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Abstract—This paper aims at finding an algorithm featuring
good estimation performance and easy hardware implementation for
tracking airborne target hidden in blind Doppler. Incorporating
the current statistical model which is effective in dealing with the
maneuvering motions that most blind Doppler issues are caused, a
current statistical model particle filter (CSM-PF) is presented in
this paper for tracking airborne targets hidden in blind Doppler.
Simulation results demonstrate that the proposed CSM-PF shows
similar performance with the interacting multiple model particle filter
(IMM-PF) in terms of tracking accuracy and track continuity, but it
avoids the difficulty of model selection for maneuvering targets. In
addition, when hardware implementation is considered, the proposed
CSM-PF has lower processing latency, fewer resource utilization and
lower hardware complexity than the IMM-PF.

1. INTRODUCTION

Radar systems extract information pertaining to location or velocity
of a target upon receiving the measurements. During these years,
multifarious new techniques are continuously applied to various radar
systems [1–8]. Nowadays, modern radar systems have been regarded
to be very “mature” in all the aspects like performance, manufacturing
technics and reliability, and have been widely applied in both military
and civil uses. However, the development of radar is far from its
end. The coming forth of the “electric war” raised new requirements
to all aspects of radar systems, such as devices manufacturing,
circuit implementation, antenna design and signal processing of radar
tracking [9–17]. Among various radar tracking problems, tracking the
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targets hidden in radar blind Doppler zone (BDZ) becomes a hot topic
in recent years due to its importance in airborne radars [18–20].

Blind Doppler refers to the bands of Doppler frequency where
the targets are invisible due to rejection of ground clutter from the
radar echoes. In airborne tracking, the blind Doppler makes the target
undetectable, resulting in tracking difficulties. Since the target cannot
always be hidden in the BDZ and it has to reappear finally, it is
highly required that tracking should be resumed as soon as the radar
detects the target again. The extended Kalman filter (EKF) and its
versatile variations [21] are the most popular approaches for target
tracking. However, due to the blind Doppler’s severe nonlinearity,
the estimation performances of EKF-based methods are not very
satisfactory [18]. Preferred means are particle filters (PFs) [22–26] and
combined EKF/PFs, which can resume tracking after reappearance of
the target by using the prior knowledge of BDZ [18, 19].

Most blind Doppler issues arise from maneuvering motion, and
different maneuvering motions will result in different BDZs. For such
maneuverabilities, the particle filter based on constant velocity (CV)
motion model may have difficulties [18]. Ref. [20] proposed an IMM-
PF which combines a constant velocity model and an acceleration
model to handle the maneuvering motions. However, the actual models
of a target are unknown for the tracking filter, thus the selection
of multiple models is very difficult. If the combined models are
not selected appropriately, the estimation error will be unacceptable.
Further more, the IMM algorithm features high processing latency and
complex hardware implementation [20].

Current statistical model is essentially a Signer model with an
adaptive mean [27]. It doesn’t require any a priori model for the
diverse acceleration situations of actual target maneuvers. Thus, the
difficulty of selecting appropriate models for different maneuvering
motions can be avoided. In addition, for tracking maneuvering
targets, the current statistical model has fast processing rate and
high estimate precision, along with the characteristic of easy hardware
implementation. In this paper, we combine the current statistical
model and particle filter to built a CSM-PF algorithm to track the
targets hidden in blind Doppler.

The layout of this paper is as follows. In Section 2, the problem
of tracking airborne targets hidden in blind Doppler is formulated. In
Section 3, we briefly outline the current statistical model and present
the CSM-PF algorithm for tracking airborne targets hidden in blind
Doppler. Simulation results and discussions are given in Section 4 and
we conclude this paper in Section 5.
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2. PROBLEM FORMULATION

For the airborne target-tracking problem, the target moves within the
x-y plane according to the standard model [28]:

xk+1 = Fkxk + Ekuk + Γkvk (1)

where Fk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 is the state transition matrix (T

is the sampling interval), xk = [xk, ẋk, yk, ẏk]
′

is the target state

vector at time kT (k is the time index), Ek =


T 2/2 0
T 0
0 T 2/2
0 T



and Γk =


T 2/2 0
T 0
0 T 2/2
0 T

 are the input matrix, uk = [ux
k, u

y
k]

′
is

the acceleration input vector (uk = 0 for CV motion model), and
vk = [vx

k , v
y
k ]

′
is the vector of input white noise with zero mean. The

variables (xk, yk) and (ẋk, ẏk) in the target state vector xk represent
the target positions and speeds in the x and y directions, respectively.

The measurement equation is

zk = h(xk) + wk (2)

where zk = [xk, yk, ṙk]
′

consists of position and range-rate
measurements. The unbiased conversions of measurements from polar
coordinate to Cartesian coordinate are given by: xk = λ−1 · rk · cos θk,
yk = λ−1 · rk · sin θk with λ = exp(−σ2

θ/2) being the bias compensation
factor, rk and θk being the range and the bearing of the target. The
error statistics for radar measurements are given in terms of the range
standard deviation σr, range-rate standard deviation σṙ, and azimuth
standard deviation σθ. With these statistics, the position variances in
the respective directions and their cross-covariance are as follows [29]:

σ2
xk

=
(
λ−2 − 2

)
r2k cos2 θk +

(
r2k + σ2

r

) (
1 + λ4 cos 2θk

)
/2 (3)

σ2
yk

=
(
λ−2 − 2

)
r2k sin2 θk +

(
r2k + σ2

r

) (
1 − λ4 cos 2θk

)
/2 (4)

σ2
xkyk

=
(
λ−2 − 2

)
r2k cos θk sin θk +

(
r2k + σ2

r

)
λ4 sin 2θk/2 (5)
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The nonlinear function h(xk) is defined as:

h(xk) =


xk

yk
xkẋk + ykẏk√
x2

k + y2
k

 =


xk(1)
xk(3)

xk(1)xk(2) + xk(3)xk(4)√
x2

k(1) + x2
k(3)

 (6)

where xk(i) denotes the ith component of the state vector. The
measurement noise wk is a 3×1 zero-mean Gaussian noise vector with
covariance matrix:

Rk =

 σ2
xk

σ2
xkyk

0
σ2

xkyk
σ2

yk
0

0 0 σ2
ṙ

 (7)

The process noise vk and the measurement noise wk are assumed
to be independent. The detection probability according to this model
is:

PD(xk) =


Pd, if

∣∣∣∣∣∣xkẋk + ykẏk√
x2

k + y2
k

∣∣∣∣∣∣ ≥ L0

0, otherwise

(8)

where Lo is the limit of BDZ when the platform motion has been
compensated and Pd is a positive constant less than or equal to unity.

3. CSM-PF

In this section, we briefly review the current statistical model and
present the CSM-PF algorithm for tracking the target hidden in BDZ.

3.1. Current Statistical Model

Current statistical model is essentially a Singer model with an adaptive
mean. The current probability density of a target’s maneuvering
acceleration has the form of modified Raleigh density. The discrete
current statistical model is:

X(k + 1) = Φ(k + 1, k)X(k) + U(k)a+ W(k) (9)

where X(k) = [x(k) ẋ(k) ẍ(k) y(k) ẏ(k) ÿ(k)]
′
is a six-dimensional state

vector with entries of position, velocity and acceleration, a = [ax ay]
′
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is the mean of current maneuvering acceleration in the Cartesian
coordinated x and y.

Φ(k + 1, k) =
[

Fk+1/k O3×3

O3×3 Fk+1/k

]
(10)

where Fk+1/k =

 1 T (τT − 1 + e−τT )/τ2

0 1 (1 − e−τT )/τ
0 0 e−τT

, O3×3 is a 3 × 3 zero

matrix and τ is the reciprocal of maneuvering time constant.

U(k) =

[
U1(k) O3×1

O3×1 U1(k)

]
(11)

where U1(k) = [u11 u12 u13]
′
, O3×1 is a 3 × 1 zero vector, and

u11 = (−τT + τ2T 2/2 + 1 − e−τT )/τ2, u12 = (τT − 1 + e−τT )/τ ,
u13 = 1 − e−τT .

The term W(k) in Equation (9) is a discrete white process noise
and its covariance is

Q(k) = E[W(k)WT (k)] =

[
Q1(k) O3×3

O3×3 Q1(k)

]
(12)

where Q1(k) = 2τσ2
a

 q11 q12 q13
q12 q22 q23
q13 q23 q33

 with

q11 =
(
1 − e−2τT + 2τT + 2τ3T 3/3 − 2τ2T 2 − 4τTe−τT

)
/(2τ5)

q12 =
(
e−2τT + 1 − 2e−τT + 2τTe−τT − 2τT + τ2T 2

)
/(2τ4)

q13 =
(
1 − e−2τT − 2τTe−τT

)
/(2τ3)

q22 =
(
4e−τT − 3 − e−2τT + 2τT

)
/(2τ3)

q23 =
(
e−2τT + 1 − 2e−τT

)
/(2τ2)

q33 =
(
1 − e−2τT

)
/(2τ)

and σ2
a being the variance of current acceleration that can be calculated

from the following equation:

σ2
a =


(

4 − π
π

)(amax − ȧ(k/k)
)2

, ȧ(k/k) > 0(
4 − π
π

)
(a−max − ȧ(k/k))2 , ȧ(k/k) < 0

(13)

where ȧ(k/k) is the current predicted acceleration, amax and a−max

denote the positive and negative boundary value of acceleration.
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To avoid the adverse influence of the limited acceleration
presupposed in the target tracking, we utilizes the functional relation
between the maneuvering status of target and the estimation of the
neighboring inter-sample position information to carry out the self-
adaptation of the process noise variance:

σ2
a =

4 − π
π

[
a+

2
T 2

∆d
]2

(14)

3.2. CSM-PF Algorithm

The unrestricted sample set is denoted as {xU
k (i) : i = 1, . . . , NU} and

the BDZ set is {xBZ
k (i) : i = 1, . . . , NBZ}. The overall probability

weights attached to each set is denoted as pk(U) and pk(BZ). The
CSM-PF algorithm is described as follows.

• Initialization: k = 1
– For i = 1, . . . , NU , sample x̃U

1 (i) from p(x1)
– Set p1(U) = 1 and p1(BZ) = 0

For k = 2, 3, . . .
• Prediction:

– For i = 1, . . . , NU , sample x̃U
k (i) ∼ p(xk|xU

k−1(i))
– if pk−1(BZ) > 0, for i = 1, . . . , NBZ , sample x̃BZ

k ∼
p(xk|xBZ

k−1(i))
• Information update:

– case (1):
if Pd > 0 and pk−1(BZ) = 0, this means the target is detected
now and was in unrestricted area in the previous sample time.
∗ Set p1(U) = 1, p1(BZ) = 0
∗ probability weights: wU

k (i) ∝ p(zk|x̃U
k (i)) to x̃U

k (i)
∗ Normalized weights: wU

k (i) = wU
k (i)/

∑N
i=1w

U
k (i)

– case (2):
if Pd = 0 and pk−1(BZ) = 0, this means the target is in blind
area now but was in unrestricted area in the previous sample
time.
∗ Use auxiliary sequential importance sampling [30] to

generate {x̃BZ
k (i)} from {xU

k−1(i)}
∗ Assign sample weight: wBZ

k (i) = N
(−1)
BZ to x̃BZ

k (i)
∗ Set pk(BZ) = Pd and pk(U) = 1 − Pd

– case (3):
if Pd = 0 and pk−1(BZ) = 1, this means the target is in blind
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area now and was in blind area in the previous sample time.
(assuming only CV motions in blind zone).
∗ Assign sample weight: wBZ

k (i) = N
(−1)
BZ to x̃BZ

k (i)
∗ Assign sample weight: wU

k (i) = N
(−1)
U to x̃U

k (i)
∗ Set pk(U) = (1 − Pd)pk−1(U) and pk(BZ) = 1 − pk(U)

– case (4):
if Pd > 0 and pk−1(BZ) = 1, this means the target is detected
but was in blind area in the previous sample time.
∗ Generate xU

k (i) by selecting the larger one from {x̃U
k (i)}

and {x̃BZ
k (i)}.

∗ Probability weights: wU
k (i) ∝ p(zk|xU

k (i))
∗ Normalized weights: wU

k (i) = wU
k (i)/

∑N
i=1w

U
k (i)

∗ Set p1(U) = 1, p1(BZ) = 0
• Resampling and roughening

– Multiply or discard particles with respect to high or
low normalized importance weights to obtain NU particles
{xU

k (i)} and NBZ particles {xBZ
k (i)}.

– Roughen the particles after resampling to improve the
diversity among particles using the typical roughening
method [31].

• Output
– Output the weighted mean xk = pk(U)

∑NU
i=1w

U
k (i)xU

k (i) +
pk(BZ)

∑NBZ
i=1 wBZ

k (i)xBZ
k (i)

• Update the variance of current acceleration σ2
a

–

σ2
ax

=
4 − π
π

[
ax +

2
T 2

(xk(1) − xk−1(1) − xk−1(2)T

−1
2
xk−1(3)T 2

)]2

–

σ2
ay

=
4 − π
π

[
ay +

2
T 2

(xk(4) − xk−1(4) − xk−1(5)T

−1
2
xk−1(6)T 2

)]2

• Next k
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4. SIMULATION RESULTS AND DISCUSSIONS

In this section, we show the merits of the CSM-PF algorithm when it
is applied to tracking airborne targets hidden in DBZs.

4.1. Simulation Results

We evaluated the performance of the proposed CSM-PF algorithm
by considering the root-mean square (RMS) position errors and the
probability of track maintenance. As in Ref. [18], we introduce the
track score Sk to define a track loss, which is computed as follows.

S
′
k =

{
Sk−1 + δ+(Tk) if target detected and zk gated
Sk−1 − δ+(Tk) otherwise

(15)

Sk =

{
min(S

′
k, 1) if target detected and zk gated

max(S
′
k, 0) otherwise

(16)

where the parameters δ+(Tk) and δ−(Tk) are the score increment and
decrement, respectively. When the track score Sk falls below a certain
threshold, the track is regarded as lost.

For comparison, the results of tracking targets hidden in blind
Doppler using PFs in [18] and the IMM-PF in [20] are presented to
gauge the performance. The target trajectory is shown in Fig. 1,
which is a typical scenario of interest [20]. Starting with a constant
velocity of 800 km/h toward the radar for 30 seconds, the target makes
a 3g (g = 9.81 m/s2 is gravity acceleration) turn to its right and
continues the tangential motion with respect to radar until 45 seconds.
Then it makes the second 3g turn and flies at the original velocity for
24 seconds. After making the third 3g turn to its left, it continues the
tangential motion for 10 seconds. Finally, the target makes another 3g
turn to the right and moves at the original velocity. In the whole flight,
the target intends to make two BDZs as indicated in Fig. 1. The time
evolution of target range-rate is shown in Fig. 2 together with the limit
L0 of BDZs.

In simulations, the parameters are as follows: The sampling
interval is T = 1 s; the process noises are σvx = σvy = 3 m/s; the
error statistics for radar measurements are σr = 30 m/s, σṙ = 3 m/s,
and σθ = 0.3 rad; the limit of BDZ is L0 = 30 m/s; the detection
probability is Pd = 0.9; the gating probability is Pg = 0.995; the
track score parameters are δ+(Tk) = 0.02 and δ−(Tk) = 0.02. We set
NU = NBZ = 3000 for the PF in [18], the CSM-PF and each selected
model of the IMM-PF in [20]. For the current statistical model, the
reciprocal of maneuvering time constant is τ = 0.02.
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scenario of interest.

0 20 40 60 80 100 120
-250

-200

-150

-100

-50

0

50

100

Time (s)

R
an

ge
-R

at
e 

(m
/s

)

True
Measure
DBZ limits

Figure 2. Range-rate of the
typical tracking flight.

Figure 3 shows the RMS position errors. As in [24], the RMS
position error at time index k is defined as:

RMSk =

√√√√ 1
M

M∑
i=1

(x̂i
k − xi

k)2 + (ŷi
k − yi

k)2 (17)

where M = 50 is the Monte Carlo simulation times, and x̂i
k, ŷ

i
k are

the filter position estimations at time index k in ith Monte Carlo
simulation. It can be found that the IMM-PF in [20] and the CSM-PF
can keep tracking for all the turning sections and thus stayed not far
away from the target when the target is about to reappear, but the PF
in [18] cannot follow the target from the moment it entered the BDZ
and thus failed to resume tracking at the reappearance of the target.

Figure 4 shows that for the track score parameters, the PF in [18]
falls down to zero in the middle of the track period, which means that
it lost the track. The IMM-PF in [20] and the CSM-PF can maintain
a track score not less than 0.6.

4.2. Discussions

From the simulation results above, it can be found that without any
information about the actual model of target, the CSM-PF algorithm
shows similar performance with the IMM-PF in [20] and both of them
show better performance than the PF in [18]. Note here that other than
the IMM-PF, the CSM-PF requires no information about the model of
target, thus it can avoid the difficulty of model selection for different
maneuvering motions. This is a very good characteristic of CSM-PF.
In the following part, we will show that the CSM-PF is better than the
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IMM-PF in [20] in terms of processing latency and resource utilization
when hardware implementation issues are considered.

For the processing latency, without loss of generality, we only
consider the case (1) in the information update part of the CSM-PF
algorithm where the target is detected and was in unrestricted area in
the previous sample time. Fig. 5 shows the timing of operations for one
recursion of the CSM-PF. The total cycle time of the CSM-PF is TPF =
(N + LS + LI + TRes + LRou)Tclk, where LS , LI and LRou represent
the startup latencies of the sample, importance and roughening unit,
respectively, TRes is the number of cycles required for resampling, N
is the number of particles and Tclk is the system clock period. The
CSM-PF algorithm requires no additional execution time to estimate
the target state and update the variance of current acceleration since it
can be processed simultaneously with the resampling unit. When using
the compact resampling or the residual systematic resampling [32], the
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execution time is TRes = N + LRes, where LRes is the latency of the
data path. Therefore, the execution time of the CSM-PF is TPF =
(N+LS+LI +N+LRes+LRou)Tclk = (2N+LS+LI +LRes+LRou)Tclk.
However, for the IMM-PF, besides the execution time that each
selected model requires, it needs additionally interaction stage and
combination stage. Thus, the IMM-PF has higher processing latency.

As for resource utilization, taking the IMM-PF in [20] for example,
since it combines two different models, it will require roughly twice
hardware resources of the proposed CSM-PF. The more models the
IMM-PF has, the more resources it requires. Further more, it has
to calculate the mixed probabilities and model probabilities, which
require expensive operations like divisions. These will result in that the
hardware implementation of the IMM-PF has much higher complexity
than the proposed CSM-PF.

5. CONCLUSION

In this paper, we have presented a CSM-PF, which is capable of
adaptively handling the maneuvering motions, to track airborne
targets hidden in blind Doppler. Simulation results demonstrate that
the proposed CSM-PF algorithm shows similar performance as the
IMM-PF regarding the RMS performance and the probability of track
maintenance, but it avoids the difficulty of model selection in IMM-
PF for the maneuvering target. Further more, the proposed CSM-PF
algorithm has lower processing latency, fewer resource utilization and
lower complexity than the IMM-PF when hardware implementation
issues are considered.
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