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Abstract—A new mathematical method and proposal for generation
of shape invariant potentials using supersymmetric quantum mechanics
is introduced. For this purpose the potential term in the Schrödinger
equation is expressed in terms of the super potential. The
obtained equation transformed into well known ordinary second order
differential equation. Using standard technique, the Nikiforov-Uvarov
(NU) method the superpotential in the Schrödinger equation is
expressed in terms of the parameters appeared in the NU-approach
concluding to a nonlinear differential equation. By solving the obtained
equation and using relation between superpotential and potential the
shape invariant potentials are obtained. The proposed method is
general and straightforward for introducing of the shape invariant
potentials.

1. INTRODUCTION

Symmetries and invariance properties are among the most characteris-
tic features of any physical system. They usually give a deeper insight
into the physical nature of the systems, but also play an essential role
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from mathematical point of view. Symmetries typically lead to charac-
teristic patterns in the energy spectrum of the system. These features
are shared by the quantum mechanical problems. Technically these
are relatively simple systems, and accordingly they include a number
of exactly solvable examples. One of the most widely known symme-
tries of quantum mechanical problems is based on supersymmetry. In
principle, this symmetry is related to bosonic and fermionic degrees of
freedom. Particle physicists believe that supersymmetry exists close to
the electroweak energy scale in nature. According to particle physics,
supersymmetry naturally solves hierarchy problem, the large ratio be-
tween the electroweak scale and the other higher physical scales as the
Planck or the Grand Unified Theory (GUT). Moreover, it explains the
unification of the three fundamental coupling constants responsible for
the weak, strong and electromagnetic interactions. Since the event
of supersymmetry in theoretical particle physics [1] and its implica-
tions [2] in supersymmetric quantum mechanics, we are dealing with
supersymmetric wave equations, including time-independent superpo-
tentials. In despite of supersymmetry is a remarkable and exciting idea,
but at the same time, its implementation is technically pretty compli-
cated. One reason that physicists explored supersymmetry is because
it offers an extension to the more familiar symmetries of quantum field
theory. Actually, supersymmetric quantum mechanics (SUSYQM) in-
troduced for the first time by Witten [2] as a simplest supersymmetric
model of the quantum field theory. It leads to field theories and string
theories with essential properties [3–12]. The improved behavior and
the natural solution of the hierarchy problem are just a few of the nice
features of supersymmetric theories. In addition, supersymmetry also
predicts degenerate super-partner states corresponding to every physi-
cal particle state of the theory. This model manages a family of exactly
soluble potentials [13] and is widely used to obtain their exact solutions
in quantum mechanics [14, 15]. In principle, supersymmetric quantum
mechanics is a formalism used for determination of energy eigenval-
ues and eigenfunctions of quantum mechanical problems [13, 14]. In
this framework the various methods have been used in their solutions.
Recently, an alternative method known as the Nikiforov-Uvarov (NU)
method [15] has been introduced for solving the related equation in
the both relativistic and non-relativistic quantum mechanics [16–24].

Also, there are different numerical methods for investigation of
inhomogeneous media reported in [25–32]. In these papers different
approaches were presented and studied in detail. The contents
of this paper are organized as follows. In the next section we
briefly review the mathematical NU-method based on reducing the
second order differential equation to the hyper-geometric type with an
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appropriate coordinate transformation. In Section 3, a summary of
the supersymmetry in quantum mechanics is presented. According to
this formalism, we express potential term in the Schrdinger equation
in terms of the super potential in Section 4. Next, this equation
is transformed into well known ordinary second order differential
equation. Finally the paper ends with a short conclusion.

2. THE NIKIFOROV-UVAROV METHOD

The NU-method provide us exact solutions for certain kind of the
second order linear differential equations by reducing it to a generalized
equation of hyper-geometric type [6]. This approach also provides
exact solutions in terms of special orthogonal functions, as well as
corresponding eigenvalues. In non relativistic quantum mechanics, the
Schrödinger equation can be solved in this framework, for some real
or complex potential in one dimension. Here, we use this method
for obtaining some known shape invariant potentials, their wave
functions and eigenvalues. By introducing an appropriate coordinate
transformation, s = s(x) one can rewrite the Schrödinger equation in
the following form

ψ′′(s) +
τ̃(s)
σ(s)

ψ′(s) +
σ̃(s)
σ2(s)

ψ(s) = 0, (1)

where σ(s) and σ̃(s) are polynomials at most second order, and τ̃(s)
is a polynomial at most first degree [15]. To find a particular solution,
we use the following separation of variables

ψ(s) = φ(s)yn(s).

This factorization reduces Eq. (1) to a hyper-geometric type equation
of the following form

σ(s)y′′n(s) + τ(s)y′n(s) + λyn(s) = 0

where τ(s) = τ̃(s) + 2π(s). It should mention that τ(s) must be
negative and π(s) is defined as

π(s) =
(
σ′(s) − τ̃(s)

2

)
±

√(
σ′(s) − τ̃(s)

2

)2

− σ̃(s) + κσ(s), (2)

where κ is a parameter. Determination of κ is the essential point in
the calculation of π(s). It is simply defined by setting the discriminate
of the square root to zero [15]. Therefore, one gets a general quadratic
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equation for κ. The values of κ can be used for calculation of energy
eigenvalues using the following equation.

λ = κ+ π′(s) = −nτ ′(s) − n(n− 1)
2

σ′′(s) n = 0, 1, 2, . . . (3)

Polynomial solutions yn(s) are given by Rodriguez relation which is
presented as follows

yn(s) =
Bn

ρ(s)

(
d

ds

)n

[σn(s)ρ(s)] , n = 0, 1, 2, . . .

where Bn and ρ(s) are a normalization constant and the weight
function respectively in which the later satisfies the following condition

(σρ)′ = τρ. (4)

On the other hand, the function φ(s) satisfies the condition

φ′(s)
φ(s)

=
π(s)
σ(s)

.

3. SUPERSYMMETRIC QUANTUM MECHANICS

Let us first summarize the ordinary supersymmetry [2, 3] and set the
notation. Supersymmetric quantum mechanics (SUSYQM) allows us
to write a pair of supersymmetric potentials as follows (h̄ = m = 1) [3]

V±(x) = W 2(x) ±W ′(x), (5)

where W (x) is a function that generally referred to as the
superpotential in SUSYQM literature, as well as “prime” denotes
differentiation with respect to x. The superpotential in terms of the
ground state wave function ψ0(x) is given by

W (x) = − d

dx
lnψ0(x) (6)

or equivalently

ψ0(x) = Ne

(
−

x∫
W (y)dy

)
.

Now, we can define a pair of Hamiltonians describing a supersymmetric
system as follows

H± = − d2

dx2
+ V±(x). (7)



Progress In Electromagnetics Research C, Vol. 1, 2008 135

In terms of the bosonic operators A± which is defined as

A± = ± d

dx
+W (x) (8)

this Hamiltonian can also be rewritten as

H± ≡ A∓A± = − d2

dx2
+W 2(x) ±W ′(x). (9)

It must be noted that the energy eigenvalues of pair HamiltonianH±(x)
are equal unless for the ground state ψ

(0)
o . Actually, energy of the

ground state of H−(x) is zero in the case of unbroken supersymmetry,
E

(0)
0 = 0 [13].

More specifically, from Eq. (9) we have

H1 = − d2

dx2
+ V1(x) = A+

1 A
−
1 + E

(0)
1 (10)

which implies

W 2
1 (x) −W ′

1(x) =
(
V1(x) − E

(0)
1

)
. (11)

This equation is the well-known Riccati equation. The supersymmetric
partner Hamiltonian H2 can be similarly written as

H2 = − d2

dx2
+ V2(x) = A−

2 A
+
2 + E

(0)
2

and corresponding equation is

W 2
2 (x) +W ′

2(x) = V2(x) − E
(0)
2 .

By iteration method one can write supersymmetric partner Hamilto-
nian Hn in general form

Hn = − d2

dx2
+ Vn(x) = A−

nA
+
n + E(0)

n

and corresponding Riccati equation as

W 2
n(x) ±W ′

n(x) = Vn(x) − E(0)
n ,

with
A±

n = ± d

dx
+Wn(x), n = 1, 2, 3, . . .
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The eigen-functions of the partner Hamiltonians satisfy

ψ(1)
n =

A−ψ(0)
n+1√

E
(0)
n

, ψ
(1)
n+1 =

A+ψ
(0)
n√

E
(0)
n

in the unbroken supersymmetry with the following eigenvalues

E
(0)
n+1 = E(1)

n , E
(0)
0 = 0, n = 0, 1, 2, . . .

This procedure is known as the hierarchy of Hamiltonians.

4. THE MODEL

The Schrödinger equation for supersymmetric partner potentials V±(x)
can be written as follows

ψ′′(x) + V±(x)ψ(x) = E±ψ(x)

or equivalently

ψ′′(x) +
[
E± −W 2(x) ∓W ′(x)

]
ψ(x) = 0.

It can be easily shown that this equation with an appropriate
coordinate transformation s = f(W (x)) takes the form

ψ′′(s) +

[
W ′′f ′ +W ′2f ′′

W ′2f ′2

]
ψ′(s) +

[
E± −W 2 ∓W ′

W ′2f ′2

]
ψ(s) = 0.

By comparing this equation with Eq. (1) we get

τ̃(s) =

[
W ′′f ′ +W ′2f ′′

W ′2f ′2

]
σ(s) (12)

and

σ̃(s) =

[
E± −W 2 ∓W ′

W ′2f ′2

]
σ2(s). (13)

If we suppose a simple form to coordinate transformation f(W (x)) =
W (x), then (12) and (13) reduce to

W ′′(x) −
∼
τ (s)
σ(s)

W
′2(x) = 0 (14)
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and

σ̃(s) =

[
E± −W 2 ∓W ′

W ′2

]
σ2(s) (15)

respectively. Now, as an illustration, we choose

τ̃(s) = 0 and σ(s) = ω/2, (16)

Eqs. (14) and (15) take respectively the forms
ω

2
W ′′(x) = 0 (17)

and
σ̃(s) = −s2 + E± ∓ ω/2. (18)

The function W (x) = 1
2ωx − b satisfies Eq. (17) clearly. The

corresponding partner potential can be obtained from (5) as follows

V±(x) =
1
4
ω2(x− 2b/ω)2 − ω/2. (19)

This potential is known as “Shifted Oscillator” potential. Substituting
Eqs. (16) and (18) in relation (2), leads to

π(s) = ±
√
s2 − (E± ∓ ω/2) + κω/2.

This function can be written in two possible values

π(s) = ±s for κ =
2E±
ω

∓ 1.

Imposing τ ′(s) < 0 implies

π(s) = −s for κ =
2E±
ω

+ 1.

One can easily show that substituting these result into Eq. (3) led to
energy eigenvalues

E(1)
n = nω, n = 0, 1, 2, . . .

Similarly, the weight function ρ(x) is simply found out from (4) as

ρ = e−2s2/ω.

By substituting into the Rodriguez relation one gets

yn(s) = Bne
2s2/ω

(
d

ds

)n

e−2s2/ω
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where Bn stands for the normalization constant. The other part of
the wave function is simply found out to be φ = e−s2/ω. Finally, by
combining two parts, one obtains

ψ(s) = e−s2/ωHn

(√
ω

2
s

)

or equivalently

ψ(y) = e−
1
2
y2
Hn(y), y =

√
ω

2

(
x− 2b

ω

)
,

where Hn(y) is Hermit polynomial.
In general, by choosing appropriate functions for s = f(W (x)),

τ̃(s) and σ(s), we made a table for all known shape invariant potentials
as follows.

Table 1. Shape invariant potential obtained by the proposed new
mathematical method.

N )(xV
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)(xW

( )xτ
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2
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5. CONCLUSION

Supersymmetric quantum mechanical shape invariant potentials using
a new mathematical method have been proposed. In the proposed
method a nonlinear differential equation of the superpotential in terms
of the parameters of the NU-method is obtained and considering exact
and well known solution for these parameters the superpotential and
finally the shape invariant potentials were obtained.
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