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Abstract——In this paper, the problem of electromagnetic scattering
from resistive strips is solved and discussed. This problem is modeled
by the integral equations of the second kind. The basic mathematical
concept is collocation method using block-pulse orthogonal basis
functions. An effective numerical method for solving these integral
equations is proposed. The problem of electromagnetic scattering from
resistive strips is treated in detail, the illustrative computations are
given for several cases, and an extensive discussion on the obtained
results is performed. This method can be generalized to apply to
objects of arbitrary geometry.
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1. INTRODUCTION

The development of numerical methods for solving integral equations
in Electromagnetics has attracted intensive researches for more than
four decades [1, 2]. The use of high-speed computers allows one to
make more computations than ever before. During these years, careful
analysis has paved the way for the development of efficient and effective
numerical methods and, of equal importance, has provided a solid
foundation for a through understanding of the techniques.

Over several decades, electromagnetic scattering problems have
been the subject of extensive researches (see [3–42]). Scattering from
arbitrary surfaces such as square, cylindrical, circular, spherical [3–9]
are commonly used as test cases in computational Electromagnetics,
because analytical solutions for scattered fields can be derived for these
geometries [3].

An important parameter in scattering studies is the electromag-
netic scattering by a target which is usually represented by its echo
area or radar cross section (RCS) [43]. The echo area or RCS is de-
fined as the area intercepting the amount of power that, when scattered
isotropically, produces at the receiver a density that is equal to the den-
sity scattered by the actual target [44]. For a two-dimensional target
the scattering parameter is referred to as the scattering width (SW) or
alternatively as the radar cross section per unit length.

When the transmitter and receiver are at the same location, the
RCS is usually referred to as monostatic (or backscattered) and it is
referred to as bistatic when the two are at different locations [43].
Observations made toward directions that satisfy Snell’s law of
reflection are usually referred to as specular. Therefore the RCS of
target is very important parameter which characterizes its scattering
properties. A plot of the RCS as a function of the space coordinates is
usually referred to as the RCS pattern.

Determining the scattered electromagnetic fields from resistive
strips leads to solve the integral equations of the second kind with
complex kernels. Of course, if the resistance of the strip approaches to
zero, then the problem is modeled by integral equations of the first
kind. However, for solving integral equations of the second kind,
several numerical approaches have been proposed. These numerical
methods often use the basis functions and transform the integral
equation to a linear system that can be solved by direct or iterative
methods [45]. It is important in these methods to select an appropriate
set of basis functions so that the approximate solution of integral
equation has a good accuracy.

It is the purpose of this paper to use the block-pulse functions
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(BPFs) as a set of orthogonal basis functions and to apply them to
the collocation method for determining the scattered electromagnetic
fields from resistive strips. Using this method, the second kind integral
equation reduces to a linear system of algebraic equations. Solving this
system gives an approximate solution for these problems.

First of all, some characteristics of BPFs are described. Then the
collocation method is proposed for solving integral equations of the
second kind using BPFs. The problem of electromagnetic scattering
from resistive strips is described in detail and solved by the presented
method. Also, the illustrative computations are given for several cases.
Finally, an extensive discussion on the obtained results is performed.

2. BLOCK-PULSE FUNCTIONS

One very important step in any numerical solution is the choice of basis
functions.

Block-pulse functions (BPFs) have been studied by many authors
and applied for solving different problems; for example, see [46, 47].

2.1. Definition

An m-set of BPFs is defined over the interval [0, T ) as [46]:

φi(t) =




1,
iT

m
� t <

(i+ 1)T
m

,

0, otherwise,
(1)

where i = 0, 1, . . . , m − 1 with a positive integer value for m. Also,
consider h = T/m, and φi is the ith BPF.

There are some properties for BPFs, the most important
properties are disjointness, orthogonality, and completeness.

The disjointness property can be clearly obtained from the
definition of BPFs:

φi(t)φj(t) =
{

φi(t), i = j,

0, i �= j.
(2)

where i, j = 0, 1, . . . , m− 1.
The other property is orthogonality. It is clear that

∫ 1

0
φi(t)φj(t)dt = hδij , (3)

where δij is the Kroneker delta.
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The third property is completeness. For every f ∈ L2([0, 1)) when
m approaches to the infinity, Parseval’s identity holds [46]:

∫ 1

0
f2(t)dt =

∞∑
i=0

f2
i ‖ φi(t) ‖2, (4)

where,

fi =
1
h

∫ 1

0
f(t)φi(t)dt. (5)

2.2. Vector Forms

Consider the first m terms of BPFs and write them concisely as m-
vector:

Φ(t) = [φ0(t), φ1(t), . . . , φm−1(t)]T , t ∈ [0, 1) (6)

above representation and disjointness property, follows:

Φ(t)ΦT (t) =



φ0(t) 0 . . . 0

0 φ1(t) . . . 0
...

...
. . .

...
0 0 . . . φm−1(t)


 , (7)

ΦT (t)Φ(t) = 1, (8)

Φ(t)ΦT (t)V = Ṽ Φ(t), (9)

where V is an m-vector and Ṽ = diag(V ). Moreover, it can be clearly
concluded that for every m×m matrix B:

ΦT (t)BΦ(t) = B̂T Φ(t), (10)

where B̂ is an m-vector with elements equal to the diagonal entries of
matrix B.

2.3. BPFs Expansion

The expansion of a function f(t) over [0, 1) with respect to φi(t),
i = 0, 1, . . . , m− 1 may be compactly written as [46]:

f(t) �
m−1∑
i=0

fiφi(t) = F T Φ(t) = ΦT (t)F, (11)
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where F = [f0, f1, . . . , fm−1]T and fis are defined by (5).
Now, assume k(t, s) is a function of two variables in L2([0, 1) ×

[0, 1)). It can be similarly expanded with respect to BPFs such as:

k(t, s) � ΦT (t)KΨ(s), (12)

where Φ(t) and Ψ(s) are m1 and m2 dimensional BPF vectors
respectively, and K is the m1 ×m2 block-pulse coefficient matrix with
kij , i = 0, 1, . . . , m− 1, j = 0, 1, . . . , m− 1, as follows:

kij = m1m2

∫ 1

0

∫ 1

0
k(t, s) φi(t) ψj(s)dtds. (13)

For convenience, we can put m1 = m2 = m.

3. COLLOCATION METHOD USING BLOCK-PULSE
BASIS FUNCTIONS

In this section, we extend the definition of BPFs over any interval [a, b).
Then, we apply them to solve the integral equations of the second kind
by collocation method.

Consider the following Fredholm integral equation of the second
kind:

x(s) +
∫ b

a
k(s, t)x(t)dt = y(s) (14)

where, k(s, t) and y(s) are known functions but x(t) is unknown.
Moreover, k(s, t) ∈ L2([a, b) × [a, b)) and y(s) ∈ L2([a, b)).
Approximating the function x(s) with respect to BPFs by (11) gives:

x(s) � F T Φ(s) (15)

such that the m-vector F is BPFs coefficients of x(s) that should be
determined.

Substituting Eq. (15) into (14) follows:

F T Φ(s) + F T

∫ b

a
k(s, t)Φ(t)dt � y(s) (16)

Now, let si, i = 0, 1, . . . , m−1 be m appropriate points in interval
[a, b); putting s = si in Eq. (16) follows:

F T Φ(si) + F T

∫ b

a
k(si, t)Φ(t)dt � y(si), i = 0, 1, . . . , m− 1 (17)
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or:

m−1∑
j=0

fj

[
φj(si)+

∫ b

a
k(si, t)φj(t)dt

]
�y(si), i=0, 1, . . . , m− 1 (18)

Now, replace � with =, hence Eq. (18) is a linear system of m
algebraic equations for m unknown components f0, f1, . . . , fm−1. So,
an approximate solution x(s) � F T Φ(s), is obtained for Eq. (14).

4. ELECTROMAGNETIC SCATTERING FROM
RESISTIVE STRIPS

Now, the problem of determining the scattered electromagnetic fields
from resistive strips is solved using the presented approach. In Fig. 1,
there is a resistive strip that is very long in the ±z direction. This strip
is encountered by an incoming plane wave that has a polarization with
its electric field parallel to the z-axis. The magnetic field of this wave
is entirely in the x-y plane, and is therefore transverse to the z-axis. It
is called transverse magnetic (TM) polarized wave. This polarization
therefore produces a current on the strip that flows along the z-axis.

Figure 1. A resistive strip of width a is encountered by an incoming
TM-polarized plane wave.

The magnetic vector potential of the current flowing along the
strip is given by [48]:

Az =
µ0

4j

∫ a/2

−a/2
Iz(x′)H

(2)
0 (k|x− x′|)dx′ (19)

where:

k = 2π
λ , free space wave number.
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λ is the wave length.
µ0 = 4π × 10−7 H/m, free space permeability.

G(x, x′) =
1
4j
H

(2)
0 (k|x− x′|), 2D free space Green’s function.

H
(2)
0 (x) is a Hankel function of the second kind 0th order.

So, the electric field is given by:

Ez(x) = jωAz(x) (20)

or

E(x) =
ωµ0

4

∫ a/2

−a/2
Iz(x′)H

(2)
0 (k|x− x′|)dx′ (21)

Assume that Rs(x) is the surface resistance of the strip and note
that the units of surface resistance are in Ω/m2. The boundary
condition at the surface of a thin resistive strip is given by the following
equation [48]:

−Einc = Escat +Rs(x)J(x) (22)

where:

J(x) is the surface current of the strip.
Escat is the scattered electric field produced by the surface current.

Assuming Einc = ejkx cos φ0 , from Eq. (21) and Eq. (22) it follows:

Rs(x)I(x) +
ωµ0

4

∫ a/2

−a/2
I(x′)H(2)

0 (k|x− x′|)dx′ = −ejkx cos φ0 (23)

where I(x) is the current of the strip.
Equation (23) can be converted to the following equation:

h(x) +
∫ b

a
G(x, x′)h(x′)dx′ = g(x) (24)

where:

h(x) = I(x)

G(x, x′) =
ωµ0

4
1

Rs(x)
H

(2)
0 (k|x− x′|)

g(x) = − 1
Rs(x)

ejkx cos φ0
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It is a Fredholm integral equation of the second kind and can be
solved by the presented method. However, from Eq. (23) I(x) can be
obtained and then the RCS of the strip can be computed easily.

RCS in two dimensions is defined mathematically as [48]:

σ(φ) = lim
r→∞

2πr
|Escat|2
|Einc|2 (25)

In two dimensions, the free space Green’s function is:

G(r, r′) =
1
4j
H

(2)
0 (k|r − r′|) (26)

The magnetic vector potential in two-dimensional space is:

A(r) = µ

∫ ∫
J(r′)G(r, r′)ds′ (27)

The electric field is given by:

E = jωA (28)

Combining (26), (27), and (28) we obtain:

E(r) =
ωµ

4

∫ ∫
J(r′)H(2)

0 (k|r − r′|)ds′ (29)

In the TM situation, the incident electric field along the strip is
1 V/m (|Einc|2 = 1). So, the denominator of Eq. (25) is unity. This
allows us to turn our attention to the numerator. To evaluate (29), we
note that as r −→ ∞, we can use the large argument approximation
for the Hankel function [48]:

H
(2)
0 (r) ≈

√
2
πr

e−j(r−π
4
) (30)

Substituting this into (29) and implementing Eq. (25) for the TM
case, we obtain:

σ(φ) =
kη2

4

∣∣∣∣
∫

strip
I(x′, y′)ejk(x′ cos φ+y′ sin φ)dl′

∣∣∣∣
2

(31)

where η = 376.73 Ω.
In the presented case, the strip is restricted to the x-axis, which

simplifies Eq. (31):

σ(φ) =
kη2

4

∣∣∣∣∣
∫ a/2

−a/2
I(x′)ejkx′ cos φdx′

∣∣∣∣∣
2

(32)
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Also, it is possible to define a logarithmic quantity with respect
to the RCS, so that:

σdBlm = 10 log10 σ (33)

4.1. Uniform Resistance Distribution

Assume that the Rs(x) has a uniform value in throughout of the surface
of strip. Considering Eq. (23), I(x) is computed for Rs of 0, 500,
1000 (Ω/m2), φ0 = π

2 , a = 6λ (m) and f = 0.3 GHz, and then RCS
is obtained of Eqs. (32) and (33). The current distributions of the
resistive strip for these values of Rs are shown in Figs. 2–5.
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Figure 2. Current distribution
across a 6 − λ strip created by
a TM-polarized plane wave for
Rs = 0 and f = 0.3 GHz.
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Figure 3. Current magnitude
across the 6 − λ resistive strip for
Rs of 500 and 1000 (Ω/m2) and
f = 0.3 GHz.

In Figs. 6 and 7, the bistatic RCS of the 6 − λ resistive strip, for
Rs of 0, 500, 1000 (Ω/m2) and for φ0 = π

2 ,
2π
3 has been shown. Also,

in Fig. 8 the monostatic RCS of this strip is given. It is seen that the
level of the first side lobe is nearly 13 dB down from the main lobe.

4.2. Quadratic Resistive Taper

Consider a quadratic resistive taper expressed by:

Rs(x) = 2η
(
kx

a

)2

(Ω/m2) (34)

where, k is a real constant value.
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Figure 4. The real part of cur-
rent across the 6−λ resistive strip
for Rs of 500 and 1000 (Ω/m2)
and f = 0.3 GHz.
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Figure 5. The imaginary part
of current across the 6 − λ
resistive strip for Rs of 500 and
1000 (Ω/m2) and f = 0.3 GHz.
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Figure 6. The bistatic RCS of
the 6 − λ resistive strip for Rs of
0, 500, 1000 (Ω/m2) and φ0 = π
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Figure 7. The bistatic RCS of
the 6 − λ resistive strip for Rs of
0, 500, 1000 (Ω/m2) and φ0 = 2π

3 .

Figure 9 shows the quadratic taper of a 6−λ strip for k = 2. After
computing I(x) by Eq. (23), the RCS of this strip can be obtained. For
φo = π

2 , the magnitude, real part and imaginary part of strip current
are shown in Figs. 10 and 11, and the bistatic radar cross section of this
strip shown in Figs. 12 and 13 has been calculated for k = 0.5, 1, 2,
φ0 = π

2 ,
π
4 , and f = 0.3 GHz. Fig. 14 shows the monostatic RCS. It

is seen that the quadratic taper reduces the first side lobe to a level
of −23 dB below the main lobe. This taper has reduced the first side
lobe by 10 dB, compared with a uniform distribution.
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Figure 8. The monostatic RCS
of the 6 − λ resistive strip for Rs

of 0, 500, 1000 (Ω/m2).
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Figure 9. The quadratic taper of
a 6 − λ resistive strip for k = 2.
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Figure 10. The magnitude and
real part of current across the 6−λ
resistive strip of Fig. 9 for k = 2
and f = 0.3 GHz.

3 2 1 0 1 2 3
0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

Distance along strip (in terms of wave length)

C
ur

re
nt

 (
im

ag
in

ar
y 

pa
rt

, m
A

/m
)

_ _ _

_

_

_

Figure 11. The imaginary part
of current across the 6−λ resistive
strip of Fig. 9 for k = 2 and
f = 0.3 GHz.

4.3. Sinc form Resistance Distribution

In this subsection the problem of determining the scattered fields is
solved for a resistive strip of a sinc form resistance distribution shown
in Fig. 15.

Consider a sinc form resistance expressed by:

Rs(x) = 2η
∣∣∣∣sin kπaxkπax

∣∣∣∣ (Ω/m2) (35)

in which, k is a real constant value.
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Figure 12. The bistatic RCS of
the 6 − λ resistive strip of Fig. 9
for k = 0.5, 1, 2 and φ0 = π
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Figure 13. The bistatic RCS of
the 6 − λ resistive strip of Fig. 9
for k = 0.5, 1, 2 and φ0 = π
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Figure 14. The monostatic RCS
of the 6−λ resistive strip of Fig. 9
for k = 0.5, 1, 2.
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Figure 15. Sinc form resistance
distribution of a 6 − λ resistive
strip for k = 1.

Applying Eq. (23) to this case gives the current distribution
which has been shown in Fig. 16. Then, the bistatic RCS of this
case is obtained of Eqs. (32) and (33). Fig. 17 shows the results for
k = 0.8, 3, 30 and f = 0.3 GHz.

For k = 30, the level of the first side lobe is nearly 13 dB down
from the main lobe.
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Figure 16. Current across the
6 − λ resistive strip of Fig. 15 for
k = 1 and f = 0.3 GHz.
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Figure 17. The bistatic RCS of
the 6− λ resistive strip of Fig. 15
for k = 0.8, 3, 30 and φ0 = π
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Figure 18. Exponential resis-
tance distribution of a 6 − λ re-
sistive strip for k = 1.
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Figure 19. Current across the
6 − λ resistive strip of Fig. 18 for
k = 1 and f = 0.3 GHz.

4.4. Exponential Distribution

The final case is an exponential form distribution of the strip resistance
which is defined below:

Rs(x) = 2η
(
kx

a

)2

exp
(
−

∣∣∣∣kxa
∣∣∣∣
)

(Ω/m2) (36)

Figure 18 shows the exponential form resistance distribution of a
6−λ strip for k = 1. Current distribution of this case for k = 1 is shown
in Fig. 19, and its bistatic RCS for k = 0.5, 1, 1.5 and f = 0.3 GHz is
shown in Fig. 20.
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Figure 20. The bistatic RCS of the 6− λ resistive strip of Fig. 18 for
k = 0.5, 1, 1.5 and φ0 = π

2 .

5. DISCUSSION ON THE RESULTS

Here, we discuss on both the current distributions and the RCSs.

5.1. Current Distributions

Figures 2–5 show the current distribution across the strip for Rs of 0,
500, 1000 (Ω/m2). It is seen that the current distribution across the
all strips approaches to infinity at the edges, but it has less extreme
oscillations across the resistive cases (Rs = 500, 1000 (Ω/m2)), and
the variations amplitude decreases by rising Rs. So, for the uniform
distribution, increasing in Rs causes the current to be less oscillatory,
and on the other hand causes the current magnitude to decrease.

For the quadratic resistive taper, the current distribution has a
finite value at the edges contrary to the uniform distribution. It seems
to be due to the high impedance at the edges in comparison with the
uniform distribution. Fig. 10 shows that the magnitude and real part
of the current have a maximum value that occurs in the middle of
the strip. But the imaginary part of the current has a quite different
behavior by comparison the magnitude and real part. It is seen that
the imaginary part is extremely oscillatory.

Figure 16 shows that the magnitude, real part and imaginary
part of the current created on the strip of the sinc form resistance
has many oscillations that is due to the numerous variations in the
resistance distribution which corresponds with the sinc function. Also,
the current value approaches to infinity at the edges, because the value
of the sinc function approaches to zero at the edges.

For the exponential form distribution, the magnitude and real part



Progress In Electromagnetics Research, PIER 81, 2008 407

of the current have a local maximum in the middle of the strip. Also,
it is seen that the current value is enlarged at the edges (more than
of the quadratic resistive taper), but it is less than of the uniform and
sinc form distributions.

5.2. RCSs

Considering Figs. 6 and 8, it can be seen that for uniform distribution,
increasing in surface resistance in both bistatic and monostatic RCS
only causes the levels of main lobe and side lobes to decrease, but the
maximum (relative) side lobe level (SLL) doesn’t change. SLL value
for this case is about −13 dB for any value of the surface resistance
and for both bistatic and monostatic RCS.

For the quadratic resistive taper, the main lobe and side lobes

Table 1. Summary of discussions.

Resistance

distribution

0.5 ≤ k ≤ 1.5

k ↑ k ↓
1.5 < k ≤ 10

k ↑ k ↓

Uniform
-

-

-

-

-

-

-

-

Quadratic

taper

MLL↓
SLL↓

MLL↑
SLL↑

MLL↓
SLL↓

MLL↑
SLL↑

Sinc form
MLL↑
SLL↓

MLL↓
SLL↑

MLL↑
SLL↓

MLL↓
SLL↑

Exponential

form

MLL↓
SLL↓

MLL↑
SLL↑

-

-

-

-

Resistance

distribution

k > 10

k ↑ k ↓
For uniform

Rs ↑ Rs ↓

Uniform
-

-

-

-

MLL↓
-

MLL↑
-

Quadratic

taper

MLL↓
SLL↓

MLL↑
SLL↑

-

-

-

-

Sinc form
-

SLL↓
-

SLL↑
-

-

-

-

Exponential

form

-

-

-

-

-

-

-

-
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levels increase when k decreases (see Figs. 12 and 14); Also, SLL
increases (in both bistatic and monostatic RCS). So, increasing k
causes SLL to decrease. The SLL value for k = 2 is nearly −23 dB
and it can be seen that this taper reduces the first side lobe by 10 dB,
compared with a uniform distribution.

Figure 17 shows that for the sinc form resistance distribution, SLL
value decreases with increasing k, but the main lobe level increases.
So, using the sinc form distribution we can simultaneously obtain
a low SLL and a main lobe with high level when k increases. For
k > 10, the main lobe level doesn’t have considerable changes, but
SLL becomes more and more less when k increases, because the side
lobe level decreases. The SLL value for k = 30 is nearly −13 dB.

The exponential form resistance distribution behaves like
quadratic taper for 0.5 ≤ k ≤ 1.5 (see Fig. 20), but it has another
behavior for other values of k. The SLL value for k = 1.5 is about
−21 dB.

A summary of the discussions posed in this subsection has been
presented in Table 1. Note that MLL means “main lobe level”.

6. CONCLUSION

The presented method in this paper is applied to solve the integral
equations of the second kind arising in problem of determining the
scattered electromagnetic fields from resistive strips.

As the numerical results showed, this method reduces an integral
equation of the second kind to a linear system of algebraic equations.

The problem of electromagnetic scattering from resistive strips was
treated in detail, and an extensive discussion on the obtained results
was performed.

This method can be easily generalized to apply to objects of
arbitrary geometry and arbitrary material.
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