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Abstract—The estimation of the directions-of-arrival (DoAs) of
multiple signals is a topic of great relevance in smart antenna synthesis
and signal processing applications. In this paper, a memory-based
method is proposed to compute the maximum likelihood (ML) DoA
estimates. Such a conceptually-simple technique is based on the data-
supported optimization (DSO) and the estimation of signal parameters
via rotational invariance technique (ESPRIT ), but fully exploits a
memory mechanism for improving the estimation accuracy especially
when dealing with critical scenarios characterized by low signal-to-
noise ratios (SNR) or/and small number of snapshots. Simulation
results assess the potentialities and limitations of the proposed
approach that favorably compares with state-of-the-art methods.

1. INTRODUCTION

Smart antennas are a challenging research topic in electromagnetics
and wireless communications. The main reason for the growing interest
about such an issue when dealing with multi-users communication
systems, mainly lies in the need of adaptively facing with unknown
time-varying scenarios [1–3]. In general, smart systems consist of an
array of radiating elements able to steer the main lobe beam towards
the desired signal [4–6] and to locate suitable nulls of the radiation
pattern in the directions of the interferences [7–9]. Accordingly, a
relevant step for building a smart receiver is concerned with the
estimation of the directions of arrival (DoAs) of the received signals.
Towards this end, various techniques have been developed not only for
wireless communications, but also in various applications ranging from
radar [10–12] to sonar [13] and speech processing [14].
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The maximum likelihood (ML) estimator has been largely used
in direction finding problems because of its capability of reaching,
asymptotically and under regularity conditions, the Cramer-Rao
Bound (CRB) [15]. Unfortunately, it is characterized by an intrinsic
complexity arising from the multi-modal nature of the likelihood
function (LF ) and by the high computational load of the involved
multivariate nonlinear maximization problem [16–18]. Therefore, other
sub-optimal approaches have been proposed in order to reach a suitable
trade-off between estimation accuracy and complexity.

Concerning learning-by-examples (LBE) techniques, some meth-
ods based on the use of radial-basis functions (RBF ) [19, 20] and sup-
port vector machines [21–23] have been efficiently applied to single-
and multiple-source direction finding, as well.

Unlike LBE techniques that need of a learning phase for training
the underlying network architecture, super-resolution approaches
directly process the received signals without any off-line pre-processing
or training. In such a framework, the multiple signal classification
method (MUSIC) [24] is an eigenstructure-based direction finding
technique that employs the noise-subspace eigenvectors of the data
correlation matrix for determining a null spectrum, whose minima
are iteratively computed to yield the DoA estimates. Although it
asymptotically converges to the CRB [25] for an increasing number
of snapshots, the standard implementation of MUSIC still implies
high computational and storage costs [26] because of the exhaustive
search extended to the whole set of steering vectors. As far as uniform
linear arrays (ULAs) are concerned, the so-called ROOT -MUSIC [27]
version can be profitably used by solving a polynomial rooting problem,
thus improving the computational performances of the MUSIC
algorithm [28].

Likewise MUSIC, the estimation of signal parameters via
rotational invariance technique (ESPRIT ) [29] is a vector subspace-
based methodology that, instead of identifying the spectral peaks,
directly determines the DoAs by exploiting the rotational invariance of
the underlying signal subspace induced by the translational invariance
of the sensors array. Since the ESPRIT complexity strictly depends on
the number of sensors, faithful estimates and a reduced computational
burden can be achieved dealing with a limited number of array
elements, while the size of the correlation matrix becomes greater
than those from MUSIC or ROOT -MUSIC when large arrays are
considered [26].

In order to reduce the computational costs as well as the risk
of being trapped in false maxima of the LF , the data-supported
optimization (DSO) can be suitably employed with ESPRIT [18].
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Such a procedure consists in partitioning the data sample in a large
number of “elemental sets” for allowing a simpler computation of
the estimates for each elemental data set. The advantages of such a
technique have been widely demonstrated and exploited also in other
application contexts [30]. The so-obtained values constitute a data-
supported grid (DSG) over which the LF function is maximized.

Although eigenstructure-based approaches constitute the state-of-
the-art in DoA estimation and demonstrated their optimality (as the
best compromise between accuracy and computational load) in dealing
with a limited number of incoming signals and/or limited number
of receivers, unsatisfactory performances (i.e., with conspicuous
differences compared to ML) occur in the so-called threshold region,
namely, when the signal-to-noise ratio is low, or alternatively, when
the number of snapshots is small.

In order to deal with these situations, this paper presents an hy-
brid approach called memory-based ESPRIT -like (M -DSO-ESPRIT ).
Following the guideline of the DSO-ESPRIT [31], the proposed
method considers an ESPRIT -based estimator for computing the
DSG and a memory mechanism for enhancing the estimation accuracy
thanks to the reallocation of the information acquired at the previous
steps, which is used as a-priori knowledge for successive estimates.

The paper is organized as follows. In Section 2, the
direction finding problem is mathematically formulated. The
M -DSO-ESPRIT method is described in Section 3 by focusing on
its innovative features. Section 4 is devoted at presenting a set of
selected numerical results in order to point out potentialities and
limitations of the proposed approach. The comparison with state-of-
the-art superresolution techniques, in terms of performance as well as
computational cost, is reported. Finally, some conclusions are drawn
(Section 5).

2. MATHEMATICAL FORMULATION

Let us consider a ULA of M equally-spaced sensors and L (L <
M) uncorrelated narrow-band signals impinging at each time instant
ts = t0 + s � t, s = 1, . . . , S, on the antenna with plane wavefronts
from different directions, Θ (ts) = {θl (ts) ; l = 1, . . . , L} (Figure 1).
Moreover, let us indicate with y (ts) = {ym (ts) ; m = 1, . . . ,M}T the
snapshot (i.e., the collection of data samples at ts) collected by the M
sensors at each time instant †. Under the assumption that the number
† The superscripts T and H denote the transpose and conjugate transpose operation,
respectively.



480 Lizzi et al.

of available snapshots is equal to N (N ≥ L), the receiver output Y (ts)
can be expressed, according to the matrix notation [17, 32], as follows

Y (ts) = A [Θ (ts)]X (ts) + E (ts) . (1)

In particular, Y (ts) =
{
y (ts−N+n) ; n = 1, . . . , N

}
is a complex

matrix of M ×N elements (i.e., Y ∈ C
M×N ), X ∈ C

L×N is the matrix
of signal waveforms, and A ∈ C

M×L is the steering matrix given by

A [Θ (ts)] = {a [θl (ts)] ; l = 1, . . . , L} (2)

being a [θl (ts)] =
{
ej(m−1) 2π

λ
d sin[θl(ts)]; m = 1, . . . ,M

}T
the steering

vector of the array towards the direction θl (ts). Moreover, E ∈ C
M×N

is related to the noise modeled by means of a stationary and ergodic
complex-valued Gaussian process of zero-mean characterized by an
assigned signal-to-noise ratio (SNR). Furthermore, the noise samples
at the receivers, em (ts), m = 1, . . . ,M , s ≥ 1, are assumed to be
statistically independent.
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Figure 1. Problem geometry.

Under these hypotheses, the maximum likelihood localization of
the L sources at ts (i.e., the estimation of Θ̂ (ts) = {θ̂l (ts) ; l =
1, . . . , L}) is obtained as [17, 32]

Θ̂ (ts) = arg max
Θ(ts)

[fML {Θ(ts)}] (3)
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where fML is the likelihood function given by

fML {Θ(ts)} = tr
{
P [Θ (ts)]R (ts)

}
. (4)

and tr {·} indicates the trace of the matrix. Moreover,

P [Θ (ts)] = A [Θ (ts)]
{
AH [Θ (ts)]A [Θ (ts)]

}−1
AH [Θ (ts)]

and

R (ts) =
1
N

N∑
n=1

y (ts−N+n)yH (ts−N+n)

are the projection and the sample covariance matrix [17], respectively.
Although the ML localization method allows one to obtain the

optimal estimate, it usually requires the evaluation of the LF in
correspondence with each possible combination of the DoAs. Such
an event results in a computationally-expensive procedure, especially
when dealing with multiple sources. Consequently, a suitable strategy
aimed at optimizing the trade-off between localization accuracy and
computational load could be advantageous. Towards this purpose, a
new estimation technique is proposed in the following section.

3. THE M-DSO-ESPRIT METHOD

Unlike the optimal ML approach, the M -DSO-ESPRIT method
resorts to the evaluation of the LF in a limited set of combinations
of DoA and it considers a memory mechanism in order to fully exploit
the acquired-knowledge (or experience) from previous estimates. More
in detail, the following multi-step procedure is carried out at each time-
step ts, s ≥ 1.

3.1. Memory Enhancement

The M -DSO-ESPRIT operates a memory enhancement of the
collected data. Towards this end, a new memory-enhanced output
matrix D (ts)

D (ts) = {db (ts) ; b = 1, . . . , B} ∈ C
M×B

is defined from the standard output matrix Y (ts) as described in the
following. At the first time-step (s = 1), the process is initialized by
assuming D (t1) = Y (t1), that is

db (t1) = y (ts−N+b) b ∈ [1, B] ; B = N
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otherwise (s > 1)

db (ts) =

{
y (ts−N+b) b ∈ [1, N ]

a
[
θ̂b−N (ts−1)

]
b ∈ [N + 1, B] B = N + L.

3.2. Data-Space Re-Sampling

The so-defined data space is then re-sampled. Starting from the
matrix D (ts) and considering the whole set of column combinations to
obtain a matrix of dimension M × L, it is possible to define K (being
K = B!

L!(B−L)!) matrices W(k) ∈ C
M×L

W(k) (ts) =
{
w(k)

l = d
c
(k)
l

; l = 1, . . . , L
}

k = 1, . . . ,K (5)

where the index c
(k)
l ∈ [1, B] identifies the column of D (ts)

corresponding to the l-th element of W(k) (ts), according to the
iterative generation procedure detailed in Table 1. Moreover, in order
to avoid wrong/unnecessary successive computations, the matrices
whose condition numbers η(k)

s are greater than a fixed stability threshold
(i.e., the ill-conditioned matrices) are omitted.

3.3. Data-Supported Grid Generation

As in [26, 31], an ESPRIT -like algorithm is used for generating the
data-supported grid points. Let us consider the matrix Φ(k) ∈ C

L×L

given by

Φ(k) (ts) =
{[

V(k) (ts)
]H

V(k) (ts)
}−1 [

V(k) (ts)
]H

U(k) (ts) (6)

where V(k) and U(k) are two matrices obtained from W(k) by
eliminating the first and last row, respectively. Then, the ESPRIT -
like estimates (i.e., the K data-supported grid points) turn out to be

Θ̂
(k)

(ts) =
{
θ̂
(k)
l (ts) ; l = 1, . . . , L

}
k = 1, . . . ,K (7)

where θ̂
(k)
l = arcsin

{
λ

2πd arg
(
µ

(k)
l

)}
and

{
µ

(k)
l ; l = 1, . . . , L

}
are the

eigenvalues of Φ(k) [29].
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Table 1. Procedure for defining the matrices W(k) ∈ C
M×L, k =

1, . . . ,K.

k = 1

c(k )
0 = 0

i = 1 , ..., L

c(k )
i = c(k )

i 1 + 1

go =

k = 1 , ..., K

l = 1 , ..., L

w(k )
l = s

c( k )
l

j = L
({go} {j > 0})

c(k )
j < B L + j

c(k +1)
j = c(k )

j + 1

j < L
i = j + 1 , ..., L

c(k +1 )
i = c(k +1 )

i 1 + 1

go =

j = j 1

for

-
end

TRUE

for
for

end

while thenAND

if then-

if then
for

-
end

end
FALSE

end

-
end

end

3.4. ML DoA Estimation

Finally, the ML estimates of the DoAs of the L signals are computed
by maximizing the LF over the K-sized data-supported grid:

Θ̂ (ts) = arg max
Θ̂

(k)
(ts)

[
fML

{
Θ̂

(k)
(ts)

}]
. (8)
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4. NUMERICAL ASSESSMENT

The numerical assessment has been carried out by comparing the
performances of the M -DSO-ESPRIT with those of other state-
of-the-art approaches, such as ROOT -MUSIC [27], ESPRIT [29],
DSO-ESPRIT [31] in order to point out its potentialities and current
limitations as well as the range of convenient applicability. For
completeness, the asymptotic performances achievable by an unbiased
estimator of the parameters θl (i.e., the so-called Cramer-Rao bound
(CRB) [33]) are reported, as well.

Concerning the estimation accuracy, the root-mean-square-error
has been assumed as index of efficiency. Moreover, because of the
statistical nature of the scenarios under test, its value averaged
over Q = 100 independent realizations of each simulation has been
computed

RMSE =
1
Q

Q∑
q=1

1
S

S∑
s=1

√√√√ 1
L

L∑
l=1

∣∣∣θ(q)
l (ts) − θ̂

(q)
l (ts)

∣∣∣2 (9)

where the index q denotes the q-th realization (q = 1, . . . , Q) of a
simulation, S being the total number of time-instants (S = 100).

As far as the reference antenna architecture is concerned, a linear
array of M = 20 omnidirectional sensors λ

2 -spaced has been adopted.
The first test case deals with “stationary” scenarios where L

uncorrelated signals impinge from random, but fixed, directions [i.e.,
θl (ts) = θl, ∀s]. Under this assumption, a set of experiments has
been performed in order to show the effect of the size of the snapshot
window (N), of the signal-to-noise ratio, and of the angular separation
(i.e., �θl = θl+1−θl, l = 1, . . . , L−1) between the DoAs of the sources
on the method performances evaluated in terms of angular accuracy
(i.e., RMSE value) and computational costs.

In the first experiment, the scenario under test is characterized
by heavy noisy conditions (SNR = 2 dB) and L sources coming
from random angular directions equally-spaced by �θl = 10◦, l =
1, . . . , L − 1. Under the assumption that N = L (i.e., the minimum
number of snapshots for a given configuration of sources), Figure 2
shows the behavior of the estimation error versus the number of sources
L. Concerning the estimation accuracy, even though the resolution
error is an increasing quantity, the M -DSO-ESPRIT outperforms
the other direction finding methods and it results closer to the CRB
when L ≤ 4 pointing out a non-negligible robustness to the noise in
localizing multiple sources. In order to quantify the computational
cost, the amount of floating point operations needed at each time-
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Figure 2. Stationary Scenario (SNR = 2 dB, N = L, �θl = 10◦,
θ1 = 10◦) — RMSE values versus number of sources L.
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Figure 3. Stationary Scenario (SNR = 2 dB, N = L, �θl = 10◦,
θ1 = 10◦) — Computational cost Ω versus number of sources L.

instant ts (i.e., Ω) is analyzed (Figure 3). As expected, because of
the memory enhancement and the dependence of the dimension of
the output matrix D (ts) on L, the computational burden required
by M -DSO-ESPRIT grows with L, but not in a linear fashion since
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the “filtering” procedure at the “Data-Space Re-Sampling” step avoids
the processing of ill-conditioned matrices. Moreover, whatever the
number of sources, the arising Ω value is greater than that of the
DSO-ESPRIT , but of the same order in magnitude of the standard
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Figure 4. Stationary Scenario (SNR = 2 dB, L = 2, �θl = 10◦,
θ1 = 10◦) — RMSE values versus number of snapshots N .
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θ1 = 10◦) — Computational cost Ω versus number of snapshots N .
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ESPRIT . Furthermore, the ROOT -MUSIC technique results much
more expensive in such a situation.

The second experiment is aimed at evaluating the behavior of the
M -DSO-ESPRIT in correspondence with a variation of the number
of snapshots. Towards this purpose, the scenario is the same of the
first experiment, but the number of sources has been fixed to L = 2
(Figures 4 and 5) and L = 4 (Figures 6 and 7), respectively. Figures 4
and 6 show the resulted RMSE error as a function of N . As expected
the statistical performances of the proposed estimator improve as N
increases since the number of DSO grid points grows thus allowing
the sampling of a larger portion of the entire DoA parameter space.
Asymptotically, the estimation accuracy of the compared methods are
quite similar to one another, but the M -DSO-ESPRIT confirms its
effectiveness when operating in the threshold region when N is small.
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Figure 6. Stationary Scenario (SNR = 2 dB, L = 4, �θl = 10◦,
θ1 = 10◦) — RMSE values versus number of snapshots N .

On the other hand, unlike ESPRIT and ROOT -MUSIC,
the computational burden required at each iteration by the DSO-
based techniques depends on N . As a matter of fact, such
approaches usually compute a number of DoA estimates equal to the
number of combinations between the available temporal snapshots.
Therefore, increasing the number of snapshots N involves a longer
response time that could make the advantages in terms of resolution
accuracy fruitless. Fortunately, the memory mechanism of the
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M -DSO-ESPRIT positively acts allowing an evident (see Figure 7,
L = 4) improvement over the DSO-ESPRIT in the critical (from a
computational point of view) region (i.e., N large).

The third experiment deals with a scenario characterized by
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Figure 7. Stationary Scenario (SNR = 2 dB, L = 4, �θl = 10◦,
θ1 = 10◦) — Computational cost Ω versus number of snapshots N .
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a better signal-to-noise ratio (SNR = 20 dB) in order to study
the behavior of the memory-enhanced DSO-ESPRIT in a region
outside (or only partially overlapped, when N is small) the threshold
region. As expected, the M -DSO-ESPRIT appears to satisfactory
perform for a limited number of sources (L ≤ 3 — Figure 8). As
a matter of fact, by keeping L = 2 and varying N (Figure 9),
it asymptotically guarantees similar results to those of the other
methods, while the M -DSO-ESPRIT significantly overcomes the
standard DSO-ESPRIT implementation for small values of N

( RMSEDSO-ESPRIT
RMSEM-DSO-ESPRIT

⌋
L=N=2

∼= 10).
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Figure 9. Stationary Scenario (SNR = 20 dB, L = 2, �θl = 10◦,
θ1 = 10◦) — RMSE values versus number of snapshots N .

The last set of experiments concerned with a “stationary” scenario
is devoted at testing how the source separation affects the direction
finding accuracy of the proposed approach. Figure 10 shows the root-
mean-squared error values versus �θl when SNR = 2 dB, L = 2 and
N = L. As it can be observed, the M -DSO-ESPRIT performs quite
well and close to the CRB when �θl > 8◦. Moreover, an efficiency
degradation verifies in correspondence with smaller separations (�θl <
8◦), although a better resolution, compared to the other techniques, is
always achieved. Similar conclusions on the comparative assessment
hold true by varying the number of snapshots and keeping constant
the angular separation to �θl = 2◦ (Figure 11).

In order to qualitatively summarize the performance of the
M -DSO-ESPRIT in terms of both estimation capabilities and
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Figure 10. Stationary Scenario (SNR = 2 dB, L = 2, N = L,
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Figure 11. Stationary Scenario (SNR = 2 dB, L = 2, �θl = 2◦,
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computational costs when dealing with stationary conditions, Table 2
pictorially resumes the behavior of the approach versus the number of
sources L (1: many, 0: few), the number of snapshots N (1: many
— N > L, 0: few — N = L), the angular source separation ∆θ
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(1: large, 0: small), and the SNR (1: low level of noise, 0: high
level of noise). According to the indications drawn from the numerical
experiments, Table 2 points out and confirms that the approach is an
effective alternative to standard estimators especially in the threshold
region defined by a low SNR or/and a small number of snapshots.

Table 2. Stationary Scenario — Summary of the M -DSO-ESPRIT
performances.

L N SNR RMSE
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

∆θ Ω

The second test case is concerned with a complex environment
characterized by the time-variance of the randomly-distributed DoAs
of the impinging signals. Figure 12(a) pictorially describes the scenario
under test characterized by L = 3 sources having a variable direction
of incidence [θl (ts) ∈ [−40◦, 50◦]; l = 1, . . . , L; s = 1, . . . , S; S = 60].
As far as the estimation process is concerned, N = 3 snapshots have
been considered and different noisy conditions have been simulated
(i.e., SNR = 2 dB, SNR = 10 dB, and SNR = 20 dB).

The achieved performances in terms of RMSE are shown in
Figure 12 and detailed in Table 3. As expected, when dealing with the
case of SNR = 2 dB, the M -DSO-ESPRIT usually achieves the best
accuracy in the estimates [Figure 12(b)] as confirmed by comparing
the mean (over the complete temporal window of S = 60 time-steps)
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values of the RMSE in Table 3 (ςM-DSO-ESPRIT
RMSE = 4.45

⌋
SNR=2 dB

vs. ςROOT -MUSIC
RMSE = 8.59

⌋
SNR=2 dB

, ςESPRIT
RMSE = 12.29

⌋
SNR=2 dB

,
and ςDSO-ESPRIT

RMSE = 12.21
⌋
SNR=2 dB

). Concerning the scenario
characterized by SNR = 10 dB, the reliability of M -DSO-ESPRIT
is significantly better than those of ESPRIT and DSO-ESPRIT
[Figure 12(c) — Table 3] (ςM-DSO-ESPRIT

RMSE = 2.94
⌋
SNR=10 dB

vs.
ςESPRIT
RMSE = 6.63

⌋
SNR=10 dB

, ςDSO-ESPRIT
RMSE = 6.59

⌋
SNR=10 dB

) and it
also overcomes the performance of ROOT -MUSIC ( ςROOT -MUSIC

RMSE =
3.59�SNR=10 dB). Such an event is mostly due to the fast
“reaction” of the M -DSO-ESPRIT to the scenario variations in
correspondence with the time-step transitions (i.e., ts = 10, 50).
Finally [SNR = 20 dB — Figure 12(d)], despite the lower noise
level and although there is a slight improvement in the estimation
accuracy with the increasing of SNR ( ςM-DSO-ESPRIT

RMSE

⌋
SNR=10 dB

=
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2.94 vs. ςM-DSO-ESPRIT
RMSE

⌋
SNR=20 dB

= 2.82), the M -DSO-ESPRIT
does not reach the effectiveness of the ROOT -MUSIC approach
( ςROOT -MUSIC

RMSE

⌋
SNR=20 dB

= 1.96). On the other hand, it should be
noticed that, whatever the noise level, the memory-enhanced version
of the DSO-ESPRIT always overcomes the standard implementation

( ςDSO-ESPRIT
RMSE

ςM-DSO-ESPRIT
RMSE

⌋
SNR=2 dB

∼= 2.74, ςDSO-ESPRIT
RMSE

ςM-DSO-ESPRIT
RMSE

⌋
SNR=10 dB

∼= 2.24,

and ςDSO-ESPRIT
RMSE

ςM-DSO-ESPRIT
RMSE

⌋
SNR=20 dB

∼= 1.19).

Table 3. Time-Varying Scenario (L = 3, N = L, θl (ts) ∈ [−40◦, 50◦],
S = 60). Time-averaged values of the RMSE.

SNR [dB]
2 10 20

M -DSO-ESPRIT 4.45 2.94 2.82
DSO-ESPRIT 12.21 6.59 3.37

ESPRIT 12.29 6.63 3.31
ROOT -MUSIC 8.59 3.59 1.96

5. CONCLUSIONS

In this paper, a DoA estimation method has been proposed in order
to deal with complex scenarios belonging to the so-called threshold
region, thus improving the effectiveness of direction finding techniques
and extending their range of applicability. Starting from a simple and
computationally-efficient data supported optimization for the solution
of the maximum likelihood estimation problem, a memory mechanism
has been introduced. The approach, called M -DSO-ESPRIT ,
increases the number of the data-supported samples, over which the
likelihood function is maximized, by extending the data set with the
maximum likelihood estimates of the previous time-steps.

Concerning the main features of the M -DS-ESPRIT , they can
be summarized as follows

• effective exploitation of the information acquired during the
estimation process;

• computational simplicity in comparison with optimal approaches.
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As far as the numerical validation and the comparative study with
other state-of-the-art methods are concerned, the obtained results
demonstrated the efficiency of the proposed approach in terms of both
estimation accuracy and computational burden, especially in those
scenarios where

• the environmental conditions heavily affect the signal-to-noise
ratio;

• the number of collectable snapshots is limited.

On the other hand, it cannot be neglected that the M -DSO-ESPRIT
guarantees acceptable performances also in the presence of low levels of
noise or when longer temporal windows are considered, thus indicating
the flexibility of the method.

Future works will be devoted at experimentally validating the
memory-based DSO-ESPRIT technique as well as improving its
effectiveness in facing with fast time-varying scenarios.
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