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Abstract—Compared with the worst-case optimization-based ap-
proach, the probability-constrained approach is a more flexible one
to robust adaptive beamforming. In this paper, a precise relationship
between the two approaches is built in the case of Gaussian steering
vector mismatch, which shows that the probability-constrained beam-
former design can be interpreted in terms of the worst-case beamformer
design. Numerical simulations demonstrate that the precise version of
the probability-constrained beamformer is more robust to the steering
vector mismatch than the other popular robust adaptive beamformers.

1. INTRODUCTION

Compared with the traditional data-independent beamformers, the
adaptive beamformers can have better resolution and much better
interference rejection capability [1–3]. In the past decades, adaptive
beamforming has been widely used in radar [4, 5], direction finding
(DF) [6–8], wireless communications [9], medical imaging [10], and
other areas [11, 12]. However, the adaptive beamformers are much
more sensitive to the steering vector errors, which will degrade the
performance of the adaptive beamformers severely [13, 14]. Therefore,
the robustness against the steering vector uncertainties in adaptive
beamformers is required [15–17].
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As a recent popular approach to designing robust adaptive
beamformer, the worst-case optimization-based robust adaptive
beamforming [8–10] makes explicit use of an uncertainty set of the
array steering vector, which is unlike the early robust beamforming
methods. The worst-case robust beamformers are designed to
minimize the output interference-plus-noise power, while maintain
distortionless response for all possible steering vectors which belong to
the uncertainty set. However, the actual worst conditions may occur
in practice with a rather low probability, and so, the worst-case robust
beamforming may be overly conservative in practical applications.

In order to overcome the conservative character of the worst-
case robust beamforming, a probability-constrained robust adaptive
beamforming was proposed in [11, 12], which is more flexible than
the former. The probability-constrained robust adaptive beamforming
is to maintain the beamformer distortionless response only for those
operational conditions with a sufficiently high probability, rather than
for all operational conditions corresponding to the uncertainty set. In
the case of Gaussian steering vector mismatch, the worst-case robust
beamformer can be viewed as a strengthened version of the probability-
constrained robust beamformer in [12]. However, [12] didn’t reveal
the real relationship between the two robust adaptive beamforming
approaches. In this paper, we build a precise relationship between the
two robust beamforming approaches in the case of Gaussian steering
vector mismatch. Simulation results confirm that compared with the
previous robust adaptive beamforming approaches, the precise version
of the probability-constrained robust beamformer is more robust.

The rest of this paper is organized as follows. Section 2
contains background material. In Section 3, we formulate a
precise relationship between the worst-case optimization-based and
probability-constrained approaches to robust adaptive beamforming
for a class of Gaussian steering vector mismatch. The performance
comparisons are presented in 4. Finally, Section 5 concludes this paper.

2. BACKGROUND

The output of a narrowband beamformer is given by

y(k) = ωHx(k), (1)

where k is the time index, x(k) = [x1(k), · · · , xN (k)]T ∈ CN×1 is the
complex vector of array observations, ω = [ω1, · · · , ωN ]T ∈ CN×1

is the complex vector of beamformer weights, N is the number of
array sensors, and (·)T and (·)H denote the transpose and Hermitian



Progress In Electromagnetics Research, PIER 81, 2008 317

transpose, respectively. The observation vector has the form

x(k) = as(k) + i(k) + n(k), k = 1, 2, · · · (2)

where a is the signal steering vector, s(k), i(k), and n(k) are the desired
signal, interference and noise components, respectively. The source,
interference and noise are assumed to be zero-mean, complex Gaussian
white processes that are statistically independent. The weight vector
ω is chosen to maximize the array output signal-to-interference-plus-
noise ratio (SINR)

SINR =
σ2
s |ωHa|2

ωHRi+nω
, (3)

where σ2
s = E{|s(k)|2} is the signal power, and Ri+n = E{(i(k) +

n(k))(i(k) + n(k))H} is the N × N interference-plus-noise covariance
matrix. Here, E{·} denotes the statistical mean. In practical
applications, the exact Ri+n is unavailable, and it is usually replaced
by the sample covariance matrix [13]

R̂ =
1
K

K∑
k=1

x(k)x(k)H , (4)

where K is the number of snapshots.
The classical Capon method is to maintain a distortionless

response toward the desired signal and minimize the output
interference-plus-noise power [14]. Hence, the problem of maximizing
the SINR in (3) can be written as the following optimization problem

min
ω

ωHR̂ω s.t. ωHa = 1, (5)

which can be solved by the Lagrange multiplier method and the
solution

ωMV =
R̂−1a

aHR̂−1a
(6)

is referred to as the sample matrix inversion (SMI) minimum variance
distortionless response (MVDR) beamformer.

However, the SMI MVDR beamformer (6) has an essential
shortcoming that it does not provide sufficient robustness against the
mismatch between the presumed and actual signal steering vectors,
which degrades the beamformer performance severely. In the recent
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popular worst-case robust adaptive beamforming, the actual steering
vector ā is modeled as additive uncertainty, namely,

ā = a + δ, (7)

where a is the presumed steering vector, and δ denotes the steering
vector mismatch. In the design of the worst-case robust beamformer,
the norm of the steering vector mismatch is assumed to have an upper
bound ε > 0, namely, ‖ δ ‖ ≤ ε. The design of the worst-case robust
adaptive beamformer can be expressed as the following optimization
problem [8]:

min
ω

ωHR̂ω s.t. min
‖δ‖≤ε

|ωH(a + δ)| ≥ 1. (8)

As [8–10] denote, the worst-case robust beamformer (8) belongs to the
class of diagonal loading technologies. Unlike the diagonal loading
sample matrix inversion (DL-SMI) beamformer [15], the diagonal
loading factor of the worst-case robust beamformer can be precisely
calculated [9].

However, the worst-case robust beamforming (8) may be overly
conservative, because the actual worst operational conditions may
occur in practice with a very low probability. In [11, 12], a more flexible
approach to the robust adaptive beamformer design was proposed,
which maintains the beamformer distortionless response only for those
operational conditions with a sufficiently high probability rather than
for all possible steering vector. The probability-constrained robust
adaptive beamforming can be formulated as the following optimization
problem:

min
ω

ωHR̂ω s.t. Pr{|ωH(a + δ)| ≥ 1} ≥ p, (9)

where Pr{·} stands for the probability operator, and p is a preselected
probability value that is related to the beamformer outage probability
pout with p = 1 − pout.

When the distribution of δ is unknown, the probability-
constrained robust beamformer degrades into the worst-case robust
beamformer [12]. In this paper, we focus on the Gaussian steering
vector mismatch δ with zero mean and covariance matrix Cδ, that is,

δ ∼ CN (0N ,Cδ), (10)

where 0N is an N × 1 zero vector. The covariance matrix Cδ

captures the second-order statistics of the uncertainties in the steering
vector. Even though Cδ is actually non-diagonal, it typically can
be approximated by the scaled identity matrix for the simplicity
reason [16].
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3. PROBABILITY-CONSTRAINED ROBUST MINIMUM
VARIANCE BEAMFORMING

Using the assumption (10), it is easy to show that the random variable
ωH(a + δ) has the following distribution

ωH(a + δ) ∼ CN
(
ωHa, ‖ C1/2

δ ω ‖2
)

, (11)

and its real and imaginary parts �{ωH(a+δ)} and �{ωH(a+δ)} are
real Gaussian i.i.d., that is,

�{ωH(a + δ)} ∼ N
(
�{ωHa}, ‖ C1/2

δ ω ‖2 /2
)

�{ωH(a + δ)} ∼ N
(
�{ωHa}, ‖ C1/2

δ ω ‖2 /2
)

.
(12)

Hence, the random variable |ωH(a + δ)| =

√
�{ωH(a + δ)}2+
�{ωH(a + δ)}2 has

a Ricean distribution. From [17], the probability constraint in (9) can
be simplified as

Pr
{
|ωH(a + δ)| ≥ 1

}
≈ 1 − Pr

{
|ωH(a + δ)| ≤ 1

}
= e−(|ωHa|2+1)/‖C1/2

δ ω‖2
∞∑
k=0

|ωHa|kIk
(

2|ωHa|
‖ C1/2

δ ω ‖

)
≥ p,

(13)

where Iα(x) is the αth-order modified Bessel function of the first kind,
which can be represented by infinite series

Iα(x) =
∞∑
k=0

(x/2)α+2k

k!Γ(α + k + 1)
, x ≥ 0. (14)

Then, the probability-constrained optimization problem (9) is
equivalent to the following determined constrained optimization
problem:

min
ω

ωHR̂ω s.t. e−(|ωHa|2+1)/‖C1/2
δ ω‖2

∞∑
k=0

|ωHa|kIk
(

2|ωHa|
‖ C1/2

δ ω ‖

)
≥ p,

(15)

which is almost an insoluble problem without effective simplification.
In the following, we will approximate the probability constraint in (9)
into a simple determined constraint.
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Let us assume that the steering vector errors are not too large, so
that |ωHδ| < |ωHa| is valid. Applying the triangle inequality, we have

|ωH(a + δ)| ≥ |ωHa| − |ωHδ|. (16)

Moreover, it is easy to verify that

|ωH(a + δ)| = |ωHa| − |ωHδ| (17)

if

∠{ωHδ} = −∠{ωHa}. (18)

From (16), it follows that

Pr{|ωH(a + δ)| ≥ 1} ≥ Pr{|ωHa| − |ωHδ| ≥ 1}, (19)

which can be used to approximate the constraint in (9). Indeed,
according to (19), the probability constraint in (9) is always satisfied
if

Pr{|ωHa| − |ωHδ| ≥ 1} ≥ p. (20)

With the character that the object function ωHR̂ω is rotation-
invariant to ω [8], we can always rotate the phase of ω so that ωHa is
a non-negative number, namely,

�{ωHa} ≥ 0, �{ωHa} = 0. (21)

Then, the probability constraint (20) can be rewritten as

Pr{|ωHδ| ≤ ωHa − 1} ≥ p. (22)

In [12], the probability constraint (20) was replaced by the
following strengthened constraint:

Pr{|�{ωHδ}| ≤ (ωHa − 1)/
√

2, |�{ωHδ}| ≤ (ωHa − 1)/
√

2} ≥ p
(23)

from the character that

Pr{|�{ωHδ}| ≤ (ωHa − 1)/
√

2, |�{ωHδ}| ≤ (ωHa − 1)/
√

2}
≤ Pr{|ωHδ| ≤ ωHa − 1}.

(24)

Using (10), the strengthened version of the probability-constrained
problem (9) can be expressed as the determined constrained
optimization problem [12]

min
ω

ωHR̂ω s.t.
√

2 erf−1(
√

p) ‖ C1/2
δ ω ‖≤ ωHa − 1, (25)
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where erf−1(z) denotes the inverse function of the normalized error
function for the Gaussian distribution

erf(z) =
2√
π

∫ z

0
e−x

2
dx. (26)

As [12] denotes, the optimization problem (25) can be identified to
the second-order cone programming (SOCP) problem which is exactly
equivalent to the worst-case robust adaptive beamforming problem
of [8] provided that Cδ = σ2

δI and

εs = σδ

√
2 erf−1(

√
p) = σδ

√
2 erf−1(

√
1 − pout). (27)

The performance of the probability-constrained robust adaptive
beamformer just depends on εs, which is the sole parameter of the
equivalent worst-case optimization problem.

However, the Equation (27) doesn’t reveal the real relationship
between the two approaches to robust adaptive beamforming because
of introducing the constraint (23). In the following, we will reveal the
precise relationship between the two approaches without any additional
simplification. From (10), the random variable ωHδ has the following
distribution

ωHδ ∼ CN (0, ‖ C1/2
δ ω ‖2), (28)

and its real and imaginary parts �{ωHδ} and �{ωHδ} are real
Gaussian i.i.d., that is,

�{ωHδ} ∼ N
(
0, ‖ C1/2

δ ω ‖2 /2
)

�{ωHδ} ∼ N
(
0, ‖ C1/2

δ ω ‖2 /2
)

.
(29)

Then, the random variable |ωHδ| =
√
�{ωHδ}2 + �{ωHδ}2 has a

Rayleigh density. From [18], we can simplify the probability constraint
(22) as the equivalent deterministic form

Pr
{
|ωHδ| ≤ ωHa − 1

}
= 1 − e−(ωHa−1)2/(‖C1/2

δ ω‖2) ≥ p, (30)

or, equivalently, √
ln

(
1

1 − p

)
‖ C1/2

δ ω ‖ ≤ ωHa − 1. (31)
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Hence, the probability-constrained optimization problem (9) can
be expressed as

min
ω

ωHR̂ω s.t.

√
ln

(
1

1 − p

)
‖ C1/2

δ ω ‖≤ ωHa − 1, (32)

which can be identified as a SOCP problem [19] and is exactly
equivalent to the worst-case robust adaptive beamforming problem
of [8] provided that Cδ = σ2

δI and

ε = σδ

√
ln

(
1

1 − p

)
= σδ

√
ln

(
1

pout

)
. (33)

In summary, in the case of Gaussian steering vector mismatch, the
probability-constrained robust beamformer (9) can be simplified as the
worst-case robust beamformer (32), and the Equation (33) explicitly
quantifies the relationship between the two approaches providing an
interpretation of the worst-case design parameter ε in terms of the
beamformer outage probability pout.
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Figure 1. Equivalent radius vs. probability p.

Comparing (33) with (27), for the same preselected probability
p, we can observe that the radius of the spherical uncertainty region
suggested by the equivalent SOCP problem of the strengthened version
(25) is larger than that of the precise version (32), namely,

εs ≥ ε, (34)
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which is shown in Figure 1. Note that ε in (33) is a monotonically
increasing function of p ∈ [0, 1). From (34), we can see that the
strengthened version (25) is in fact with a larger probability than
the preselected one, which is caused by strengthening the probability
constraint (22) by (23).

In the following section, we will compare the performance of the
precise version of the probability-constrained robust beamformer with
some other methods through numerical simulations.

4. PERFORMANCE COMPARISON

In our simulations, a uniform linear array (ULA) with N = 10
omnidirectional sensors spaced half a wavelength apart is considered.
Without loss of generality, we assume that there are two interfering
sources with plane wavefronts and the directions of arrival (DOAs)
equal to 30◦ and 50◦, respectively. A total of 200 Monte Carlo
simulation runs are used to obtain each simulated point. Four
different beamforming algorithms are compared in terms of the mean
output SINR: the precise version (32) of the probability-constrained
robust beamformer, the strengthened version (25) of the probability-
constrained robust beamformer, the eigenspace-based beamformer [20],
and the worst-case robust beamformer [8] with ε = 3 (as a good ad
hoc choice of this parameter recommended in [8]). As a reference, the
optimal output SINR

SINRopt = σ2
sa

HR−1
i+na (35)

is also shown in all figures, which is obtained in the case of signal-free
training samples [13].

A scenario with the Ricean propagation medium is considered
where the presumed signal steering vector is a plane wave with the
nominal DOA θ0 while the actual steering vector corresponds to a
spatially spread with the central angle θ0. The actual mismatch vector
δ is modeled as [8]

δ =
σδ√
L

L∑
l=1

ejψla(θ0 + θl), (36)

where, σ2
δ characterizes the power of scattered nonline-of-sight (NLOS)

signal components, L is their number, ψl is the phase shift parameter
of the lth NLOS component, and θl is the angular shift of the lth
NLOS component with respect to the nominal DOA. The parameters
θl are assumed to be independently drawn in each simulation run from
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a uniform random generator with zero mean and standard deviation
σθ = 5◦. The parameters ψl are independently and uniformly drawn
from the interval [0, 2π) in each run. In all simulations, L = 20, θ0 = 3◦
and K = 50 are taken and the covariance matrix Cδ is approximated
by σ2

δI.
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Figure 2. Output SINR versus SNR on different INR conditions,
p = 0.9, σδ = 0.3.

In Figure 2, we compare the performances of different
beamforming algorithms in terms of the mean output array SINR
versus the input SNR on the different interference-to-noise ratio (INR)
conditions for the typical probability p = 0.9 and σδ = 0.3. From
Figure 2, we observe that when the variance of the element of the
steering vector is relatively small, the two probability-constrained
robust beamformers have obvious performance advantage over the
worst-case robust beamformer at high INR. However, they perform not
as well as the worst-case robust beamformer at low INR. In addition,
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the strengthened version (25) has a slight performance advantage over
the precise one (32), because the strengthen version has a relative larger
radius.
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Figure 3. Output SINR versus SNR on different INR conditions,
p = 0.9, σδ = 1.5.

When σδ is regarded as the variable of the radius function, we
can observe that the slope of the radius εs (27) is larger than that
of the radius ε (33) for any preselected probability p, which can also
be seen from Figure 1. And then, the radius εs of the strengthened
version increase faster than the radius ε of the precise version as
the increase of σδ. In Figure 3, we compare the performances of
two versions of probability-constrained beamforming algorithms in the
case of σδ = 1.5, which is 5 times of σδ = 0.3 in the simulations of
Figure 2. The simulation results demonstrate that in the condition of
large variance, the precise version (32) proposed in this paper keeps the
good performance as well as in the condition of small variance, whereas
the strengthened version (25) suffers the performance degradation at
high SNR. In this sense, conclusion can be drawn that the precise
version (32) is more robust than the other methods.

5. CONCLUSION

Compared with the worst-case optimization-based robust adaptive
beamforming, the probability-constrained robust adaptive beamform-
ing is a more flexible approach. In this paper, we build a precise
relationship between the two approaches in the case of Gaussian steer-
ing vector mismatch. Simulation results demonstrate that the precise
version of the probability-constrained beamformer is more robust to
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the steering vector mismatch than the other popular robust adaptive
beamformers.
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