.

To discrete the integral equations, the RWG basis function [7] is
used for the surface of the object, and the basis function illustrated in
Fig. 4(a) is used for antenna (wire), the expression of which is shown
as follow.

fW
n (r) =


ρ+

n

l+n
, r ∈ W+

ρ−
n

l−n
, r ∈ W−

0, etl

(39)

The basis function illustrated in Fig. 4(b) is used to wire-surface
junctions, and the expression of this kind of basis function is [8]

fC
n (r) =


fCP

n (r), r ∈ T+l
n

fCW
n (r), r ∈ Wire

0, etl

(40)

(a) (b)

Figure 4. Basis function used to wire and wire-surface joint.
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where

fCP
n (r) =

α+l
n

αt
n

1
l+l
n

[
1 − (h+l

n )2

(ĥ+l
n · ρ+l

n )2

]
ρ+l

n

h+l
n

(41)

fCP
n (r) = −ρ−

n

l−n
(42)

3. RESULTS AND DISCUSSION

In this section, the characteristics of two HF communication antennae
on a ship are analyzed. The positions of these two antennae and the
grid model of ship are shown in Fig. 5. The coordinates of these two
antennae on the shipboard are (112.0,7.5,8.5) and (48.5,8.5,6.5). The
grid model is used to obtain the geometrical data of the elements
only. When we analyze this model, all the buildings on shipboard
are seen as dielectric objects (εr = 9.0, µr = 1.1) and the ship
body is seen as perfect conductor (PEC). The ship dimension is about
170×18×6.5 m3 and 116796 unknowns are obtained. All the simulation
process is finished on microcomputer with PIV-2.4 GHz processor and
4 GB memory.

antenna1 

antenna2 

X

Y

Z

Figure 5. Model of antenna on a ship.

The radiation pattern of these two antenna in horizontal plane and
vertical plane are illustrated in Fig. 6–Fig. 9. For the radiation pattern
in horizontal plane, the experiment result in free space is presented first
and then the experimental result on shipboard. Experiment results are
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Figure 6. Radiation pattern of antenna1 (25 MHz H-H).
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Figure 7. Radiation pattern of antenna2 (25 MHz H-H).

obtained by using a scaled ship model with the scaled ratio 1:80. We
can see that radiation pattern has been modified by the effect of the
ship body. The numerical result of radiation pattern in horizontal plane
on shipboard is also shown in Fig. 6 and Fig. 7. The good agreement of
numerical and experimental results show that the algorithm presented
in this paper has very high precision. For the radiation pattern in
vertical plane, only the experimental result in free space and the
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Figure 8. Radiation pattern of antenna1 (25 MHz V-V).
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Figure 9. Radiation pattern of antenna2 (25 MHz V-V).

numerical result on shipboard are presented. The experimental result
on shipboard is not given because it is very difficult to be obtained.

In Fig. 10–Fig. 12, the numerical results of the input resistance,
input reactance and gain of these two antennae on shipboard are
shown, where the experiment results in free space is also presented.
Through both the experiment and numerical results we can see that
the antenna characteristics have also been modified by the effect of the
ship body.
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Figure 10. Input resistance of antennae.
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Figure 11. Input reactance of antennae.

To show the effectiveness of the adaptive MLFMA presented in
this paper, we also simulated all antennae characteristics by traditional
MLFMA, and the performances of them are shown in Table 1. We
can see that the adaptive MLFMA has better performance than the
traditional one.

Table 1. Performance of Adaptive MLFMA and MLFMA.

Unknowns CPU time (s) Memory (MB)

Adaptive MLFMA 116796 139828 2659

MLFMA 116796 207669 3798
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Figure 12. Gain of antennae in free space and on shipboard.

4. CONCLUSION

The computational complexity of the adaptive MLFMA presented in
this paper is only about 0.7×O(Ns lgNs) and its memory requirement
is 0.7 × O(Ns), where Ns denotes the number of surface unknowns.
The numerical results demonstrate that the method presented also has
high precision, and the characteristics of antenna on electrically larger
composite targets can be generally, accurately, efficiently computed by
this technique.
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