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Abstract—This paper presents a new frequency-sweep approach
for the efficient calculation of S-parameters of planar microwave
structures. The approach is based on approximating the frequency
dependence of the real and imaginary parts of the S-parameters
using neural networks. Due to its superior performance, radial basis
functions neural network (RBF-NN) is adopted. A limited number of
frequency samples are used to train the RBF-NN. Then, the trained
RBF-NN is capable of providing a smooth frequency response with
very high accuracy in a fraction of a second. The proposed method is
applied to a number of planar microwave structures such as: Patch
antenna with an inset feed, band-rejection filter, and branch-line
coupler. According to the presented results, a speed factor of at least
10 is measured, and a maximum percentage error of 3.29% is recorded.

1. INTRODUCTION

The neural network (NN) is similar to the human brain in three
aspects: it consists of a large number of processing elements (the
neurons or nodes), each node connects to a large number of other
neurons, and the functionality of the network is determined by
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modifying the strengths of the connections during a learning phase [1].
Ability and adaptability to learn, generalisability, fast real-time
operation, and ease of implementation have made NNs popular for
a number of microwave design problems in recent years [2]. Citing
just a number of examples: NNs have been used in the design of
passive microwave circuits [3], analysis and synthesis of microstrip
lines [4], calculation of the characteristic impedance of air-suspended
trapezoidal and rectangular-shaped microshield lines [5], design of
nonlinear microwave circuits based on active devices [6], design of
microstrip patch antennas [7, 8], direction of arrival estimation with
antenna arrays [9, 10], radar target recognition [11], aperture antenna
shape prediction [12], inverse scattering of dielectric cylinders [13],
near field to far filed transformation [14], and synthesis of antenna
array [15, 16]. In addition to modeling the response, NNs can also be
employed within the core of the full-wave solvers based on the method
of moments [17, 18].

In this work neural networks are employed to accelerate the
frequency sweep required by full-wave simulators for calculating the
S-parameters of microwave devices. There are several techniques that
can be used for this purpose. These techniques can be classified into
three main categories. In the first category, the frequency response,
such as an S-parameter, is approximated using Padé approximant.
Several techniques can be used to achieve this task such as MBPE,
AWE, CFH, and PVL [19]. The basic principle of these techniques is
to extract the dominant poles and residues of the frequency response
and represent it by a reduced-order model.

The second main category is the impedance matrix interpolation
technique. This technique is based on the fact that most responses of
interest, such as the current distribution and the S-parameters, exhibit
rapid frequency variations. However, the impedance matrix elements
are smoother in their variation with frequency. Consequently, it is
better to frequency interpolate them rather than trying to interpolate
the responses. The concept of the impedance matrix interpolation was
proposed in [20]. The approach is further extended in [21]. These works
are concerned with the analysis of structures in free space. A similar
technique is presented in [22], which is suitable for planar structures
in layered media.

The third category is based on the curve fitting of Green’s
functions at different frequency points [23]. This technique starts by
calculating a number of basis integrals for each inner-product integral
in the MoM impedance matrix. At each frequency point, a new set of
weighting coefficients are calculated. This set together with the basis
integrals are used to evaluate the corresponding inner-product at any
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frequency point.
The technique presented in this paper belongs to the first category.

A neural network is trained to approximate the S-parameters at any
frequency point. A limited number of frequency samples are used
to train such neural network. Once trained, this neural network is
capable of performing the frequency sweep in a fraction of a second.
Section 2 presents the proposed frequency sweeper based on radial
basis functions neural networks. This frequency sweeper has been used
for rapidly calculating the S-parameters of a number of microwave
structures in Section 3. The important conclusions are stated in
Section 4.

2. NEURAL FREQUENCY SWEEPER

The remarkable ability of radial basis function neural networks (RBF-
NN) to carry out general nonlinear function approximation tasks
through learning from examples is exploited in this research. RBF-
NN posses several advantages over the most commonly used back
propagation neural network (BP-NN). RBF-NN trains faster than BP-
NN. Moreover RBF-NN leads to better decision boundaries in a variety
of applications.

Radial basis function neural network is composed of three layers
called input, hidden, and output layers as shown in Fig. 1. The input
layer is made up of L nodes, where L is the dimension of the input
vector. The task of the input layer is to pass the inputs of the network
to the hidden layer. The hidden layer in turn performs a nonlinear
mapping from the input space to a new space. It is made up of M
nodes, each with a radial activation function. The most common
choice for this function is the Gaussian function which has a peak
at the center and decreases monotonically as the distance from the
center increases. The region of the input space over which the node
has an appreciable response, is known as the “spread”. It is important
that the spread should be large enough to enable the hidden nodes to
respond to overlapping regions of the input space, but not so large that
all the hidden nodes respond in the same manner. The output layer
is made up of N linear nodes which are fully connected to the hidden
nodes. Therefore the output nodes form a linear combination of the
outputs of the hidden nodes.

In this research, the Neural Networks Toolbox of MATLAB [24],
is used. The main features of the RBF-NN of this toolbox are the
utilization of Gaussian distribution transfer functions in the hidden
layer, pure linear transfer functions in the output layer, dynamic
capacity allocation algorithm for training in the hidden layer [25], and
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the least mean squares algorithm for training in the output layer.
Figure 2 shows the topology of the proposed frequency-sweeper

which is based on radial basis functions neural network. The proposed
RBF-NN takes the frequency as an input and predicts the real
and imaginary parts of all S-parameters of interest. A number of
frequency samples are selected within the frequency band of interest.
S-parameters of the microwave structure under investigation are
calculated a prior at the selected frequency samples. The combination
of frequency points (inputs) and the corresponding S-parameters
(outputs) are known as patterns. These patterns are divided into two
interlaced parts. The first part is used to train the frequency-sweeper,
while the second part is used to test it.

Input layer
of L nodes

Hidden layer
of M radial-
basis nodes

Output layer
of N linear

nodes

I1

O1 O2 ON

IL

Figure 1. Radial basis functions neural network (RBF-NN).

Although the magnitude of an S-parameter on the dB scale,
is usually of more interest than its real and imaginary parts, the
latter show smoother behavior. The former always possesses sharp
variations around resonance frequency [17, 23]. For this reason, it is
much more efficient to model the real and imaginary parts rather than
the magnitude on the dB scale. Then, the dB value can be very
easy calculated in terms of the real and imaginary parts: S(dB) =

20 log10

(√
Re2(S) + Im2(S)

)
.
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Figure 2. Topology of the proposed frequency sweeper based on RBF-
NN.

3. APPLICATIONS

In this section, the proposed frequency sweeper is applied to three
planar microwave structures: Patch antenna with an inset feed, band-
rejection filter, and branch-line coupler. All these structures are
assumed made of perfect conductor on top of a Duroid substrate
with dielectric constant of 2.2 and thickness of 0.794 mm, backed
with a perfect conductor ground plane. The preparation of the
training and testing patterns is carried out using ADS/Momentum [26].
Momentum is a 2.5D full-wave solver based on the integral equation
formulation solved using the method of moments. For meshing
the microwave structures under investigation, mixed rectangular and
triangular segments are used. Twenty cells per wavelength combined
with a narrow edge mesh are adopted.

3.1. Patch Antenna with an Inset

Figure 3 shows a patch antenna fed with microstrip line with an inset.
This structure has only one port and characterized by a single S-
parameter, S11. The real and imaginary parts of this parameter are
plotted versus frequency in Fig. 4. This figure shows two sets of results
for Re (S11) and Im (S11). The first set represents the exact results as
obtained using ADS/Momentum. The second set represents the RBF-
NN prediction of the test patterns. Very good agreement between the
two sets can be observed. For training this RBF-NN, 13 equally spaced
frequency points are used, which need 46.57 seconds to be prepared
using the full-wave simulator. The time required for training this RBF-
NN is 46.7 msec. It has 10 neurons in its hidden layer. Another 26
equally spaced points are used to test the RBF-NN, these points are
marked in Fig. 4. The maximum percentage errors in the prediction
of Re (S11) and Im (S11) are −2.94% and 2.09%, respectively.
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Figure 3. Patch antenna with an inset feed (all dimensions are in
mm).
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Figure 4. Re(S11) and Im(S11) of the patch antenna versus frequency
as obtained using the exact simulator and the RBF-NN model.

The time required by the trained RBF-NN to calculate 201 points
is 41.9 msec. Hence the total time required to obtain these 201
points using RBF-NN is: Time required to prepare 13 training points
(46.57 sec) + time required for training (46.7 msec) + time required
for sweeping (41.9 msec) = 46.66 sec. To calculate the same 201 points
using ADS/Momentum, 12 minutes are required. This means that the
proposed frequency sweeper is about 15.43 times faster.

3.2. Band-rejection Filter

The proposed neural network frequency sweeper is applied on another
example, which is a band-rejection filter, as shown in Fig. 5. Due to
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Figure 5. Band-rejection filter (all dimensions are in mm).
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Figure 6. Re(S11) and Im(S11) of the band-rejection filter versus
frequency as obtained using the exact simulator and the RBF-NN
model.

symmetry of the two ports of this filter, S11 = S22. From reciprocity,
S21 = S12. Hence, this filter is characterized by only two independent
S-parameters: S11 and S21. The real and imaginary parts of these
parameters are the outputs of the RBF-NN of this filter. Figs. 6
and 7 show S11 and S21, respectively, as obtained using RBF-NN
and the exact simulator. It is clear that both results agree very well.
Quantitatively, the maximum percentage errors in the prediction of
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Figure 7. Re(S21) and Im(S21) of the band-rejection filter versus
frequency as obtained using the exact simulator and the RBF-NN
model.

Re (S11), Im (S11), Re (S21), and Im (S21) are 2.78%, 2.51%, −2.35%,
and −2.23%, respectively. For training the RBF-NN of this filter, 20
frequency samples are used. It has 16 neurons in the hidden layer.

The proposed RBF-NN model requires a total time of 124.53 sec to
produce 201 frequency points. This time can be distributed as follows:
Time required to prepare 20 training points using ADS/Momentum
(124.48 sec) + time required for training (49.1 msec) + time required
for sweeping (4.91 msec) = 124.53 sec. To calculate the same 201 points
using the full-wave simulator, 20.85 minutes are required. Hence the
proposed frequency sweeper offers a speed factor of about 10.

3.3. Branch-line Coupler

The last example is a branch-line coupler, as shown in Fig. 8. This
coupler has 4 ports and characterized by 16 S-parameters. Due to
symmetry and reciprocity, only four S-parameters are independent,
namely S11, S21, S31, and S41. The RBF-NN frequency sweeper of
Fig. 2 is applied to this coupler. For training the associated RBF-NN,
15 frequency samples are used. The trained RBF-NN has 11 neurons
in its hidden layers. For testing this RBF-NN, another 30 points,
uniformly distributed along the frequency band of interest, are used.
Figs. 9, 10, 11, and 12 show the exact and the RBF-NN results of S11,
S21, S31, and S41, respectively. Again, both methods lead to very close
results. The maximum percentage errors in the prediction of Re (S11),
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Figure 8. Branch-line coupler (all dimensions are in mm).
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Figure 9. Re(S11) and Im(S11) of the branch-line coupler versus
frequency as obtained using the exact simulator and the RBF-NN
model.

Im (S11), Re (S21), Im (S21), Re (S31), Im (S31), Re (S41), and Im (S41)
are 3.05%, −2.10%, 2.61%, 3.29%, 3.09%, 1.78%, 1.03%, and 2.84%,
respectively.

The computation time budget of the RBF-NN to predict 201
frequency points is: Time of simulating 15 frequency points (247.7 sec)
+ time required for training (46.9 msec) + time required for frequency
sweeping of 201 points (6.45 msec) = 247.75 sec. The same 201 points
are simulated using ADS/Momentum within 55.32 minutes. The
RBF-NN of this coupler is about 13.4 times faster than the full-wave
simulator.
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Figure 10. Re(S21) and Im(S21) of the branch-line coupler versus
frequency as obtained using the exact simulator and the RBF-NN
model.
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Figure 11. Re(S31) and Im(S31) of the branch-line coupler versus
frequency as obtained using the exact simulator and the RBF-NN
model.
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Figure 12. Re(S41) and Im(S41) of the branch-line coupler versus
frequency as obtained using the exact simulator and the RBF-NN
model.

4. CONCLUSION

A new RBF-NN model is presented in this paper. The model takes
the frequency as an input and provides the real and imaginary parts
of the S-parameters as outputs. Such model can be used to perform
the frequency sweep required for characterizing a planar microwave
structure. A limited number of frequency points uniformly distributed
along the frequency band of interest, are used to train the RBF-
NN frequency sweeper. The presented results demonstrate that the
trained RBF-NN performs the frequency sweep very fast and with very
high accuracy. For the examples studied in this paper, the maximum
recorded percentage error in the prediction of the real and imaginary
parts of S-parameters is 3.29%. For these examples, the RBF-NN
sweeper is at least 10 times faster than the full-wave simulator. The
proposed method is quite general and can be applied to any planar
microwave structure.
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