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Abstract—From the analytical theory of rough surface Green’s
function based on the extension of the diagram method of Bass,
Fuks and Itô, with the smoothing approximation, numerical results
are presented for Gaussian and sea spectra and compared with
a benchmark method by considering a one-dimensional perfectly
conducting Gaussian rough surface. The effects of multiple scattering
due to the surface roughness are incorporated systematically into the
solutions through an effective surface impedance, which can be iterated
up to the second-order. In addition, comparisons of the bistatic
scattering coefficients are presented with the first- and second- orders
conventional small perturbation method. This study will be useful for
remote sensing of the ocean surface, especially when the transmitter is
close to the surface.

1. INTRODUCTION

The scattering of waves from rough surfaces has been investigated using
a variety of asymptotic mathematical formulations [1–9]. The most
popular are the Small Perturbation Method (SPM) and the Kirchhoff
Approximation (KA). For example, the Kirchoff approximation
requires that the incident wavelength be much smaller than the radius
of curvature of the surface. In contrast, the Small Perturbation
Method exploits the smallness of the roughness amplitude to generate
an expression for the scattered field. It expands the phase term
of the exponential of the field in a power series in surface heights,
comparatively to the wavelength [2, 6, 7]. More recently, to improve
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this scheme, the SPM has been derived using Green’s formulation. We
can quote for a one dimensional Perfectly Conducting (PC) surface,
the works of Bass et al. [10] and Ishimaru et al. [11]. These authors
based their works on the original published paper of Feinberg [12].
Comparatively to classical SPM, the extended SPM allows to take
into account, via the introduction of an effective surface impedance, the
multiple scattering of the first-order development. In the paper of Fuks,
only mathematical development is presented. Those of Ishimaru [11]
and Itô [13] shown only numerical results for a Gaussian spectrum with
Gaussian statistics. In this paper, we propose to compare the Extended
Small Perturbation Method to a benchmark method, based on the
Method of Moments, for a perfectly conducting (H and V polarizations)
rough sea surface obeying to the Elfouhaily et al. spectrum [14], in
HF-VHF band. Moreover, comparisons of the second-order surface
impedance and the reflection coefficient, obtained in term of the surface
impedance, are made between Gaussian and sea spectra. Finally, we
present some comparisons of the bistatic scattering coefficient between
the first- and the second-orders conventional SPM, the extended SPM
and the benchmark method (based on the Method of Moments) for
Gaussian and sea spectra.

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

2.1. Introduction

We consider a one-dimensional perfectly conducting rough surface.
The field at observation point consists of the coherent and the
incoherent fields. The coherent field propagates over the flat surface
with the equivalent reflection coefficient, which includes the effects of
rough surface scattering. As the coherent field propagates over the
rough surface, the field eventually diminishes and a part of the field is
gradually converted into the incoherent (diffuse) field.

From the first order solution of the alternative approach
summarized in this paper, a correction of the SPM of Rice is obtained.
The correction gives a physical interpretation to the interaction which
results from multiple scattering in such random rough surfaces. The
Green’s function method leads to average integral equations of the
scattered waves. From the nonlinear Dyson and Bethe-Salpeter
equations, the first two moments of the Green’s function are derived.
Since the surface is Dirichlet or Neumann, the equivalent impedance
is zero for the flat surface, whereas the impedance is not zero due to
the presence of roughness.
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2.2. Basic Problem

Consider the scattering of scalar waves from a random rough surface
described by z = ζ(x). The geometry is illustrated in Fig. 1.

Observation point r (x,z)Source r0 (x0,z0)

r1 (x1,z1)

rs

Σ

Figure 1. The rough surface is described by z = ζ(x). The source
point is at r0, the observation point is at r and r1 is on the flat surface
at z = 0. The surface is assumed to be infinite in x̂ direction, and
invariant along ŷ direction (1D surface).

The incident plane wave upon the rough surface has a wave vector
k0 = κx̂ + kz(κ)ẑ, with

kz(κ) =

{ √
k2

0 − κ2 for κ ≤ k0

i
√
κ2 − k2

0 for κ > k0

We let rs = (x, ζ(x)) be a point on the rough surface. The
surface height defined with respect to the z = 0 plane is assumed to be
statistically homogeneous and obeys a Gaussian process characterized
by:

〈ζ(r)〉 = 0 〈ζ(r1)ζ(r2)〉 = Γ(r1 − r2) (1)

where the operator 〈•〉 denotes the statistical average. Γ(r1 − r2) is
the surface height correlation function defined from the spectral density
W̃ (κ) (height spectrum) as

Γ(r1 − r2) =
1
2π

∫
dκW̃ (κ)eiκ(r1−r2) (2)

2.3. Equivalent Boundary Condition for TE and TM

This subsection gives briefly the equations needed for simulations [3].
The Green’s function for a given point source located at r = r0 satisfies
the equation

(∇2 + k2
0)Gp(r, r0) = −δ(r − r0) p = h or v (3)
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with the following boundary condition

Gh(r, r0) = 0 Dirichlet r = rs ∈ Σ (4)

or

∂Gv(r, r0)
∂n

= 0 Neumann r = rs ∈ Σ (5)

where k0 is the wave number in free space, and n̂ is the unit vector
normal to the perturbed surface. The subscripts p = h and p = v
refer to waves subject to the Dirichlet and the Neumann boundary
conditions, respectively. We consider a slightly rough random surface,
for which |k0ζ cos θi| < 1 and |∂ζ/∂x| < 1 [5], where θi is the angle of
incidence of a plane wave. We write an equivalent boundary condition
at z = 0 by expanding the Green’s function in (4) and (5) about the
surface height ζ(x) and include the first powers in ζ. We then obtain

∂

∂n
=

−∂ζ
∂x

∂

∂x
+
∂

∂z(
1 +

(
∂ζ

∂x

)2
)1/2

≈ −∂ζ
∂x

∂

∂x
+
∂

∂z
+ · · · (6)

since we have assumed earlier that |∂ζ/∂x| � 1, the denominator is
≈ 1. In addition, we use the following Taylor expansion of the Green’s
function about z = 0

Gp(r1) + ζ(x1)
∂

∂z1
Gp(r1) +

ζ2(x1)
2

∂2

∂z2
1

Gp(r1) · · · (7)

where r1 is on the flat surface at z = 0. By keeping only the first-
order term in ζ, the boundary conditions of (4) and (5) for respectively
Dirichlet and Neumann boundary conditions, become for the first-order

Gh + ζ1
∂

∂z1
Gh = 0 (8)

− ∂ζ1
∂x1

∂

∂x1
Gv +

∂

∂z1
Gv + ζ1

∂2

∂z2
1

Gv = 0 (9)

We now make use of the Green’s Theorem

G(r, r0) = G0(r, r0) +
∫

Σ
dr1

[
G(r, r1)

∂

∂n1
G0(r1, r0)

−G0(r, r1)
∂

∂n1
G(r1, r0)

]
(10)
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where G0 is the flat-surface Green’s function satisfying boundary
condition at z = 0. Applying it to the half-space above the average
surface along with equivalent boundary conditions (7) and making use
of the flat-surface Green’s function and its boundary condition, yields
to the following integral equation for the Green’s function

Gp(r, r0) = G0
p(r, r0) +

∫
Σ=0

dr1G
0
p(r, r1)Vp(ζ(x1))Gp(r1, r0) (11)

where we define

Vp(ζ(x1)) = −∂
←

∂z1
ζ(x1)

∂→

∂z1
p = h (12)

Vp(ζ(x1)) = −ζ(x1)
(
∂←

∂x1
x̂− ∂→

∂z1
ẑ

)
.∇r1 p = v (13)

Vp(ζ(x1)) is defined as the random surface potential, which is a function
of the random surface height ζ(x). Here, the integration in (11) is
over the entire z = 0 plane, and G0

p is the known Green’s function
satisfying boundary condition on the unperturbed surface and is not
the free space Green’s function. In (13), the attached subscript r1

of ∇r1 designates differentiation with respect to the point (x1, ζ(x1)).
Also, the arrows on the derivatives indicate the direction in which the
derivatives are operated. For example, in (12), the left-derivative will
operate leftward, making differentiation of G0

p(r, r1) with respect to
z1, and in (13), the left-derivative will operate his differentiation with
respect to x1 over the function ζ(x1).

2.4. Reflection Coefficient for Coherent Waves

Starting with the integral Eq. (11), we can obtain the fundamental
Dyson equation used to describe the rough surface Green’s function.
The detailed derivation of Dyson equation using the diagram method
is given in [3, 15]. This a nonlinear equation for the coherent (average)
Green’s function 〈G〉. To simplify the problem, a first-order smoothing
operation is applied to Dyson equation making it linear.

The nonlinear Dyson’s equation for the coherent Green’s function
is then,

〈Gp(r, r0)〉 = G0
p(r, r0) +

∫
dr1dr2G

0
p(r, r2)M(r1, r2)〈Gp(r1, r0)〉

(14)

M(r1, r2) is the so-called Mass operator. Note that Eq. (14) applies
to any point r above the surface z = 0. As r approaches the flat
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surface, G0
p(r, r0) becomes zero, but G0

p(r, r0) inside the integral is not
zero because M includes the derivative ∂/∂z. In addition, note that
〈Gp(r, r0)〉 is not zero on the flat surface.

r0 r0 r0r2, r1rr r

r0r1r r2

(a)

(b)

Figure 2. (a) Diagrammatic form for the nonlinear Dyson’s equation
for the coherent Green’s function. (b) Dyson’s equation with the
smoothing approximation.

To simplify the Dyson equation, the Mass operator may be
approximated using the first-order smoothing operation. Fig. 2 shows
Dyson equation using the first-order smoothing in diagrammatic form,
where the flat-surface Green’s function G0

p is the solid line, and the
mean Green’s function 〈Gp〉 is the bold solid line. We can write
the Mass operator under this approximation, for both Dirichlet and
Neumann boundary conditions

M(r1, r2) = 〈Vp(ζ(x1))G0
p(r2, r1)Vp(ζ(x2))〉 (15)

The variables z1 and z2 in the Green’s function are put equal to zero
once the differentiation is carried out, since the Green’s theorem in (10)
has been simplified by derivating an approximate equivalent boundary
condition at z = 0, giving (11). To solve Dyson equation for the
coherent Green’s function, we make use of a spatial Fourier transform
representation

〈Gp(r, r0)〉 =
1
2π

∫
dκ〈Gp(κ, z, z0)〉eiκ(r−r0) (16)

where the spatial Fourier transform 〈Gp(κ, z, z0)〉 of the coherent
Green’s function 〈Gp(r, r0)〉 satisfying the boundary condition and the
radiation condition at z = ∞ is given by

〈Gp(κ, z, z0)〉 =
i

2kz(κ)

[
eikz(κ)|z−z0| + Rp(κ)eikz(κ)(z+z0)

]
(17)

with, for the flat-surface Green’s function G0
p(r, r0), Rh(κ) = −1

in Dirichlet case and Rv(κ) = +1 in Neumann case. After some
cumbersome manipulations from (14) and (15), along with (16) and
(17), we arrive at the following first-order reflexion coefficient for
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Dirichlet and Neumann boundary conditions, respectively

Rh1(κ) =
kz(κ)Zh1(κ) − k0

kz(κ)Zh1(κ) + k0
(18)

Rv1(κ) =
kz(κ) − k0Zv1(κ)
kz(κ) + k0Zv1(κ)

(19)

where

Zh1(κ) =
∫

dκ′kz(κ′)W̃ (κ− κ′) (20)

Zv1(κ) =
∫

dκ′

k0kz(κ′)
(k2

0 − κκ′)2W̃ (κ− κ′) (21)

which is consistent with Fuks et al. [7].
The integrand in (21) exhibits a pole kz(p). We shall discuss the

evaluation of this pole in Appendix A.
The nonlinear Dyson equation enables us to obtain solutions

which are consistent with the energy conservation requirement [16] and
account for multiple scattering to a still higher order. By repeating the
procedure to the 2nd iteration solution [17], we can write the effective
surface impedance at the second order

Zh2(κ) =
∫

dκ′
kz(κ′)k0

k0 + kz(κ′)Zh1(κ′)
W̃ (κ− κ′) (22)

Zv2(κ) =
∫

dκ′
(k2

0 − κκ′)2

k0[kz(κ′) + k0Zv1(κ′)]
W̃ (κ− κ′) (23)

2.5. Incoherent Intensity

Let us now consider the second moment of the field, or the incoherent
intensity. For small surface roughness, the coherent field will dominate.
However, as the roughness increases, the coherent field diminishes, and
the incoherent intensity becomes dominant. The incoherent intensity
is obtained from the Bethe-Salpeter equation, which describes the
correlation of fields at r and r′ due to the sources located at r0 and
r′0. The Bethe-Salpeter equation which will yield the integral equation
describing the second moment of the Green’s function is given by the
relation

Γp(r, r0, r′, r′0) = 〈Gp(r, r0)G∗p(r
′, r′0)〉 = Γcoh + Γincoh (24)

where Γcoh = 〈Gp(r, r0)〉〈G∗p(r′, r′0)〉 is the coherent intensity and
Γincoh is the incoherent or fluctuating intensity or diffuse component.
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+Γ(r,r0,r',r0')  =

+

Γ(r1,r0,r1',r0')

+

(a)

Γ(r,r0,r',r0')  =(b)

Γ(r,r0,r',r0')  =(c)

Figure 3. Diagrammatic forms of (a) Bethe-Salpeter equation via
the first-order smoothing approximation [15], (b) Ishimaru’s Bethe-
Salpeter equation with the first-order smoothing approximation [11],
(c) Itô’s first-order Bethe-Salpeter equation [13].

In Fig. 3, a diagrammatic representation of the Bethe-Salpeter
equation describing the second moment of the Green’s function
for the covariance of the field in using the first-order smoothing
approximation [15] is displayed.

〈Gp(r, r0)G∗p(r
′, r′0)〉 = 〈Gp(r, r0)〉〈G∗p(r′, r′0)〉 +

∫
dr1r′1〈Gp(r, r1)〉

×〈G∗p(r′, r′1)〉〈Vp(ζ(x1))Vp(ζ(x′1))〉〈Gp(r1, r0)G∗p(r
′
1, r
′
0)〉 (25)

where the term in the integral, representing the incoherent intensity,
can be rewritten, at the first order iteration shown in Fig. 3, as:

〈Gp(r, r0)G∗p(r
′, r′0)〉 = 〈Gp(r, r0)〉〈G∗p(r′, r′0)〉 +

∫
dr1r′1〈Gp(r, r1)〉

×〈G∗p(r′, r′1)〉〈Vp(ζ(x1))Vp(ζ(x′1))〉〈Gp(r1, r0)〉〈G∗p(r′1, r′0)〉 (26)

The second term in the right-side of the above equation gives the first-
order solution for the incoherent intensity Γ(1)

incoh(κ, q), which can be
derived in using the coordinate transformation shown in Fig. 4, and
after cumbersome manipulations.

As a special case, we let the source points r0 = r′0 and the
observation points r = r′; this given the incoherent intensity at r due
to the point source r0. We can express the cross section per unit length
of the rough surface as [10]

σESPM
h1 (κ, q) =

4
k0

k2
z(κ)k

2
z(q)W̃ (q − κ)

|1 + ∆h1(κ)|2|1 + ∆h1(q)|2
(27)

σESPM
v1 (κ, q) =

4
k0

(k2
0 − κ q)W̃ (q − κ)

|1 + ∆v1(κ)|2|1 + ∆v1(q)|2
(28)
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z Γincoh

κ

κ'

θ

θ
θθ

1

2

1 2

Figure 4. First-order incoherent function for the incoherent intensity
of the Bethe-Salpeter equation. Dotted lines represent geometric
coordinate relationship after the coordinate transformation.

where ∆h1(κ) = kz(κ)
k0

Zh1(κ), ∆v1(κ) = k0
kz(κ)Zv1(κ). The couple

(κ = k0 sin θ1, q = k0 sin θ2) represents the wave numbers projected
on x axis, of the incident field and scattered field at the point r1c as
shown in Fig. 3. The bistatic scattering coefficients of the first-order
conventional perturbation method for both Dirichlet and Neumann
cases, respectively, are [4]

σh1(κ, q) =
4
k0
k2

z(κ)k
2
z(q)W̃ (q − κ) (29)

σv1(κ, q) =
4
k0

(k2
0 − κ q)2W̃ (q − κ) (30)

The second-order bistatic scattering coefficients for co-polarization
terms are [16]

σp2(κ, q) =
k2

z(κ)
k0

�e
{∫

dκ′W̃ (q − κ′)W̃ (κ′ − κ)[
|Ap(q, κ′)|2 +Ap(q, κ′)A∗p(q,−κ′ + q + κ)

]}
(31)

where p = h, v and

Ap(q, κ′) =




2kz(κ)kz(κ′) for p = h
2

kz(q)kz(κ′)
(
k2

0 − qκ′
) (
κ′κ− k2

0

)
for p = v

(32)
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We then get the general bistatic scattering coefficients of the Small
Perturbation Method up to second-order

σSPM
p(1−2)(κ, q) = σp1(κ, q) + σp2(κ, q) (33)

Also, we can give the following general form of the bistatic scattering
coefficient based on the Extended Small Perturbation Method in term
of the conventional one

σESPM
p1 (κ, q) = σSPM

p1 (κ, q)|Fp1(κ)|2|Fp1(q)|2 (34)

where the superscript ESPM stands for Extended Small Perturbation
Method and |Fp1(κ)|2 and |Fp1(q)|2 are given in (27) and (28).

3. NUMERICAL RESULTS

3.1. Gaussian Spectrum

We assume the height spectrum to be Gaussian, such that

W̃ (κ) =
σ2

hlc
2
√
π
e−

κ2l2c
4 (35)

where lc is the correlation length and σh is the RMS heights. This
spectrum is usually used for optics applications. For our purpose
it is convenient to introduce a more realistic spectrum to study the
scattering of radio waves by a sea surface.

3.2. The Elfouhaily et al. Sea Spectrum

A reliable statistical description of wind-generated surface waves
is of crucial importance for improving understanding of continuous
motions and exchanges across the air-sea interface. Among statistical
descriptions of waves, spectral formulation is generally stemming from
the early work of Phillips [32].

It is recognized that for remote sensing studies, precise knowledge
of the short-scale wave roughness is the prime requirement. As a
first-order approximation, studies often present spectrum for only
high wavenumbers. However it is now accepted that short-waves
are intimately coupled with intermediate- and long-scale waves
necessitating the need for full wavenumber models such those of
Donelan and Pierson [33] and Apel [34], which can be used in modeling
electromagnetic interactions with sea surface. These models are widely
used in microwave radar scattering studies because of their attention
to high-frequency spectral definition.
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The omnidirectional spectrum is expressed as a sum of two spectra
regimes:

W̃ (κ) =
Bl(κ) +Bh(κ)

κ3
(36)

where subscripts l and h indicate low and high frequencies, and so Bl

and Bh represent short and long waves contributions, respectively.
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Figure 5. Gaussian (dashdot) and Elfouhaily heights spectra. Wind
speed at a height of 10 m above the water surface: U10 = 5 m/sec.
RMS heights σh = 0.1609 m and RMS slopes σs = 0.1767.

In Fig. 5, gaussian and sea height spectra are plotted for a wind
speed at 10 meters above the sea surface of U10 = 5 m/s. The RMS
heights σh = 0.1609 m and the RMS slopes σp = 0.1767. The RMS
heights σh and the RMS slopes σp parameters are derived from the sea
spectrum through

σh =

√∫ +∞

0
W̃ (κ)dκ (37)

σs =

√∫ +∞

0
κ2W̃ (κ)dκ (38)

and the correlation length lc =
√

2σh
σs

. These parameters are then
implemented in the Gaussian spectrum (35). Another relevant
parameter for the present study is the wavenumber of the spectral
peak Kp = Ω2g/U2

10 where g is the acceleration due to gravity, and Ω
the inverse wave age. In our example above, Kp = 0.842 × 9.81/52 =
0.2769 rad/m. It can be readily verified in Fig. 5.
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3.3. Numerical Simulations and Discussion

3.3.1. Effective Surface Impedance

We present numerical results for the dependance of the effective surface
impedance on the incidence angle. In Figs. 6–9, we plot the real
(resistive) and imaginary (reactive) parts of the first- and second-
order effective surface impedance for the Dirichlet and Neumann cases
respectively, versus the incidence angle, for the Gaussian and sea
surfaces cases. The negative reactance for the Dirichlet case represents
a capacitance and the positive one for the Neumann case represents an
inductance.
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Figure 6. Real and imaginary parts of the effective surface impedance
Zh versus the angle of incidence for the Dirichlet boundary condition,
for a Gaussian spectrum and for different parameters k0σh. The
solid curves are for the first-order surface impedance and the broken
curves are for the second-order surface impedance. RMS heights
σh = {0.16, 0.23, 0.32}m, RMS slopes σp = {0.18, 0.19, 0.20} and
correlation lengths lc = {1.3, 1.7, 2.2}m., corresponding respectively
to wind speeds U10 = {5, 6, 7}m/s.

Figures 6–9 show that resistive components decrease with
increasing angles of incidence, excepted for Neumann boundary
condition in sea spectrum case. This tendency is more pronounced
for larger values of k0σh. Nevertheless, the reactive components for
both spectra increase at the angles near grazing incidence.

Furthermore, at these angles, the enhancement of the second-
order effective surface impedance, especially of the reactive component,
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Figure 7. Same as in Fig. 6 but for a sea spectrum.
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Figure 8. Same as Fig. 6, but for Neumann case.

occurs at k0σh becomes large. This would be due to the surface wave
contribution, i.e., the contribution in (22) and (23) to the integral arises
from the vicinity of the surface wave poles which lie very close to the
real px axis. In the limiting case k0σh → 0, such enhancement does
not occur since the surface impedance actually approaches zero.

As seen from (20) and (21), only roughness components whose
spatial wavenumber is smaller than the incident wavenumber, i.e.,
|κ| < k0, contribute to the resistive portion of the surface impedance
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Figure 9. Same as Fig. 7, but for Neumann case.

and produce propagation waves (real kz), which are scattered into the
upper hemisphere. On the contrary, the remainder of the components,
i.e., |κ| > k0, contribute to the reactive portion and produce evanescent
waves (imaginary kz). These results are consistent with those obtained
in [16] for a Gaussian spectrum and differ from the ones obtained from
a sea spectrum.

The second order effective surface impedances (22) and (23) show
that the roughness components |κ| < k0 and |κ| > k0 also contribute
a decreasing in the reactive portion and an increasing in the resistive
portion, respectively [13]. Physically, this suggests that the multiple
interaction effect, due to surface roughness, gives rise to the energy
transfer between evanescent modes and propagating modes.

In Figs. 10 and 11, we plotted the correction factors |Fp1(κ)|2
from (34), both for Dirichlet and Neumann cases. The computation
has been made for the same surface height spectrum as that used for
the effective impedance surface.

For the Dirichlet case, the multiple scattering effect mainly
appears for angles near zero but are not significant since the level of
the correction factor is close to one, like the Neumann case. On the
contrary, for the Neumann case the above effect is more pronounced
as the angle of incidence becomes larger, yielding significant departure
from the results obtained from the conventional SPM. This departure
is more pronounced in the sea case, and it depends strongly of the
RMS heights of the surface. Note that the dependence on k0σh and
the angle of incidence for the Neumann case is very different from the
Dirichlet case.
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Figure 10. Dependance of the correction factor on angle of incidence
for the Dirichlet boundary condition for a Gaussian spectrum. The
correction to the SPM is obtained from the first-order correction in
(27) and (28).
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Figure 11. Same as Fig. 10, but for the sea spectrum case.

In Figs. 12 and 13, reflection coefficients, from the first-order
surface impedance, are plotted. For a smooth Neumann surface,
the Brewster-angle phenomenon does not occur. Nevertheless, we
can observe that the modulus of reflection coefficient presents a local
minimum near 90 degrees. By analogy with a smooth surface, this



428 Brelet and Bourlier

20 50 90
0.97

0.98

0.99

1

1.01
Reflection Coefficient Amplitude

D
iri

ch
le

t

20 50 90
-180

-179.95

-179.9

-179.85

-179.8
Reflection Coefficient Phase (  )

85 89.9
0.7

0.8

0.9

1

Incidence angle (  )

N
eu

m
an

n

85 89.9
-180

-120

-60

0

Incidence angle (  )

 kσ�
h
 =0.34

 kσ
h
 =0.49

 kσ
h
 =0.66

o o

o

Figure 12. Amplitude and phase of the reflection coefficients for
Dirichlet (on the top) and Neumann (on the bottom) boundary
conditions, for a Gaussian spectrum.
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Figure 13. Same as Fig. 12, but for the sea spectrum case.

corresponds to the pseudo Brewster-angle phenomenon that occurs for
a rough surface. In addition, as the roughness increases we note that
this angle is shifted towards low angles and the associated value of the
reflection coefficient decreases.



Progress In Electromagnetics Research, PIER 81, 2008 429

3.3.2. Bistatic Scattering Coefficients

For a Dirichlet rough surface and for Gaussian and sea spectra, the
bistatic cross sections are plotted in Fig. 14 versus the observation
angle. The wind speed is U10 = 5 m/s. The same variation is displayed
in Fig. 15 but for the Neumann case.
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Figure 14. Comparison of the bistatic scattering coefficients σ(κ, q)
for the Dirichlet case. Incidence angle θi = 40◦. RMS heights
σh = 0.16 m. The correlation length lc = 1.3 m. MoM solution (solid
curve), Extended SPM (triangle curve), first-order conventional SPM
(circle curve), second-order conventional SPM (diamond curve), Itô’s
SPM solution (plus curve). On the left, Gaussian spectrum. On the
right, sea spectrum.
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Figure 15. Same variation as in Fig. 14 but for the Neumann case.

The fall-off occurring in first-order conventional SPM solution at
observation angle θ = 40o, which is the specular direction, is due
to the sea spectrum W̃ (q − κ) in Eqs. (27)–(34). Indeed, in the
specular direction, κ = q, and, as shown in Fig. 5, leading that
the corresponding elevation spectrum is zero. It is not the case in
the benchmark solution since the height profile is generated with a
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Figure 16. Same variation as in Fig. 14 but for a wind speed
U10 = 7 m/s (on the left) and U10 = 6 m/s (on the right).
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Figure 17. Same variation as in Fig. 16 but for the Neumann case.

minimum wavenumber value κmin = 0.15Kp, for which the elevation
spectrum is small, but not zero.

In Figs. 16 and 17, the same variation is represented as in Figs. 14
and 15, but for U10 = 7 m/s (gaussian spectrum) and U10 = 6 m/s (sea
spectrum).

The benchmark solution is obtained from the conventional Method
of Moments (MoM), which is used as reference in many studies [21–
25]. The surface length is 100λ, the sampling step ∆x = 0.1λ, the
Thorsos’s incident wave is characterized by g = L/6. The number of
Monte Carlo realizations is 100 [26]. The frequency is f = 100 MHz
and λ = 3 m.

In Figs. 16 and 17 for a sea spectrum the wind speed is
U10 = 6 m/s, since beyond k0σh = 0.49, both conventional SPM and
Extended SPM failed. That is not true with the Gaussian spectrum
case.

For small RMS height k0σh ≤ 0.25 (not presented), all bistatic
scattering coefficients are approximately equivalent. As k0σh increases,
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the results obtained by conventional perturbation solution increases
faster than the extended one, which gives good agreement. The later
is however below the reference values, and, actually, it is expected
that the higher order solutions of the ESPM should be increased the
level in order to reach in a better way the reference solution. To our
knowledge, no calculation has been published on this issue. Indeed,
higher orders need much more cumbersome mathematical handling.
As well, it should be expected that the higher order of conventional
SPM solution would contribute a decreasing in power. It is readily
clear for the Gaussian case at k0σh = 0.66 (U10 = 7 m/s), that there
is a departure of the second-order SPM solution in backscattering
direction. However, the sea case does not show this behavior for the
second-order SPM solution since both first- and second-orders are quite
in agreement, even if k0σh = 0.49 (U10 = 6 m/s) in this case.

The Itô first-order solution [13], based on the assumption
corresponding to the diagrammatic form of the Bethe-Salpeter
equation shown in Fig. 3(c), is identical to the Watson-Keller
formula [27] which is not reciprocal. However, (27) and (28) are
reciprocal leading to

σ(κ, q) = σ(−q,−κ) (39)

Equations (27) and (28) satisfied the reciprocity condition since
the height spectrum is an even function. In addition, from the first-
order perturbation theory, we take into account not only the resonant
Bragg scattering via the term W̃ (q − κ) in Eqs. (27) and (28), but
also the attenuation of the incident wave due to multiple scattering
processes via the correction factor |Fp1|2. The scattered wave then
propagates from x1c in q-direction including rough surface effects.

4. CONCLUDING REMARKS

In this paper, the multiple scattering theory developed by Bass et al.
is studied to predict the scattering from a one-dimensional perfectly-
conducting Gaussian rough sea surface of the Gaussian and the more
realistic Elfouhaily et al. spectra. Theoretically, this asymptotic
solution for the intensity of incoherent waves shows that the multiple
scattering effect is incorporated into the solution in terms of the
effective surface impedance. This leads to bring a correction to the
usual SPM of Rice.

The main contribution of this work is the presentation of numerical
results for two height spectra. We first plotted the behavior of the
effective surface impedances for both spectra. From these surface
impedances, we displayed the reflection coefficients which exhibit,
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in TM case, a pseudo Brewster-angle phenomenon, well-known for
non perfectly-conducting smooth surfaces. Then, the numerical
investigations of the bistatic scattering coefficient for both Neumann
and Dirichlet boundary conditions, for a rough sea surface, obeying to
the Elfouhaily et al. spectrum, in HF-VHF band, show good agreement
between the theory and the benchmark method.

However, as discussed earlier, numerical results for the correction
factor show that the ESPM provides a relatively good result for
Dirichlet case, while it is not valid at near-grazing incidence for
Neumann case, since Figs. 10–11 show a significant departure. The
latter case indicates a definite need as grazing incidence approach.
It is for example the purpose of the paper [28], based on the
results of Barrick [20], the paper [29] which derives a new Grazing
Perturbation (GP), or [30] where authors make use of the Parabolic
Wave Equation to take into account interaction phenomena of the wave
with propagation media. For this goal, accelerated benchmark solution
are necessary [31].

This study is relevant for application in remote sensing for
coastal radar for example. Actually, it will lead to the real case, a
finitely conducting rough sea surface, which will be the purpose in a
future paper, as well as study at grazing angle under the formulation
presented in this paper.

APPENDIX A. EVALUATION OF THE INTEGRAL OF
THE TM EFFECTIVE SURFACE IMPEDANCE ZV 1(κ)

This appendix presents a way to remove the pole, which occurs in the
integrand of effective surface impedance for the TM case (Eq. (21)),
given by

Zv1(κ) =
∫ +∞

−∞

dκ′

k0kz(κ′)
(k2

0 − κκ′)2W̃ (κ− κ′) (A1)

Writing Zv1(κ) = αv1(κ) + jβv1(κ), we obtain from (21)


αv1(κ) =
∫ +k0

−k0

dκ′

k0

√
k2

0 − κ′2
(k2

0 − κκ′)2W̃ (κ− κ′)

βv1(κ) = −
∫ −k0

−∞

dκ′

k0

√
−κ′2 − k2

0

(k2
0 − κκ′)2W̃ (κ− κ′)

−
∫ ∞

k0

dκ′

k0

√
−κ′2 − k2

0

(k2
0 − κκ′)2W̃ (κ− κ′)

(A2)
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For κ′ = ±k0, the denominator of the integrand vanishes, implying
that the integrand diverges. In order to remove this effect, we use a
variable transformation.

For convenience, we can split the real part αv1(κ) as

αv1(κ) =
∫ 0

−k0

dκ′

k0

√
k2

0 −−κ′2
(k2

0 − κκ′)2W̃ (κ− κ′)

+
∫ k0

0

dκ′

k0

√
k2

0 −−κ′2
(k2

0 − κκ′)2W̃ (κ− κ′) (A3)

Noting that
√
k2

0 −−κ′2 =
√

(k0 − κ′)(k0 + κ′), we make a variable
transformation u1 =

√
k0 + κ′ (the pole is κ′ = −k0) for the first

integral in Eq. (A3) and u2 =
√
k0 − κ′ (the pole is κ′ = +k0) in the

second integral of (A3). This leads to the following result

αv1(κ) =
∑
s=±

∫ √k0

0

du
k0

√
−u2 + 2k0

×
[
k2

0 + sκ
(
k0 − u2

)]2
W̃

(
κ+ s

[
k0 − u2

])
(A4)

We now let consider the imaginary part βv1(κ)

βv1(κ) = −
∫ −k0

−∞

dκ′

k0

√
−κ′2 − k2

0

(k2
0 − κκ′)2W̃ (κ− κ′)

−
∫ ∞

k0

dκ′

k0

√
−κ′2 − k2

0

(k2
0 − κκ′)2W̃ (κ− κ′) (A5)

The limit of integration in the first integral of Eq. (A5) can
be expressed in the same way as the second one by making the

transformation κ′ → −κ′. We then let u =
√

−κ′2 − k2
0, leading to the

substitution of the pole
√

−κ′2 − k2
0 by

√
u2 + k2

0 where the variable
u ranges from 0 to +∞. As for the real part, we can express the
imaginary part in the following manner

βv1(κ) = −
∑
s=±

∫ +∞

0

du
k0

√
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0 + u2

×
[
k2

0 + sκ
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0 + u2
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)
(A6)
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It can then be readily verified that no pole of the integrand of Zv1(κ)
is crossed or approached. It is also interesting to notify that for the
real part of Eq. (21), for a Gaussian height spectrum (35) and κ = 0
(normal incidence angle), the integral is expressed in a closed-form as
follows

αv1(κ) = ξσ2
hk

2
0

√
πe−

ξ2

2 I0

(
ξ2

2

)
(A7)

where I0 is the modified Bessel function of first kind and zeroth order,
and ξ = k0lc/2.
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