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Abstract—In this paper, we study in detail the electromagnetic field
excited by a horizontal electric dipole in the presence of a four-layered
region, which consists of a perfect conductor, the two dielectric layers,
and air above. From the derivations and analysis, it is seen that the
electromagnetic field includes four wave modes: Direct wave, ideal
reflected wave, trapped surface wave, and lateral wave. The wave
numbers of the trapped surface wave, which are determined by the
residues of the poles, are between the wave number kg in the air and
ko in the lower dielectric layer. The lateral waves with the wave number
being kg are determined by the integrations along the branch cuts. It
should be pointed out that both the trapped surface wave and lateral
wave can be separated into the electric-type terms and magnetic-type
terms. Analysis and computations show that the trapped surface waves
play major roles at large propagation distance when both the dipole
point and the observation point are on or close to the air-dielectric
boundary.

1. INTRODUCTION

The electromagnetic field excited by a dipole source in a layered
region has been investigated widely because of its useful applications
in subsurface and closed-to-the surface communication, radar and
geophysical prospecting and diagnostics [1-35]. In the pioneering works
by Wait [1-5], extensive investigations have been carried out for the
electromagnetic field in a layered region by using asymptotic methods,
contour integrations, and branch cuts. In the works by King et al. [8—
13], the complete formulas have been obtained for the electromagnetic
fields excited by horizontal and vertical electric dipoles in two- and
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three-layered regions. In a series of works by Li et al. [20-22], the
dyadic Green’s function technique is used to treat the electromagnetic
field in a four-layered forest environment.

In the end of 20th century, the debates on the trapped surface
wave excited by a dipole source in a three-layered region, which varies
as p~ Y2 in the far-field region, was occurred between two famous
professors, Wait [14] and King [15]. Subsequently, several investigators
have revisited the old problem and concluded that the trapped surface
wave, which is contributed by the sums of residues of the poles, can be
excited efficiently by a dipole source in the three-layered region [29-35].
The new developments in [29-35], naturally, rekindle the interest in the
study on the electromagnetic field of a dipole source in a four-layered
region.

In the parallel paper [36], the complete formulas are derived for
the electromagnetic field of a vertical electric dipole in the presence of
a four-layered region. In what follows, we will attempt to treat the
electromagnetic field of a horizontal electric dipole in the presence of
a four-layered region.

2. ELECTROMAGNETIC FIELD EXCITED BY A
HORIZONTAL ELECTRIC DIPOLE IN THE PRESENCE
OF A FOUR-LAYERED REGION

2.1. Integrated Formulas for the Electromagnetic Field

The relevant geometry and Cartesian coordinate system are shown in
Fig. 1, where a horizontal electric dipole in the & direction is located at
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Figure 1. Geometry of a horizontal dipole in the presence of a four-
layered region.
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(0,0,d). Region 0 (z > 0) is the space above the two-layered dielectrics
occupied by the air. Region 1 (=11 < z < 0) is the upper dielectric layer
characterized by the permeability pg, permittivity €1, and conductivity
o1. Region 2 (—(l1 +12) < z < —l;) is the lower dielectric layer
characterized by the permeability ug, €2, and conductivity o9. Region
3 (z < —(l1 + l2)) is the rest space occupied by a perfect conductor.
The wave numbers in the four-layered region are

ko = wy/po€o (1)
ki = wy/po (e +ioj/w) j=1,2 (2)
ks — oo. (3)

When the dipole point and the observation point are near the air-
dielectric boundary, use is made of the time dependence e~ ™! the
integrated formulas of the electromagnetic field of a horizontal electric
dipole in the presence of a four-layered region can be obtained readily
by using (11.5.4)—(11.5.9) in the monograph by King, Owens, and
Wu [8]. They can be written as follows:
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) . > ivolz— 7 z —
Bo:(p, ¢, 2) = % smd)/o [e0lzdl — peinGHd]a=1 1 (Ap)A2dN (9)

where

Y1 k% tany1ly + 72]4:% tan yalo

k30 + ik3y
Q= - ' * " y1k3 — yokf tan vily tan yoly (10)
k20 — ik2m Y1k3 tany1ly + Y2k tan yalo
17 — 1R

11k3 — vok? tan y11y tan yals

. Y2 — 1 tanyily tan yalo
Yo — N

pP—_ 71 tanyaly + 2 tanyily 1)
. Y2 — 1 tany1ly tanyals
Yo + 71
~1 tan yaly + y2 tanvy1l;

Vi = \JkF = A2 j=0,1,2 (12)
kj = W/l j=0,1,2. (13)

It is convenient to rewrite (4)—(9) in the following forms.

Eop(p. 6,2)= “‘jgzcosqb[ Fuolp, z=d)=Fyo(p, z+d)+ Fp(p, 2+ )] (14)

W
E0¢(P, ¢a Z): W Sln¢[F¢0(pa Z_d)_F¢0(pa z_d)+F¢1 (p7 Z+d)] (15)
W
k}2
BOp(pv ¢a Z): _Z_;:_ Sln¢[ pO(p7 Z_d)_GpO(pa Z+d)+Gp1(p’ Z—l—d)] (17)

Bog(p, 6, 2) = "2 c0s 6 [Golp, 2—d) = Golp, 2+ )+ Golp, =+ )] (18)

EOz(P, ¢7 Z)
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Box(p, 6, 2)= 1251016 [Gaolp, 5—d) ~Guolp 5+ d) + Gy 2+ )] (19)
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It is noted that the first and second terms in (14)—(19), which had
been evaluated by King, Owens, and Wu [8], stand for the direct
wave and ideal reflected wave, respectively. In the next step, it is
necessary to evaluate the rest integrals. The third terms in (14)-
(19) can be separated into electric-type (TM) and magnetic-type (TE)
terms. They are

Fp(p,z+d) = Fp(p,z +d) + Fp3(p, 2 + d) (
Fyi(p,z +d) = Fyap, 2 +d) + Fys(p, 2 + d) (
Gpi(p,z+d) = Gp(p,z+d)+Gp(p,z+d) (34
Ge1(p, 2 +d) = Gga(p, 2z +d) + Gg3(p, 2 + d) (

~— — — ~—

where

Falptd) = [ LD 0) - s 2an 30
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0
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0
Galpz+d) = = [ (P DRG0 45)
0

In this paper, the integrals F.1, Fj2, Figo, G2, and Gy involving the
factor (Q + 1) are defined as the electric-type (TM) terms, and the
integrals G.1, Fj3, Fy3, Gp3, and Gg3 involving the factor (P — 1) are
defined as the magnetic-type (TE) terms.
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2.2. Evaluations for the Electric-type (TM) Terms

Considering ~9,7v1, and 2 are even functions of A, and using the
relations between Bessel function and Hankel function

) = 3 [HD ) + HO (00)] (46)
HO(~Ap) = HOQp)(~ 1) (47)
Toln) + 2(30) = 15 51() (48)

Substitution (46)—(48) into (36) yields to

i [ k3voy1 (k3 tanyily + y2k? tan yals)
FpQ(p,Z—l—d) = _51 9 2 q()\) 1

x [H§Y (p) = HZY (Ap)| €06+ xd (49)

where
q(A) = k‘%%(vlk‘g — ’}/2]{7% tan y1ly tan yaly)
—ik871 (71 k% tan~yily + ’}/Qk% tan yals). (50)

. o . 1
For convenience, it is necessary to decompose F)s into two terms F [22)

and Fp(;). They are expressed as follows:

1 7
F;EQ) = —ikgk%
o Yoy17Y2 tan yalo {Hél)(/\p)—Hél)()\p)} .
/ 0+ \ g\ (51)
—% q(A)
9 7
F;§2) = _ikgk%

e EF \ g ) (52)

1 1

/00 107% tan 11l {H(() '(\p)—H] )()\P)}
o q(A)

In order to evaluate the above two integrals, we shift the contour

around the branch lines at A = kg, A = k1, and A = k2. The next main

tasks are to determine the poles and to evaluate the integrations along

the branch cuts I'g, I'1, and I's. The poles of the integrands satisfy the
following equation.

a(\) = kivo(v1k3 — Y2k tany1ly tanyals)
—ikgy1 (y1k3 tanyily + y2k3 tanyals) = 0. (53)
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Comparing with the case of a vertical dipole as addressed by Xu et
al. [36], it is seen that the pole Equation (53) is same with that of the
)

vertical-dipole case. Thus, Fp(; can be written in the form

Fy) = 2ni (—%kék%)

* %% * 1 * 1 *
YorV1EY2E tan 72El2{H(g : (AjeP) — iV (AjEp)}

; Q'(A;E)

ez"ySE(z-‘rd) )‘;E

Yoy1y2tan 'YQZQ[I'I(gl) (Ap) —Hg(l) ()\P)}

et N g\ (54
To+T1+T q(N) (54)

9,9
—5kok
where )\;5 p are poles of electric-type (TM) wave,

A
q(\) = -k = (%k% — Yok7 tany1l; tan 72l2)
Y0
o2 A 2 2
+ikg— (’yle tan y1l; + yok7 tan "}/212)
!
2 Ao, Ao
+kivo |——k3 + —ki tan 1y tan yoly
M V2

l l
+k%")/2)\ (—1 sec? v1ly tan vyals + 2 tan Y111 sec? ’yglg)]
4! V2

k2t L k%t l
kG - < PR L bl
Y1 72
—i—k%ll sec? Y1l + k%lz sec? 72l2> (55)
Ve = Tn(Njg) n=0,1,2 (56)

Next, we will evaluate the integrals along the branch cuts I'g,
I'y, and I's. Similar to the three-layered case addressed by Tang and
Hong [31], it is easily verified that the integrations along the branch
cuts I'y and I'y are zero for the integrals in (54). Subjecting to the far-
field condition of kgp > 1 and z + d < p, it is seen that the dominant
contribution of the integration along I'y comes from the vicinity of kg.

Let A = ko(1;72), at the vicinity of kg, the values Hfll)()\p), Y0, Y1, and
72 are approximated as

2 . s
Hﬁ”(Ap)%\/Wwe’(’fop—i”—"ﬂ-e—%mz n=0,1,2 (57)
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Yo = \ k3 — A2~ kge' 4”\/_7 (58)
1= k¥ =M ~ \Jk}— k2 = o, (59)

Y2 = k‘% — )\2 ~ k‘% — k‘% = 720, (60)

Then, with the change of variable ¢t = 7 + e\/‘f Z‘;d, the integral along

branch cut Ty in (54) can be written in following form.

1 kop [z +d\?
2\/§k616 ‘1 "y p’Ylo’mtan’molz exp |ikop + 1 Op( ) 1

2 p
L =
710]€2 — ’}/20/61 tan ’71011 tan ’)/2(][2
o kopt? (t _ i/% z+ d)
oo
x / Ve P )y (61)

—00 t— GZZA,I

where

,  z2+d ko’ho (103 tan y10l1 + Y20k tan y2o1, )
Al - 2 2 (62)
\/ip \/_k? (v10k3 — ya0k? tan yigl1 tanyaolz)

The integral in (62) can be evaluated directly. It is

T 2
efkopt2 <t . fl/‘%z ‘l‘d)
o0
/ P ) g =

—00 t—e’%A’ B
P . % 1
Z”ko < 1 \/_Z+ —me "1 <A/1—\/,Z_;d> erfc(y/—ip}) (63)

where p} = kopA2, and the phase of y/ikgpAZ in (64) requires to be

Avgy/~inPhop| < ] (64)
The error function and Fresnel integral are defined by
erfc(z) = / (65)
\/_

F') = 5(+i) - /Op imdt. (66)
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Taking into account the relation between the error function and Fresnel
integral

erfe(y/—ip*) = V2e 1 F(p*). (67)
Then, we obtain
FY) = nkik?
* ok ok * 1 * 1 *
YorMEY2E tanaple [Hé )()‘jEP)*Hé )()‘JEP)}

Z q/()\}k'E)

J

n 2v/2kgv10720 tan yaola 1 gikor>
Y10k3 — Yy20k? tan yiolt tan yaola \| whop
d 1 2
) Y ]

where ro = \/p?+ (z+d)?2 = p [1 + 3 (%i)} Similarly, the integral
(52) can be evaluated readily.

emSE(z-i-d) )‘;(E

F$Y = nk2k3
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+ 1 eikorg
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O R e R

Then, the final expression of Fj,3 can be written in the following form.
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[Vra(2-757)

! 1 z+d 7ipI *
+ivar (ap-—== ) F<p1>]. (70)

Evidently, with the the similar procedures, the rest terms of the
electric-type (TM) field can also be evaluated. We write

381
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T z+d -
=4 iV2or (A - = e PR (pt 73
(st ]
Fa(p,z+d) =
Vi (k37 p tanyi gl + kivsp tan 3 plo) H{I)(A*EP)
2mi2 Y j

2

i2k§’ylo gfylotan Y10l1 +y20tan yoplo
.ei’YSE(Z-‘rd))\ﬂf%_i_ k7t 1 gikor>
/ Y10k3 —y20k3 tan y10l1 tan Yool mkop

™ . I z+d —ip] *
. [\/;p—k iv2r <A1 — NGT, ) e F(Pl)} : (74)

2.3. Evaluations for the Terms of Magnetic-type (TE) Field
Substitutions (46)—(48) into (39) yields to

Fy3(p, z+d) =

5 tan ol tan v 1) HY () — HV (A

i e (ntansely bz tann )| OO0 O] oo
2 J_oo (M)

where

p(\) = yoy1tan yala +yoy2tan 1l +iyiye —ivitan yilitan yala. (76)

It is convenient to decompose Fy3 into F(z()é) and F<Z(>Z2’)) They are
expressed as follows:

(1) (1)
k2 e tanals [HSY (Ao)— HEY (Mp)]
] e NI\ (77
¢3 2 ) o p(/\) ( )
) (1)
2 roo yatanmly [HSY (Ap)—HEY ()]
Fg,) _ ko [ 0 2 Lm(ﬁd))\d)\_ (78)
2 Joso p(A)

In order to evaluate F q%) , it is necessary to examine the pole equation
of the magnetic-type terms.

P(X) =voyitan yalo+yov2tan y1li +iy1y2 —iyitan yilitan yele =0. (79)
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Figure 2. Roots of p(\) for f =  Figure 3. Roots of p(A) for f =
100 MHz, €1, = 2.65, €2, = 4.0, 100 MHz, €1, = 2.65, €3, = 4.0,
l1 =1 =0.8m. 1 =3.0m, and I, = 1.0m.

Clearly, the poles may exist in the interval ky < A < ko, and k; is
a removable pole. As illustrated in Figs. 2 and 3, the poles can be
determined by using Newton method. Then, we have

F{) =2ri. 20 ¢ (=+d) \*
3 2 - pI(X]k'B) B

K2 7 tan yala| HiY (Ap) — HSP (Ap)|

2 To+I'1+419 p()\)

k3 Z Yiptan ’YSBZQ[H(SD (AjBp) _H2(1) (A;BP)}

e GEF) \dX (80)

where A are the poles of magnetic-type (TE) field.

Yov1l2

(A = =\ (l tan vyolo + il tan yalo + sec? yaly + 22 tan 1y
Y0 71 Y0

sec®y1ly +2’% —l—iﬂ —i2tanyil; tan ysls

VY2

Yov2l1
il

—i—E tan vyl +
V2
2 V%lz 2
—iy1ly sec” y1ly tan yals — i——= tan y1ly sec” ysls (81)
72

Yo = Tn(ANjp) n=0,1,2. (82)

Similar to the case of the electric-type (TM) field, it is seen that
the integrations along the branch cuts I'y and I'y are zero in (81). As
kop > 1 and z + d < p, the dominant contribution of the integration
along the branch cut I'g comes from the vicinity of kg. Let A = ko(1,72),
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and using the notation ¢t = 7 + e\/% ztd the integral along I'y in (81)

can be evaluated readily.

[ 1
i2k8’ kop Y10 tan yoglo exp
Iy
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o
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The final expression of Fy3 can be written as follows:

J (Vi)

1 1 * g z 1 1ROT
{Hé "(Njpp) — HS )()\ij)} 0T Z2]‘70\/ kop" "
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Following the similar procedures it is obtained readily.
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2.4. Final Formulas of the Six Field Components

With the above results for the trapped surface wave and lateral wave,
and those for the direct wave and ideal reflected wave addressed by
King, Owens, and Wu [8], the final expressions for the six components
can be obtained readily.
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Figure 4. The electric field |E,)|
in V/m with f = 100 MHz, €;, =
9.65. eoy — 4. kily = koly = 0.7,
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Figure 6. The electric field |E,)|
in V/m with f = 100MHz, €, =
2.65, €3 = 4. kyly = kaly = 0.7,
and z =d = 3m.
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Figure 5. The electric field |E,|
in V/m with f = 100 MHz, €;, =
2.65, g = 4. kyly = koly = 1.5,
and z =d =0m.

10
107‘ \\
10®
E
>
£ 10°
3
w
10*
— Total field
5 Trapped surface wave
10 - - DRL waves
10° e
0 100 200 300 400 500

pinm

Figure 7. The electric field |E,|
in V/m with f = 100 MHz, €1, =
2.65, €3, = 4. kyly = koly = 1.5,
and z =d =3m.

If Region 1 is made the air by setting k1 = kg or both Regions
1 and 2 are made the same dielectric by setting k1 = ko, the above
results reduce to the corresponding results for the three-layered case
as addressed by Tang and Hong [31].

3. CONCLUSIONS AND COMPUTATIONS

From the above derivations and analysis, the complete formulas have
been obtained for the electromagnetic field of a horizontal electric
dipole in the presence of a four-layered region. It is seen that both
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the trapped surface wave and the lateral wave can be separated into
the electric-type (TM) and magnetic-type (TE) terms. The trapped
surface wave with its wave number being between k¢ and ko, is
determined by the sum of the residues of the poles. The lateral wave
with its wave number kg is determined by the integration of the branch
cut.

For the radical electric field component |Ey,(p,0,z)| at z =d =0
m, with f = 100MHz, €1, = 2.65,¢19, = 4.0, the total field, the
trapped surface wave, and the DRL waves are computed for kil; =
kols = 0.7 and kily = kolo = 1.5, respectively. It is noted that the
DRL waves include the direct wave, the ideal reflected wave, and the
lateral wave. Similar to those shown in Figs. 4 and 5, the corresponding
results at z = d = 3m are shown in Figs. 6 and 7, respectively.
When both the dipole point and the observation point are on the
air-dielectric boundary, the total field is determined by the trapped
surface wave. Once the dipole point or the observation point is away
to the boundary, the trapped surface wave attenuates rapidly and the
total field is determined primarily by the lateral wave. In practical
applications, we can change the thicknesses of the above and lower
dielectric layers to fulfil the required results.
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