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Abstract—Based on both the modified Rytov method and the
altitude-dependent model of the ITU-R slant atmospheric turbulence
structure constant, the uniform model of scintillation index considering
inner- and outer-scales is derived form weak to strong fluctuation
regions with Gaussian beam propagation on the slant path, and can
be degenerated to the result of the horizontal path with atmospheric
structure constant is a fixed value. The numerical conclusions indicate
the smaller wavelength, the inner-scale has a stronger impact on
scintillation than outer-scale. But, in strong fluctuation, the outer-
scale effect is prominence. Finally, the numerical results are compared
and verified with the experimental data.

1. INTRODUCTION

As an optical beam propagates through the atmosphere, it will
experience random deflections due to scintillation and beam spreading
and so on. Basic scintillation characteristics have been studied for
60 years. In the late 1950s, Tatarskii and Chernov adopted Rytov
approximation method [1–4] and introduced the modern statistic
theory of turbulence. They obtained the Rytov results of plan
wave and sphere wave in the weak turbulence, which are still the
classic theory on wave propagation in weak fluctuation region. The
limitation of the weak fluctuation theory was clearly demonstrated
and saturation phenomenon of the scintillation was discovered by the
experimental data of Gracheva and Gurvich [5, 6] in 1965, neither
the Born approximation nor Rytov approximation can explain the
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experiments. So many scholars explored theoretically and hoped to
explain the characteristics of wave propagation in strong turbulence.

The modified Rytov method expanded the above study to the
moderate and strong turbulences [7–9]. According to Rytov covariance
σ2

0 = 1.23C2
nk

7/6L11/6 � 1 of plan wave in the strong turbulence,
Fante obtained the intensity fluctuation variance σ2

I of plan wave with
asymptotic theory [10, 11], but this result was lower than Gracheva
and Gurvich’s experimental data obviously. Reference [12] offered
the approximate expression of intensity fluctuation variance in the
saturation area, with and without considering the influence of inner-
scale. To sphere wave, without the consideration, the result were lower
than the experimental data in the reference [13]. However, with the
consideration, the result was much closer to it. So, on the study of
optical scintillation, the influence of inner-scale should be taken in
turbulence area, esp. the saturation area of strong fluctuation. In 1993,
Miller [14] developed the analysis of scintillation index of Gaussian
beam in weak fluctuation area. In 1999, Cynthia et al. [15] studied
and intensity fluctuation variance of Gaussian beam propagation on
horizontal path in the saturation area. Andrews et al. [7] have
developed the scintillation index models with finite inner- and outer-
scale for a plane, spherical and beam wave, which can be applied to
moderate-to-strong regions. There are many correlative researches
[16–20] and application [21] of turbulent model. A.Kuramoto et al.
[22] given laser speckle imaging of a finger by scattered light optic.
Many excellent reviews related to optical wave propagation [23] in the
ionosphere [24, 25] and other medium [26–30] have been published.

Based on the altitude-dependent model of the ITU-R turbulence
structure constant model, the modified Rytov method, which
applicable to the optical wave propagation on the horizontal path,
is extended to the propagation on the slant path. This paper derives
the uniform model of scintillation index considering inner- and outer-
scales form weak to strong fluctuation regions with Gaussian beam
propagation through atmospheric turbulence on the slant path, and can
be degenerated to the result of the horizontal path with atmospheric
structure constant is a fixed value. The effect of different inner- and
outer-scales to Gaussian beam scintillation propagation on slant path
is discussed. Finally, the numerical results are compared and verified
with the experimental data.
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2. SCINTILLATION INDEX CONSIDERING INNER-
AND OUTER-SCALES

2.1. Modified Rytov Theories on Slant Path

Atmospheric turbulence structure constant which is altitude dependent
is general statistic nonhomogeneous. Based on modified Rytov method,
we introduce the ITU-R turbulence structure constant model [31] on
the slant path expressed as

C2
n(h) = 8.148 × 10−56v2

RMSh
10e−h/1000

+2.7 × 10−16e−h/1500 + C0e
−h/100

(1)

There vRMS =
√
v2
g + 30.69vg + 348.91 is the wind velocity of

vertical path, vg is sub aerial wind velocity, C0 is sub aerial atmospheric
structure constant (its typical value is 1.7 × 10−14m−2/3).

We start with the following modified Rytov method assumptions:
(1) Atmospheric turbulence is statistic nonhomogeneous. (2) The
received irradiance of an optical wave can be modeled as a modulation
process in which small-scale (diffractions effect) are multiplicatively
modulated by large-scale (refractive effect) fluctuations. (3) Small-
and large-scale processes are statistically independent, as I = xy
(x, y are the effect genes of large- and small-scale of turbulence to
intensity, respectively). (4) The Rytov method for optical scintillation
is valid even into the saturation regime with the introduction of a
spatial coherence of the optical wave in strong fluctuation regimes. (5)
The geometrical optics method can be applied to large-scale irradiance
fluctuations. Under the approximate of modified Rytov method, the
optical wave propagation between the source and receiver is given by

U(r, L) = U0(r, L) exp [ψx(r, L) + ψy(r, L)] (2)

where ψx(r, L) and ψy(r, L) are independent and statistic uncorrelated
complex phases random, and correspond to the effect of the large- and
small-scale of turbulence. L is the propagation path length between
transmitter and receiver, r is observe position in the observe plane,
U0(r, L) is the optical field distribution with turbulence nonexistence.

In fact, the intensity fluctuation of optical wave propagation
in space is dependently on space refractive index fluctuation
spectrum. Introducing the inner- and outer-scales of turbulence to the
Kolmogorov spectrum model can expand its effective range. Although
this rebuild model is experience, the results obtained by this modified
model are closer to experimental data than Kolmogorov spectrum
model. Considering the inner- and outer-scales effect of atmospheric
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turbulence, and based on the Kolmogorov spectrum model, Andrews
et al. introduce a spatial frequency filter function. Hence, the effective
spectrum of refractive-index fluctuations [9, 15] can be expressed as

ΦnG(κ, l0, L0) = Φn(κ)G(κ, l0, L0) (3)

where Φn(κ) = 0.033C2
nκ

−11/3 is Kolmogorov spectrum, k is the optical
wave number.

The spatial filter function is

G(κ, l0, L0) = Gx(κ, l0, L0) +Gy(κ)

= f(κ, l0)g(κ, L0) exp
(
−κ

2

κ2
x

)
+

κ11/3(
κ2 + κ2

y

)11/6
(4)

f(κ, l0) = exp
(
−κ2/κ2

l

) [
1 + 1.802(κ/κl) − 0.254(κ/κl)7/6

]
κl = 3.3/l0

(5)

In Eq. (4), the parameter κx is a lager-scale (or refractive) spatial
frequency cutoff much like an inner-scale parameter and κy is a small-
scale (or diffractive) spatial frequency cutoff much like an outer-scale
parameter. In this fashion, Gy(κ) is the high-pass filter function
(spatial frequency κ > κy) and Gx(κ, l0, L0) is the low-pass filter
function (spatial frequency κ < κx), at a given propagation distance.
Where g(κ, L0) is the outer-scale factor, as following

g(κ, L0) = 1 − exp
(
−κ

2

κ2
0

)
(κ0 = 8π/L0) (6)

Substituting Eq. (6) into Eq. (4), the low-pass filter function can
be written as

Gx(κ, l0, L0)= Gx(κ, l0) +Gx(κ, L0)

=f(κ, l0)exp
(
−κ

2

κ2
x

)
−f(κ, l0)exp

(
−κ

2

κ2
x

)
exp

(
−κ

2

κ2
0

)
(7)

Based on beam characteristics, the scintillation variance of a
Gaussian beam wave is composed of beam radial and longitudinal (or
axis) component and takes the form

σ2
I (r, L) = σ2

I, r(r, L) + σ2
I, l(0, L) (8)

This is obtained by supposing the small-scale fluctuations are
multiplicatively modulated by large-scale fluctuations. The radial
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component of scintillation vanishes on the laser beam axis (r = 0)
and is closely approximated by the radial log-variance [2, 9]

σ2
I, r(r, L) ∼= σ2

ln I, r(r, L) ∼= 4.42σ2
0Λ

5/6
e

r2

W 2
e

r ≤W (9)

where W is the free-space radius of beam at the receiver, Λe and We

is effective receiver beam parameter.

Λe =
Λ

1 + 1.625σ12/5
1 Λ

=
Λ

1 + 4qΛ/3
=

2L
kW 2

e

,

We = W
(
1 + 1.625σ12/5

0 Λ
)1/2

(10)

In strong fluctuations, the radial component will diminish
eventually as the beam propagations into the saturate region except,
possibly, at r � W . This paper mainly studies long-distance laser
propagation on the slant path, so its radial component does not make
an excessive discussion here.

Under general atmospheric conditions, the radial component of a
Gaussian beam wave scintillation index is [32]

σ2
I, l(L) = exp

(
σ2

ln I, l

)
− 1 ∼= σ2

ln I, l σ2
0 � 1 (11)

where σ2
ln I, l is the log-irradiance variance. Considering the inner- and

outer-scale, Eq. (11) can be expressed as

σ2
ln I, l = 8π2k2L

∫ 1

0

∫ ∞

0
κΦnG (κ, l0, L0) exp

(
−ΛLκ2ξ2/k

)
{

1 − cos
[
Lκ2

k
ξ(1 − Θ̄ξ)

]}
dκdξ

(12)

Here, z is propagation distance, ξ = z/L, Λ and Θ̄ are receiver beam
parameters defined by

Λ =
Λ0

Λ2
0 + Θ2

0

=
2L
kW 2

, W = W0(Θ2
0 + Λ2

0)
1/2, Θ0 = 1 − L

R0

Θ̄ = 1 − Θ0

Θ2
0 + Λ2

0

, Λ0 =
2L
kW 2

0

(13)

where W0 is the beam radius and R0 is the phase front radius of
curvature at the transmitter.
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Substituting Kolmogorov spectrum into Eq. (12), the Rytov
variance on slant path [15] for Gaussian beam is shown as

σ2
1, B = 1.83σ2

0

∫ 1

0

C2
n(ξH)
C2

n0

ξ
5
6 (1 − Θ̄ξ)

5
6 dξ (14)

where k = 2π/λ, λ is the wavelength of the incidence wave.
Based on the third assumption, and considering the effect of the

large- and small-scale turbulent eddies to scintillation index, which is
defined as

σ2
I, l(l, L) =< x2 >< y2 > −1 = (1 + σ2

x)(1 + σ2
y) − 1

= σ2
x + σ2

y + σ2
xσ

2
y

(15)

Moreover, the σ2
x and σ2

y in the Eq. (15) can be expressed in terms
of log-irradiance variances of x and y as σ2

x = exp(σ2
ln x) − 1, σ2

y =
exp(σ2

ln y) − 1. The Eq. (15) is written as

σ2
I, l(l, L) = exp

(
σ2

ln x + σ2
ln y

)
− 1 (16)

These theories are applicable under weak-to-strong irradiance
fluctuations. So, the longitudinal (axis) component of scintillation
index of the Gaussian beam considering inner- and outer-scale is

σ2
I, l(l, L) = exp

(
σ2

ln x, l0 − σ2
ln x, L0

+ σ2
ln y

)
− 1 (17)

where σ2
ln x, l0

is large-scale log irradiance fluctuation variance
considering inner-scale, σ2

ln x, L0
is large-scale log irradiance fluctuation

variance considering outer-scale, σ2
ln y is small-scale log irradiance

fluctuation variance.

2.2. Small-scale Log Irradiance Fluctuation Variance

Based on modified Rytov and Gaussian beam optical scintillation
theory, the small-scale log irradiance fluctuation is as follows [3]

σ2
ln y = 8π2k2L

∫ 1

0

∫ ∞

0
κΦn(κ)Gy(κ) exp

(
−ΛeLκ

2ξ2/k
)

{
1 − cos

[
Lκ2

k
ξ
(
1 − Θ̄ξ

)]}
dκdξ

(18)

Submitting the expression of atmospheric refracting index
spectrum Φn(κ) and small-scale filter function Gy(κ) into Eq. (18).
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Applying 1 − cosα ≈ 1, and there is

σ2
ln y ≈ 2.605k2L

∫ 1

0
C2

n(ξH)
∫ ∞

0

κ

(κ2 + κ2
y)11/6

exp
(
−ΛLκ2ξ2/k

)
dκdξ

(19)

Let η = Lκ2/k, ηy = Lκ2
y/k, then Eq. (19) can be written as

σ2
ln y = 1.303k2LC2

n0

∫ 1

0

C2
n(ξH)
C2

n0

∫ ∞

0

(
L

k

)5/6

[η + ηy]−11/6

exp(−Ληξ2)dηdξ
(20)

When Ληξ2 � 1 and exp(−Ληξ2) ≈ 1, Eq. (20) is given by

σ2
ln y ≈ 1.06σ2

0

∫ 1

0

C2
n(ξH)
C2

n0

∫ ∞

0
[η + ηy]−11/6dηdξ (21)

Simplified Eq. (21), the small-scale log-irradiance variance is
shown as

σ2
ln y ≈ 1.27σ2

Gη
−5/6
y (22)

where considering inner scale effect, ηy is the cutoff frequency of filter
function without dimension, namely

ηy = 3 + 2.07σ12/5
G (23)

σ2
G is log-irradiance fluctuation variance under weak fluctuation on

slant path, can be expressed as

σ2
G = 8π2k2L

∫ 1

0

∫ ∞

0
κΦn(κ)f(κ, l0) exp

(
−ΛLκ2ξ2/k

)
{

1 − cos
[
Lκ2

k
ξ
(
1 − Θ̄ξ

)]}
dκdξ

(24)

Let a = 1/κ2
l + ΛLξ2/k, b = Lξ(1 − Θ̄ξ)/k, ξ = z/L, applying

cos(α) = (eiα + e−iα)/2 to Eq. (24) and there is

σ2
G = 1.302k2L

∫ 1
0 C

2
n(ξH)

∫ ∞

0
κ−

11
3 e−aκ2

[
1− 1

2
eibκ2

+
1
2
e−ibκ2

]
·
[
1+1.802

κ

κl
−0.254

(
κ

κl

)7/6
]

dξdκ
(25)
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Since each integral of the inner integral term can be expressed as
Gamma function, the scintillation index of Gaussian beam propagation
on the slant path can be obtained by real part. This is shown as follows

σ2
G = 1.302k

7
6L

11
6

∫ 1

0
C2

n(ξH){
Γ

(
−5

6

) [
a

5
6
1 − (a2

1 + b21)
5
12 cos

(
5
6
ϕ1

)]

+
1.802

Q
1/2
l

Γ
(
−1

3

) [
a

1
3
1 − (a2

1 + b21)
1
6 cos

(
1
3
ϕ1

)]

− 0.254

Q
7/12
l

Γ
(
−1

4

) [
a

1
4
1 −

(
a2

1 + b21
) 1

8 cos
(

1
4
ϕ1

)]}
dξ

}
(26)

where Ql = 10.89L/kl20, a1 = 1/Ql + Λξ2, b1 = ξ(1 − Θ̄ξ), and
ϕ1 = tan−1(b1/a1).

This model can be converted to horizontal model while C2
n(ξH) is

a constant. Based on Eq. (22) and Eq. (23), the resulting small-scale
log-irradiance fluctuation are given by

σ2
ln y(l0, L) =

1.272σ2
G[

3 + 2.07
(
σ2

G

)6/5
] 5

6

=
0.509σ2

G[
1 + 0.69

(
σ2

G

)6/5
] 5

6

(27)

2.3. Large-scale Scintillation Model

The large-scale log-irradiance fluctuation with inner-and outer-scale
are given by

σ2
ln x, l0, L0

= 8π2k2L

∫ 1

0

∫ ∞

0
κΦn(κ)Gx(κ, l0, L0)

exp
[
−

(
ΛLκ2ξ2/k

)]{
1−cos

[
Lκ2

k
ξ
(
1−Θ̄ξ

)]}
dκdξ

(28)

Let cos(α) = (eiα − e−iα)/2, and if only considering inner-scale
effect, then submitting Gx(κ, l0) to Eq. (28)

σ2
ln x, l0

= 0.264π2k2L

∫ 1

0
C2

n(ξH)
∫ ∞

0
κκ−

11
3

exp
[
−

(
1
κ2

l

+
1
κ2

0

+
1
κ2

x

+
ΛLξ2

k

)
κ2

]
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·
[
1 + 1.802

κ

κl
− 0.254

(
κ

κl

) 7
6

]

·
[
1 − 1

2
ei

b2L
k

κ2 − 1
2
e−i

b2L
k

κ2

]
dκdξ

(29)

Let a2 = (k/Lκ2
l ) + (k/Lκ2

x) + Λξ2, b2 = ξ(1 − Θ̄ξ), we apply∫ ∞
0 tz−1e−λtdt = λ−zΓ(z)λ > 0 to Eq. (29), and educe the equation as

follows, which shape is the same as Eq. (26). Hence, on the slant path,
we give the closely precise expression of large-scale log-irradiance with
finite inner-scale by

σ2
ln x, l0

= 1.302k
7
6L

11
6

∫ 1

0
C2

n(ξH){
Γ

(
−5

6

) [
a

5
6
2 − (a2

2 + b22)
5
12 cos

(
5
6
ϕ2

)]

+
1.802

Q
1/2
l

Γ
(
−1

3

) [
a

1
3
2 − (a2

2 + b22)
1
6 cos

(
1
3
ϕ2

)]

− 0.254

Q
7/12
l

Γ
(
−1

4

) [
a

1
4
2 − (a2

2 + b22)
1
8 cos

(
1
4
ϕ2

)]}
dξ

}
(30)

where ηx = Lκ2
x/k, Ql = Lκ2

l /k, a2 = 1/Ql + 1/ηx + Λξ2 and
ϕ2 = tan−1(b2/a2).

For the non-dimensional quantity ηx, as Qlσ
2
0 � 100, for

beam wave, based on reference [9] the longitudinal scintillation index
approximately expresses as

σ2
I (0, L) = 1 +

2.39 + 5.26Θ̄

(σ2
0Q

7/6
l )1/6

(31)

where on slant path, the Rytov variance for beam wave defined by
Eq. (14).

In the saturation regime the small-scale log-irradiance approaches
σ2

ln y = ln 2, regardless of the type of optical wave, and the longitudinal
scintillation index takes the limiting form [3]

σ2
I, l(L)=exp(σ2

ln I, l) − 1=exp(σ2
ln x + σ2

ln y) − 1 ∼= 1 + 2σ2
ln x σ2

0 � 1
(32)

In the saturation regime for long propagating distance or strong
turbulence, the geometrical optics method can be applied to large-scale
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irradiance fluctuations. When the geometric optics approximation is
applied to Eq. (28), the large-scale log-irradiance associated with the
longitudinal component under the case of finite inner scale is the form

σ2
ln x, l0 = 0.652k

7
6L

11
6

∫ 1

0
C2

n(ξH)ξ2(1−Θ̄ξ)2
∫ ∞

0
η

1
6 exp

[
−

(
1
Ql

+
1
ηx

)
η

]

·
[
1 + 1.802

(
η

Ql

) 1
2

− 0.254
(
η

Ql

) 7
12

]
dηdξ

∼= 0.697k
7
6L

11
6 η

7
6
x

∫ 1

0
C2

n(ξH)ξ2(1 − Θ̄ξ)2dξ Qlσ
2
0 � 100 (33)

From weak to strong fluctuation region, based on asymptotic
behavior (Eq. (31) and Eq. (33)), the parameter ηx has the form of

1
ηx

=
0.38

1 − 3.21Θ + 5.29Θ2
+ 0.629Q

1
6
l


 σ

1/3
1, Bσ

2
2

1 + 2.20Θ2




6
7

(34)

where σ2
2 = k

7
6L

11
6

∫ 1
0 C

2
n(ξH)ξ2(1 − Θ̄ξ)2dξ.

In the same way, when considering outer-scale, submitting
Gx(κ, L0) in Eq. (7) to Eq. (28). By contrast, we can obtain the
expression as follows

ηx0 = Lκ2
x0/k = ηxQ0/(ηx +Q0) (35)

where Q0 = 64π2L/(kL2
0), ηx is given by Eq. (34), and σ2

ln x, L0
can be

obtained by ηx0 in Eq. (35) replaces ηx in Eq. (33), then the large-
scale log-irradiance associated with the longitudinal component under
the case of finite outer-scale is the form

σ2
ln x, L0

= 0.697k
7
6L

11
6 η

7
6
x0

∫ 1

0
C2

n(ξH)ξ2(1 − Θ̄ξ)2dξ (36)

2.4. The Beam Scintillation Index with Inner-scale on Slant
Path

Based on the radial component of scintillation on the horizontal path,
outer-scale effects in the radial component on slant path is shown as

σ2
I, r(r, l0, L0) ∼= σ2

ln I, r(r, L)

∼= 4.42σ2
1, BΛ5/6

e

[
1 − 1.15

(
ΛeL

kL2
0

)1/6
]
r2

W 2
e

r ≤W

(37)
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By combining all the above results, we obtain the scintillation
index model with finite inner scale and outer scale effects for a
Gaussian beam wave propagating on slant path, which is given by
Eq. (38). In this model, however, the inner-scale effect is considered
in σ2

ln x, l(0, L, l0) and σ2
G, the outer-scale effect is considered in

σ2
ln x, l(0, L, L0). On slant path, the scintillation index model with

finite inner- and outer scale is shown as

σ2
I (r, L)=σ2

ln I, r+exp

[
σ2

ln x, l0
−σ2

ln x, L0
+

0.509σ2
G

[1+0.69(σ2
G)

6
5 ]

5
6

]
−1 (38)

From the theory of beam propagation, when the beam radius
increasing, its transfer character is approach to that of the plan wave,
but when the beam radius decreasing, it transfer character is approach
to that of the sphere wave. The scintillation index model with finite
inner- and outer scale in Eq. (38) can be degenerated the result of
plan wave propagation on the slant path when Θ̄ = 0 and can be
degenerated the result of sphere wave propagation on the slant path
when Θ̄ = 1. This indicates the result of scintillation index model
is valid. Assumption atmospheric turbulence structure constant is
homogeneous in transfer path Eq. (38) can be degenerated to the result
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k7/6L11/6)1/2

2
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Figure 1. The scintillation index with inner-scale and outer-scale
effect, λ = 1.06µm.
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of horizontal path

σ2
I, bh = exp


 0.45σ2

0c
7/6
1

[
1/3 − 0.5Θ̄ + 0.2Θ̄2

]
[
1 + 0.914c1σ

12/5
0

[
1/3−0.5Θ̄+0.2Θ̄2

0.86−0.19Θ̄+2.06Θ̄2

]6/7
] 7

6

+
1.272σ2

0[
(3 + 5Θ̄) + 2.07σ12/5

0

]5/6


 − 1

(39)

where c1 = 3 + 5Θ̄, it is valid under 0 ≤ σ2
0 < ∞. Eq. (39) can

also be obtained based on modified Rytov and Gaussian beam optical
scintillation theory. This models shape is the same as Eq. (40), which
is given by Hopen and Andrews. Comparing the two equations, we
find the two coefficients in Eq. (40) may be misprinted.

σ2
I, bh = exp


 0.45σ2

0c
7/6
1

[
1/3 − 0.5Θ̄ + 0.2Θ̄2

]
[
1 + 1.51c1σ

12/5
0

[
1/3−0.5Θ̄+0.2Θ̄2

0.86−0.19Θ̄+2.06Θ̄2

]6/7
] 7

6

+
1.272σ2

0[
(3 + 5Θ̄) + 1.83σ12/5

0

]5/6


 − 1

(40)

3. NUMERICAL ANALYSIS AND CONCLUSIONS

On slant path, based on the turbulence atmosphere structure constant
model C2

n(h) recommended by ITU-R with C0 = 1.7 × 10−13, for
wavelength λ = 1.06µm, 1.55µm, 3.8µm, 10.6µm laser Gaussian
collimated beam wave, the numerical results of scintillation index
considering finite inner scale (l0 = 1 mm, 10 mm) and outer scale
(L0 = 1 m, 10 m) effect with turbulence strong parameter σ0 =
(1.23C2

nk
7/6L11/6)1/2 are given as Figures 1–4, which are calculated

by Eq. (38).
These predicted results show that the inner-scale has a strong

impact on beam scintillation index under moderate to strong irradiance
fluctuations, and the smaller wavelength the stronger inner-scale effect,
The effect of inner-scale is bigger than which of outer-scale, and under
strong turbulence, the outer-scale effect is stronger, even at the case of
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Figure 2. The scintillation index with inner-scale and outer-scale
effect, λ = 1.55µm.
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Figure 3. The scintillation index with inner-scale and outer-scale
effect, λ = 3.8µm.

the large wavelength. So under strong turbulence or long propagation
path, it is to consider not only the effect of inner-scale but also the
outer-scale to scintillation index.

In Figure 5, open circles represent scintillation data taken
form [13]. The range of inner-scales in experimental data is over the
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Figure 5. Comparisons the results of considering the effects of inner-
and outer-scale with the experimental data.

intervals 3 mm < l0 < 7 mm. For validating the results in this paper,
Figure 5 shows the comparisons of the results by considering the effects
of inner- and outer-scale with the experimental data. It is shown
that the numerical results of the scintillation with zone inner-scale
is smaller than the experimental data, and the results of considering
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inner-and outer-scales is drive to experimental data. This is consistent
with theories analysis [11]. Figure 5 illustrates considering the inner-
and outer-scales, theoretical results of laser beam propagation on slant
path from weak fluctuation area to the saturated area to track the
experimental data quite closely.

4. CONCLUSIONS

This model of the scintillation index with finite inner- and outer-
scale for laser beam wave propagating through atmospheric turbulence
medium on slant path is developed under the assumption that small-
scale irradiance fluctuations are modulated by large-scale irradiance
fluctuations and it is valid under moderate to strong irradiance
fluctuations on slant path. On slant path, the scintillation indexes
with finite inner-scale are general smaller than the results on horizontal
path. This scintillation index model for laser beam propagation
in atmosphere turbulence is significant for the visible and infrared
imaging, laser tracking, controlling and guiding, and laser satellite-
Earth communication.
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