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Abstract—In this work, Support Vector Machine (SVM) formulation
is worked out based upon “L” measured data for the resonant
frequency, operation bandwidth, input impedance of a rectangular
microstrip antenna. Results of the formulation are compared with the
theoretical results obtained in literature, much better characterization
is observed with greater accuracy. At the same time, Artificial Neural
Network (ANN) is employed in generalization of the data on the
resonant frequency, operation bandwidth, and input impedance of
the antenna. Performances of the two advanced nonlinear learning
machines are compared and superiority of the SVM is verified.

1. INTRODUCTION

Microstrip antennas have been used in aircraft, missile, satellite and
many government and commercial applications, where size, weight,
cost, performance, ease of installation and aerodynamic profile are
constraints [1]. These antennas are low-profile, conformable to planar
and non-planar surfaces, simple and inexpensive to manufacture using
modern printed circuit technology, mechanically robust when mounted
on rigid surfaces, compatible with MMIC designs, and when particular
patch shape and mode selected they are very versatile in terms of
resonant frequency, polarization, pattern and impedance [2].

Often microstrip antennas are also referred as patch antennas
because of the radiating elements (patches) photoetchen on the
dielectric substrate. This radiating patch may be square, rectangular,
circular, elliptical, triangular, and any other configuration. In this
work, rectangular microstrip antennas are the ones under consideration
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(Fig. 1). Patch dimensions of rectangular microstrip antennas are
usually designed so its pattern maximum is normal to the patch.
Because of their narrow bandwidths and effectively operating in the
vicinity of resonant frequency, the analysis of the microstrip antennas
is very important.

Two kinds of theoretical approaches can be exploited in
characterizing the resonant frequency, bandwidth, input impedance
of the patch antennas. The first group starts from initial physical
assumptions, which generally offers simple and analytical formulas,
well suited for a physical understanding of phenomena and for future
antenna computer-aided design (CAD). These methods are known as
transmission-line models and cavity models. However, these methods
do not consider rigorously the effects of surface waves. The second
approach is based on an electromagnetic boundary problem, which
leads to an expression as an integral equation, using proper Green
functions, either in the spectral domain, or directly in the space
domain, using moment methods. Without any initial assumption,
the choice of test functions and the path integration appear to be
more critical during the final, numerical solution. Exact mathematical
formulations in the second group rigorous methods involve extensive
numerical procedures, resulting in round-off errors, and may also need
final experimental adjustments to the theoretical results. They are also
time consuming and not easily included in a CAD system. However,
the theoretical values obtained by using both these two theoretical
methods are also not in very good agreement with the experimental
results of both electrically thin and thick rectangular microstrip
antennas [3–5]. For these reasons, some numerical/experimental
methods for the analysis of microstrip antennas is worked out [6–
9]. In this work an advanced nonlinear learning machine, “Support
Vector Machine (SVM)” is employed in analyzing the rectangular patch
antenna, which enable to generalize ‘discrete’ data into the ‘continuous’
domain. In particular, SVMs are based on a judicious and rigorous
mathematics combining the generalization and optimization theories
together and verified to be computationally very efficient (the so-called
Vapnik-Chervonenkis theory [10, 11]). This learning machine has found
many fruitful applications in science and engineering, especially the
typical applications in signal processing, modeling of microwave devices
and antennas are given in [12–20].

In this work, SVMs are employed for regression in the analysis of
the rectangular patch antennas, which in these types of applications,
may be named as “Support Vector Regressors (SVR)”. Given a set of
observed discrete data {(xi, yi) xi ∈ Rn, yi ∈ R, i = 1, 2, . . . , L} the
support vector machine learning method in its basic form creates an
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approximation function f(x) = b +
∑

yiαjK(xj ,x) with y ∼= f(x) for
regression and y = sgn f(x) for dichotomous classification for instance.
In this work, data ensemble is provided from the experiments made
in the literature. Thus, the three functions characterizing the antenna
are approximated in terms of the geometrical parameters which include
the electrical thickness, the dimensions of the rectangular patch, the
parameter of the feeding position and the electrical properties of the
used dielectric material. The outputs of the SVR functions for the
patch antennas designed on the widely used dielectrics are compared
with the target value, artificial neural networks (ANN) which are
powerful tools in modeling of transmission lines and antennas [17–22]
and the theoretical counterparts in the literature [3–5].

2. SUPPORT VECTOR MACHINES IN REGRESSION

The regression problem related to the estimation of the resonant
frequency (fr), bandwidth (BW ) and input impedance (Rin) functions
can be stated as follows: Firstly, let us consider fr. In the training
phase a set of L training pairs {(xo, fo

r ), (x1, f1
r ), . . . , (xL−1, fL−1

r )}
is constructed by considering (x) as the input variable vector and
(fr) as the output. Starting from these samples of the input/output
values of fr, the goal is to find a function f̃r, which approximates as
well as possible unknown function fr(x). By using the support vector
regression, f̃r is defined as:

f̃r(x) = 〈w,ϕ(x)〉 + b, (1)

where 〈. . .〉 denotes the inner product, ϕ is a nonlinear mapping
vector that performs a transformation of the input vector to a high-
dimensional space. w and b are the weighting vector and bias,
respectively which are obtained by minimizing the primal convex
objective function (Regression Risk), defined as [11]:

Rreg =
1
2
‖w‖2 + C

L−1∑
i=0

Lε(x, fr, f̃r) (2)

where C is the regularization constant and Lε(x, fr) is a general loss
function. Since the given objective function given in (2) has no
local minima and it guarantees the global minimum, which is one
of the superiority of support vector machines on the other pattern
recognition methods, particularly neural networks. In our work, so-
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called ε-insensitive loss function developed by Vapnik [10] is used:

Lε(x, fr, f̃r) =




0, if
∣∣∣f i

r − f̃r(xi)
∣∣∣ ≤ ε∣∣∣f i

r − f̃r(xi)
∣∣∣ − ε, else

(3)

this defines an ε tube so that if the predicted value is within the tube,
the loss is zero, while if the predicted point is outside the tube, the loss
is the magnitude of the difference between the predicted value and the
radius of the tube.

According to [10] and [11], it is possible to recast the minimization
of the regression risk as a dual optimization problem, in which the
vector can be written in terms of the input data x as:

w =
L−1∑
i=0

(αi − α′
i)ϕ(xi) (4)

where αi and α′
i are the unknown Lagrange multipliers. By

substituting (4) in (1), Z̃0 is rewritten as

f̃r(x) =
L−1∑
i=0

(αi − α′
i)

〈
φ(xi), φ(x)

〉
+ b

=
L−1∑
i=0

(αi − α′
i)K(xi,x) + b (5)

and the coefficients αi, α
′
i and must be chosen in order to minimize

the regression risk in the dual problem. In (5), the kernel function
K(xi,x) =

〈
φ(xi), φ(x)

〉
works on the original space. Commonly used

kernels are polynomial and radial kernels.
Applying the standard Lagrange multiplier technique results in

the equivalent maximization of the dual space objective function [11]:

W (α, α′) = −ε
L−1∑
i=0

(α′
i + αi) +

L−1∑
i=0

f i
r(α

′
i − αi)

−1
2

L−1∑
i=0

(α′
i − αi)(α′

i + αi)K(xi,x) (6)

with the constraints:

0 ≤ α′
i, αi ≤ C (7a)

L−1∑
i=0

(α′
i − αi) = 0 (7b)
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The dual variables αi, α
′
i and b are computed using the Karush-Kuhn-

Tucker conditions [11] to maximize (6) subject to the constraints given
by (7a), (7b). From Karush-Kuhn-Tucker conditions, it follows that
only for |f̃r(xi)− f i

r| ≥ ε, the Lagrange multipliers may be nonzero, or
in the other words for all samples inside the ε-tube ⇔ |f̃r(xi)−f i

r| < ε
the αi, α

′
i vanish. Therefore we have a sparse expansion of w in

terms of xi (i.e., we do not need all xi to describe). The samples
that come with nonvanishing coefficients are called Support Vectors.
The idea of representing the solution by means of a small subset of
training points has also enormous computational advantages. This
reduced number of non-zero parameters together with the guaranteed
global minimum gains superiority to support vector machines over the
alternative methods. A detailed mathematical background together
with the literature can be found in [11].

The regularization parameter C has been found to represent a
measure of the tradeoff between the capabilities of the approach in
estimating the resonant frequency of the patch antenna using training
and test sets.

In order to correctly estimate the fr, L data pairs in the form:
{(xo, fo

r ), (x1, f1
r ), . . . , (xL−1, fL−1

r )} obtained from experimental
results for the rectangular patch antenna are used in the training phase.
At the end of the training phase, in the so-called test phase for the new
dielectric substrates and geometries not included in the training set,
fr is estimated. Similarly, support vector regressors can be applied to
the regression of the BW and Rin of the patch antenna. Numerical
details of the support vector regression analysis of the patch antennas
will be given in the next section.

3. CHARACTERIZATION OF THE RECTANGULAR
MICROSTRIP ANTENNA

3.1. Rectangular Microstrip Antennas

The rectangular microstrip antennas are made of a rectangular patch
with dimensions, width, W , and length, L, over a ground plane with
a substrate thickness, h and dielectric constant, εr, as given in Fig. 1.
Dielectric constants are usually used in the range of 2.2 ≤ εr ≤ 12.
However, the most desirable ones are the dielectric constants in the
lower end of this range together with the thick substrates, because
they provide better efficiency, larger bandwidth, but at the expense of
larger element size [27].



54 Tokan and Güneş

Figure 1. Rectangular microstrip antenna.

3.2. Black-Box Models for the Resonant Frequency,
Bandwidth and Input Impedance

The black-box model is given in Fig. 2 for the training process of
SVR and/or ANN characterization of bandwidth and input impedance.
27 data pairs of the experimental results in the literature [28–31]
are exploited in the training process, while 6 data pairs are used
for the testing as shown in Tables 1–2. Thus, SVR is employed
in order to characterize the input impedance and bandwidth of the
rectangular patch antenna as the functions of the antenna parameters
of h/λd,W ,L, a, tan δ with these measurement results. Here, h is the
thickness of the dielectric substrate, λd is the wavelength within the
substrate, W is the width of the patch, L is the length of the patch,

Figure 2. Black-box model for the input impedance and bandwidth
characterization.
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Table 1. The accuracies of the Rin, BW and fr functions in testing
process.

 % accuracy SVR ANN 
Rin  99.8 98.87
BW  97.85 98.81

fr 98.79 98.33

Table 2. Time analysis of ANN and SVR models for fr function of
the patch antenna.

 SVR ANN* 

Training time(sec) 0.047 4.06 

Test time (sec) 0.012 0.045 

Total time (sec) 0.059 4.105 

  (*trained for 300 epochs) 

a is the position of the feeding point and tan δ is the loss tangent.
Similarly, 37 and 9 experimental data pairs [32–35] are used in

the training and testing for the resonant frequency, respectively and
its black-box model is given in Fig. 3. In this model, the resonant
frequency of the rectangular patch antenna is obtained as the function
of input variables of W ,L,h, εr. Here, εr is the dielectric constant of
the substrate. The input data of both models are normalized in the
range of 0 and 1.

Figure 3. Black-box model for the resonant frequency characteriza-
tion.
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3.3. Generating of Support Vector Regression/Artificial
Neural Network for the Characterization of Microstrip
Antennas

In SVR, radial basis function kernel is chosen as the most suitable
kernel function in our application:

K(x′,x) = exp
(
−γ

∥∥∥x − xi
∥∥∥2

)
(8)

where the width parameter γ is set to 0.1 for the optimum performance.
Similarly, the regularization parameter, C is set to 1. 24 support
vectors corresponding to the diameter (⇔ ε = 0.1) of the insensitive
tube are found to be sufficient out of the 27 data pairs in the training
of SVR model for the determination of Rin function. Similarly, 22
support vectors out of 27 data and 31 support vectors out of 37 data
are used in the training of SVR models for the determination of BW
and fr functions, respectively.

The performance of the SVR is compared with ANN, which is the
most competitive technique to SVR. Thus, two multilayer perception
(MLP) models are used for the modeling inside the two black-boxes
given in Figs. 2 and 3. ANN model for Rin and BW characterization
has 5 and 4 neurons in its two hidden layers, and 2 output neurons.
ANN model to characterize fr has 4 and 3 neurons in its two hidden
layers and a single output neuron. Hyperbolic tangent sigmoid and
linear transfer functions were used in the hidden and output neurons,
respectively for the MLP training.

3.4. Results of the SVR and/or ANN Characterization

The accuracies of the SVR and ANN models for the resonant frequency,
bandwidth and input impedance are given in Table 1. One of the most
important superiority of SVR to the ANN is much faster convergence
rate with the sparse solution technique as seen from Table 2 where the
computation efficiency of the SVR and ANN for regression of the fr

function is compared.
The test results of the SVR regression for the Rin, BW and fr of

the rectangular patch antenna take place in Tables 3–5 comparatively
with measured (target) values, ANN results and other theoretical
values in the literature.

It can be seen from the Tables 3–5, the theoretical analyses cannot
characterize the antenna accurately due to incapability of taking into
account every aspects of the system, however the regression models
gives the closest results to the measured ones.
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Table 3. Comparison of the SVR results for the input impedance with
the target values, ANN results and theoretical results.

dh �λ/  W L a  tan Rinme RinSVR RinANN Rin[20] Rin[31] Rin[32] 

0.0384 18.1 19.6 6.27 0.001 58 58.09 57.24 36.2 83.7 63.2

0.066 13.37 14.12 4.75 0.002 52 51.89 51.48 36.9 67.9 57.4

0.1292 13.75 15.8 5.82 0.002 44 43.90 43.31 51.5 47.4 49

0.1475 10 15.2 3.45 0.002 45 45.10 44.49 46.4 310.1 228.3

0.1814 12.56 27.56 3.2 0.002 46 46.09 46.56 45 1041.6 508

0.2182 10.3 33.8 3.6 0.002 47 47.09 46.76 46.5 2488.8 785.9

 

�δ

Table 4. Comparison of the SVR results for the bandwidth with the
target values, ANN results and theoretical results.

dh /  W L a  �δtan  BWme BWSVR BWANN BW[28] BW[37] BW[38] 

0.0384 18.1 19.6 6.27 0.001 4.9 4.99 4.73 6.17 3.96 2.2

0.066 13.37 14.12 4.75 0.002 7.7 7.79 7.66 9.16 7.29 4.2

0.1292 13.75 15.8 5.82 0.002 15.9 14.93 15.83 15.11 18.06 10.5

0.1475 10 15.2 3.45 0.002 18 17.68 17.83 17.47 14.08 11.8

0.1814 12.56 27.56 3.2 0.002 20 19.89 19.85 19.66 10.10 14.54

0.2182 10.3 33.8 3.6 0.002 21.6 21.91 21.16 21.73 7.11 16.95

�λ

Table 5. Comparison of the SVR results for the resonant frequency
with the target values, ANN results and theoretical results.

W L h r�ε  fr me fr SVR fr ANN fr [2] fr [32] fr [39] fr [40] fr [41] 

1.81 1.96 0.157 2.33 4805 4829 4782 4824 4749 5014 4635 4520

1.337 1.412 0.2 2.55 6200 6209 6218 6201 6053 6653 5845 5682

1.375 1.580 0.476 2.55 5100 5143 4923 5092 4993 5945 4667 4407

1 1.52 0.476 2.55 5820 5840 5889 5352 5423 6180 4855 4576

1.256 2.756 0.952 2.55 3580 3618 3765 2983 3115 3408 2668 2485

1.03 3.38 1.281 2.55 3200 3178 3169 2474 2623 2779 2183 1992

1.7 1.1 0.3175 2.33 6800 6628 6876 7405 6806 8933 6958 6467

6.858 4.14 0.152 2.5 2200 2266 2301 2241 2204 2292 2208 2158

0.79 1.185 0.017 2.22 8450 8286 8538 8478 8431 8496 8369 8298
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4. CONCLUSION

In this work, a new methodology for characterization of microstrip
antennas is presented. To aim this, Support Vector Regression is
adopted to the L-measured data of the rectangular patch antenna and
its performance is compared with the closest counterpart, Artificial
Neural Network. Support Vector Regression is found to be superior
to the Artificial Neural Network with respects of generalization
ability, convergence rate and computational efficiency. Moreover, both
regression results are compared to the those of the pioneer theoretical
analyses and it can be concluded that the theory is still insufficient
for complete characterization to take into account all the effects of the
system. Thus, in these cases, rigorous methodologies to regress are
needed. This work also verifies that Support Vector Regression is one
of the most advisable methodologies to be employed.
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