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Abstract—Computational aspects of EM pulse propagation along the
nonuniform earth surface are considered. For ultrawide-band pulses
without carrier, the exact wave equation in a narrow vicinity of the
wave front is reduced to a time-domain version of the Leontovich-
Fock parabolic equation. To solve it by finite differences, we introduce
a time-domain analog of the impedance BC and a nonlocal BC of
transparency. Numerical examples are given to demonstrate the
influence of soil conductivity on the received pulse waveform.

For a high-frequency modulated EM pulse, we develop an
asymptotic approach based on the ray structure of the monochromatic
wave field calculated at the carrier frequency. As an example, a
problem of target altitude determination from overland radar data is
considered.

1. INTRODUCTION

Parabolic equation method proposed by Leontowich and Fock [1, 2] is
an efficient simulation approach to VHF propagation over the earth
surface. Deep physical analysis and advanced mathematical methods
[3, 4] turned Leontovich’s PE into a universal tool of diffraction theory.
Its applications go far beyond the initial problem circle, e.g., [5–8]. The
key role in this development played the decisive turn to straightforward
numerical techniques pioneered by Malyuzhinets and Tappert [9, 10].

In radio wave propagation, PE was used first to derive explicit
analytical formulae for the EM field strength in model environments.
A simplification has been reached by introducing the impedance
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boundary condition (BC) [11]. Taking into account tropospheric
refraction ducts required the use of sophisticated asymptotic methods
[12]. Further development (almost exclusively towards numerical
implementation) was aimed at refined PE modifications [13–15],
account for irregular terrain [16], introducing artificial transparent
boundaries [17, 18] and nonlocal BC to describe rough interfaces [19].
A non-stationary PE counterpart and a finite-difference (FD) scheme
for its solution have been proposed by Claerbout and applied to seismic
problems [13]. Afterwards, this “time-domain parabolic equation”
(TDPE) was used to calculate acoustic propagation in ocean [20]. At
the same time, little attempts of using TDPE to simulate EM pulse
propagation in realistic environments are known.

In this paper, we consider computational aspects of EM pulse
propagation along the nonuniform earth surface. For ultrawide-band
pulses without carrier, TDPE results directly from the exact wave
equation written in a narrow vicinity of the wave front. To solve
it by finite differences, we introduce a time-domain analog of the
impedance BC and a nonlocal BC of transparency reducing the open
computational domain to a strip of finite width. Numerical examples
demonstrate the influence of soil conductivity on the received pulse
waveform, which can be used in remote sensing.

For a high-frequency modulated EM pulse, TDPE arises as a
convolution of PE solutions with the pulse envelope spectrum. In
order to overcome computational difficulties, we develop an asymptotic
approach based on the ray structure of the monochromatic wave field
calculated at the carrier frequency. To accommodate complex-valued
asymptotic solutions to the real initial condition we use the “analytic
signal” approach introduced by Vainstein, Heyman and Felsen [21, 22].
An explicit solution of the time-domain transport equation reduces
the computational procedure to numerical integration of standard PE
at the carrier frequency and evaluation of a given 1D function in
time domain. This diminishes computational expenses by 2-3 orders
of magnitude and allows for pulsed wave field calculation in vast
domains measured by tens of thousands wavelengths. As an example,
we consider a problem of target altitude determination from overland
radar data [23].

This work has been done in collaboration with the Institute for
High-Frequency Technique (IHF), Stuttgart University. Preliminary
results appeared as short papers [24, 25], a Russian version has been
published in [26]. We dedicate this publication to the memory of
Leopold B. Felsen.
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Figure 1. Elevated source illuminating smoothly rolling terrain
(sketch).

2. MONOCHROMATIC WAVE PROPAGATION

Omitting technical details and method refinements - see [12, 19], recall
PE based scheme of monochromatic wave propagation over a smoothly
nonuniform earth surface z = h(x) - Fig. 1. Horizontal magnetic
component Hy = H(x, z) satisfies Helmholtz equation

∂2H

∂x2
+

∂2H

∂z2
+ k2ε̃H = 0 (1)

with complex permittivity ε̃ = ε+4πiσ/ω, where σ is soil conductivity
in the Gaussian units set. In the upper medium, ε = 1, σ = 0 and the
contact conditions at z = h(x) are

H+ = H−,
∂H+

∂n
=

1
ε̃

∂H−

∂n
(2)

where ∂/∂n = cosα ∂/∂z + sinα ∂/∂x, α = arctanh
′
(x).

At large distances from the source the wave field is sought as a
plane wave with slowly varying complex amplitude:

H(x, z, t) ≈ u(x, z, k) exp[i(kx− ωt)] (3)

Here, k = ω/c ≡ 2π/λ is the wave number, and the complex
“attenuation function” u(x, z, k) satisfies the Leontovich PE

2ik
∂u

∂x
+

∂2u

∂z2
= 0, z > h(x) (4)

In 3D, divergence factor 1/
√
x must be added in (3). In this paper we

use Gaussian initial condition

u(0, z, k) = exp
[(

ik

2ρ0
− 1

w2
0

)
(z − z0)2 − ikβ(z − z0)

]
(5)
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Figure 2. Derivation of impedance BC for grazing angles.

corresponding to an exact solution of PE (4)

ui(x, z, k) =
√

x0

x + x0
exp

{
ik

[
(z − z0 − βx)2

2(x− x0)
+ β(z − z0) −

β2

2
x

]}
(6)

- skewly propagating Gaussian beam with initial width w0 and wave
front radius ρ0 determined by complex parameter x0 = (1/ρ0 +
2i/kw2

0)
−1; β being a small elevation angle.

Impedance approximation is based on wave beam contraction
when entering a denser dielectric medium. Standard Leontovich BC
[11]

∂H+

∂z
= − ik√

ε̃
H+ , z = 0 (7)

results from the contact conditions (2) under the assumption of almost
vertical propagation in the lower medium: H−(x, z) ≈ T exp(−ikz

√
ε̃).

For grazing angles (Fig. 2) this assumption breaks and a plane incident
wave H+(x, z) = [ik(x cosβ − z cosβ)] with small |β| � 1 enters
the half-space z < 0 close to the total internal reflection angle
γ0 = arccos(ε̃1/2):

γ ≈ γ0 +
β2

2
√
ε̃ sin γ0

Hence ensues

H−(x, t) = T (γ) exp[ik
√
ε̃(x cos γ − z sin γ)] ≈

≈ T (γ0) exp[ik(x− zγ0)] exp
[
− i

2
kβ2(x + zγ0)

]
≡ (8)

≡ T (γ0) exp[ik(x− zγ0)]V (x + zγ0)

In virtue of the superposition principle, Eq. (8) holds for an arbitrary
paraxial wave packet with the corresponding slowly varying function



Progress In Electromagnetics Research B, Vol. 6, 2008 41

Figure 3. Comparison between exact Fresnel reflection coefficient and
impedance approximations.

V (x). Eliminating the latter by differentiation and making use of (2),
we obtain

√
ε̃− 1

∂H+

∂z
− 1

ε̃

∂H+

∂x
+ ikε̃H+ = 0, z = 0 (9)

This modified impedance BC provides a more accurate approximation
of the reflection coefficient, especially, in a vicinity of the Brewster
angle β0 = arcsin(

√
ε̃ + 1)−1/2. Fig. 3 allows one to compare the exact

Fresnel reflection coefficient

RF (β) =
ε̃ sinβ −

√
ε̃− cos2 β

ε̃ sinβ +
√

ε̃− cos2 β
(10a)

with the Leontovich approximation

RL(β) =

√
ε̃ sinβ − 1√
ε̃ sinβ + 1

(10b)

and that resulting from the modified impedance BC (9)

RM (β) =
ε̃ sinβ − (ε̃− cosβ)/

√
ε̃− 1

ε̃ sinβ + (ε̃− cosβ)/
√
ε̃− 1

(10c)

Taking into account the boundary tilts h
′
(x) and using “parabolic”

approximation (3), we derive a modified BC for the attenuation
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function u(x, z):

∂u

∂z
+ ik

[√
ε̃− 1
ε̃

− h
′
(x)

]
u = 0, z = h(x) (11)

Contrary to the standard Leontovich BC (9), here it is not necessary
to assume | ε̃ |� 1 - Eq. (11) breaks only for | ε̃−1 |� 1 when nonlocal
effects of wave interaction in both media are to be taken into account
[19]. The impedance BC grants uniqueness of the solution of PE (4).
In fact, calculating the energy flow through a vertical cross section one
obtains

I(x) =
∫ ∞

h(x)
| u(x, z) |2 dz,

dI

dx
= −Re

[√
ε̃− 1
ε̃

]
· | u(x, h) |2≤ 0

(12)
which proves stability and uniqueness of the boundary value problem
solution. Finite-difference methods of PE solution have been studied
in early works by Malyuzhinets and coauthors [9, 27]. Further method
development is described in monographs [5, 19]. We employ a six-
point implicit FD scheme supplemented with the impedance BC (11)
at z = h(z) and a discrete approximation of the nonlocal transparency
BC [17, 28] imposed at the artificial computational boundary z = zmax:

∂u

∂z
(x, zmax) = −

√
2ik
π

∫ x

0

∂u

∂x
(ξ, zmax)

dξ√
x− ξ

(13)

An example of simulated VHF propagation over irregular terrain
is illustrated by Fig. 4.

3. RADIO PULSE PROPAGATION: FOURIER
SYNTHESIS

A straightforward way to describe EM transients is to convolve
monochromatic wave fields with the signal spectrum. In a 1D case,
the propagating pulse is a superposition of plane waves

H(x, t) =
1
2π

∫ ∞

−∞
F̃ (k)ei[kx−ω(k)t]dk (14)

In free space, ω = kc, and formula (14) yields a dispersion-less traveling
wave

H(x, t) = F (ct− x), F (s) =
1
2π

∫ ∞

−∞
F̃ (k)e−iksdk (15)
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Figure 4. VHF attenuation function over irregular earth surface.

In a 2D environment, a natural generalization of the 1D solution (14)
is a paraxial wave packet

H(x, z, t) =
1
2π

∫ ∞

−∞
F̃ (k)u(x, z, k)eik(x−ct)dk (16)

where u(x, z, t) is a solution of the PE (4) at a fixed frequency ω = kc.
The superposition (16) will approximate an exact solution of the

wave equation if the spectrum F̃ (x) is confined near a certain positive
k0 satisfying the PE applicability conditions: k0 � 2π/D � 2π/L
where D and L are lateral and longitudinal characteristic scales of the
problem. Consider a quasi-monochromatic pulse F (ct) + f(ct) cosω0t
with duration T � 2π/ω0. Its Fourier transform

F̃ (k) =
1
2
[f̃(k − k0) + f̃(k − k0)] (17)

where f̃(k) = c
∫ ∞
−∞ f(ct)eiωtdt is the envelope spectrum, contains

negative frequencies not described by PE (4). Introducing complex
signal Fc(ct) = f(ct) exp(−iω0t) eliminates the second term in (17).
Still, the remaining “positive” component f̃(k−k0) centered at k0 may
spread onto negative semi-axis. In order to avoid nonphysical effects
of negative frequencies propagation, the “analytic signal” [21] can be
used, defined as a one-side inverse Fourier transform of the truncated
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spectrum

F̃+(k) = 2F̃ (k) = f̃(k − k0) + f̃(k + k0), k > 0

F̃+ = 0, k < 0 (18)
Thus, by definition, the analytic signal is a Cauchy type integral

F+(s) =
1
π

∫ ∞

0
F̃ (k)eiksdk =

1
π

∫ ∞+iδ

−∞+iδ
F (η)

dη

s− η
, (19)

regular in the lower half-plane Im s < 0. For real s, its real part
coincides with F (s) whereas the imaginary part is given by Hilbert
transform

ImF+(s) =
1
π

V.P.
∫ ∞

−∞
F (η)

dη

s− η
(20)

Introduction of the analytic signal violates the causality principle:
the real signal F (ct) is zero before the moment of switching on
the transmitter while F+ 
= 0 for t < 0. However, for a high-
frequency radio pulse this discrepancy is small. So the analytic
signal envelope defined as | F+(s) | is close to f(s) but, contrary
to the “naive” complex signal Fc(s), admits analytic continuation
into complex domain, compatible with asymptotic propagation laws
[22]. As an example, consider a modulated high-frequency pulse
F (s) = f(s) cos k0s with the envelope

f(s) =
{

sin as exp(−bs), s > 0
0, s < 0 (21)

f̃(k) =
a

a2 + b2 − k2 − 2ibk
(21a)

- see Fig. 5. For b ≈ a its length is Λ = cT ∼ π/a. The envelope
spectrum f̃(k) has a peak at k = 0 with �k ≈ 2π/Λ and tends to zero
for | k |→ ∞ as O(a/k2).

Spectra F̃ (k) and F̃+(k) are shown in Fig. 6; the analytic signal
envelope |F̃+(s)| is plotted in Fig. 7a,b for real and complex arguments.
For a wave packet

H+(x, z, t) =
1
2π

∫ ∞

0
F̃+(k)u(x, z, k)eik(x−ct)dk,

U(0, z, k) = A0(z)eikΦ0(z)

(22)

the initial condition

H+(0, z, t) =
A0(z)

2π

∫ ∞

0
F̃+(k)eik[Φ0(z)−ct] = A0(z)F+[ct− Φ0(z)]

(23)
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Figure 5. Modulated radio pulse waveform (21).

Figure 6. Analytic signal spectrum (18)

describes an analytic signal F+(ct) with amplitude A0(z) and initial
delay t0(z) = Φ0(z)/c.

An example of modulated pulse propagation over smoothly rolling
interface is depicted in Fig. 8. A sequence of snap-shots traces the
evolution of the initial pulse envelope f(ct)u0(z, k0), defined by (5),
(21), due to the incident Gaussian beam divergence and reflection from
the curved interface z = h(x). It should be noted that Fourier synthesis
is computationally efficient only for rather narrow-band pulses. In
fact, for a good approximation of the convolution integral (22) one
has to solve PE (4) for a set of wave numbers covering the spectral
band k0 − �k < k < k0 + �k, �k ≈ 2π/Λ with a small frequency
step (δk � �k ) and, to avoid phantom solutions in the given range
�x, even more restrictive condition must be posed: δk � 2π/�x.
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(a)

(b)

Figure 7. Analytic signal envelope of real (a) and complex (b)
arguments.

Adequate simulation methods for wide-band EM pulse propagation
are discussed in the following sections.

4. TIME-DOMAIN PE AND BOUNDARY CONDITIONS

Straightforward derivation shows that if u(x, z, k) is a solution of PE
(4), the transient wave packet (16) H(z, x, t) ≡ Π(x, z, s), as a function
of variables x, z, s = ct− x, satisfies the Claerbout equation

2
∂2Π
∂x∂s

=
∂2Π
∂z2

(24)
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Figure 8. Example of a Fourier-synthesized propagating EM pulse.

Equation (24), usually called “time-domain parabolic equation”
(TDPE), has been obtained in [13] by formal substitution k = i∂/∂s
as well as by the reduction of the time-dependent wave equation

1
c2

∂2H

∂t2
=

∂2H

∂x2
+

∂2H

∂z2
(25)

in a narrow vicinity of the paraxial wave front x = ct. Introduction
of scaled variables ξ = x/L, ς = z/D, η = (ct − x)/Λ, where L,D
are computational domain length and width, Λ is spatial pulse length,
yields

2
∂2Π
∂ξ∂η

=
∂2Π
∂ς2

+ ν2∂
2Π

∂ξ2
, ν = D/L = Λ/D � 1 (26)

Neglecting the small term O(ν2) results in TDPE (24). This derivation
clarifies the nature of the “time-domain parabolic equation”:

1) It is a hyperbolic equation written in a traveling coordinate frame
(x, z, s);

2) TDPE does not describe the backward moving waves;
3) TDPE is a paraxial (narrow-angle) approximation valid in a

narrow strip D/L = O(ν) � 1;
4) TDPE describes short pulses Λ/D = O(ν) � 1 whose length Λ is

comparable with the wave front deviation from the plane x = ct
(Fig. 9);
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Figure 9. Derivation of TDPE (24).

5) TDPE solutions are not necessary modulated high-frequency
signals - they can represent short ultrawide-band pulses f(ct)
without carrier, e.g., a damped sinusoid (21).

Here, a seeming contradiction may arise, as the spectral maximum of
f(s) can lie in the vicinity of zero frequency, not described by PE (4).
As a matter of fact, at small distances from the wave front s =)(Λ) the
main part of the pulse energy is determined by the high-frequency edge
of its spectrum | k |∼ a � 2π/D satisfying PE applicability conditions.

To solve TDPE (24), an FD scheme of the 2nd order of accuracy
has been proposed in [13]:

2
�x�s

(−→Πn+l,l+1 −
−→Πn,l+1 −

−→Πn+1,l + −→Πn,l) =

=
1

4(�z)2
∇2

z(
−→Πn+1,l+1 + −→Πn,l+1 + −→Πn+1,l + −→Πn,l) (27)

Here, −→Πn,l = {Πm
n,l}, xn = n�x, zm = m�z, sl = l�s; (∇2

zΠ)m
n,l =

Πm+1
n,l − 2Πm

n,l + Πm−1
n,l .

This equation is solved by zigzag marching in (x, s) plane between
boundary values

Π(0, z, s) = A0(z)f [ct− Φ0(z)], Π(x, z, 0) = 0 (28)

(given source and causality condition). At each marching step (m,n),
a three-diagonal linear equation set arises for the unknown vector−→Πn+1,l+1. In order to complete the boundary value problem, we have
to add a correct BC taking into account the soil properties and to find
a way of the domain truncation without creating spurious reflections.
Both problems are resolved by applying Fourier transform to the
frequency-domain BC (11), (13). Consider a paraxial wave packet

Π(x, z, s) =
1
2π

∫ ∞

−∞
f̃(k)u(x, z, k)e−iksdk, (29)
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satisfying the causality condition Π(x, z, s) = 0 for s < 0. We
rewrite the impedance BC (11) emphasizing the dependence of complex
permittivity ε̃ = ε + 4πiσ/kc on the wave number k = ω/c:

∂u

∂z
+ ik

[√
ε− 1
ε

√
k(k + 2iq)
k + ir

− h
′
(x)u

]
= 0, (30)

where r = 4πσ/cε, q = 2πσ/c(ε−1). Multiplying Eq. (30) byf̃(k) and
applying Fourier transform (29), we get

∂Π
∂z

(x, h, s) + h
′
(x)

∂Π
∂s

(x, h, s) =

=
√
ε− 1
ε

1
2πi

∫ ∞

−∞

√
k(k + 2iq)
k + ir

f̃(k)u(x, z, k)e−ikskdk (31)

Substituting here the inverse Fourier transform

f̃(k)u(x, z, k) =
∫ ∞

0
Π(x, z, η)eikηdη (32)

we obtain, by standard calculations, the following expression for the
RHS of (31):

√
ε− 1
ε

[
∂Π
∂s

(x, h, s) −
∫ x

0

∂Π
∂η

(x, h < η)N(s− η)dη
]
;

N(s) = e−rs
[
q

∫ s

0
e(r−q)tI1(qt)

dt

t
+ r − q

]
(33)

Thus, we have derived a nonlocal 2D boundary condition

∂Π
∂z

(x, h, s) + h
′
(x)

∂Π
∂s

(x, h, s) =

=
√
ε− 1
ε

[
∂Π
∂s

(x, h, s) −
∫ x

0

∂Π
∂η

(x, h, η)N(s− η)dη
]

(34)

being an exact time-domain counterpart of the impedance BC
(11). Its nonlocality is a consequence of interaction between two waves
propagating along the earth surface with different phase velocities. The
integral term kernel N(s − η) can be easily calculated for different ε
and σ. For ε > 3.15, function N(s) monotonously tends to zero with
increasing s - see Fig. 10. It is interesting to note that in both limiting
cases: perfectly conducting boundary σ = ∞ and zero soil conductivity
(σ = 0) Eq. (34) reduces to a local BC. In the former case N(s) tends
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Figure 10. Kernel of nonlocal impedance BC (34).

to a delta function, for N(0) = r − qσ→∞ → ∞,
∫ ∞
o N(s)ds = 1. The

integral in (34) limits to ∂Π
∂s (x, h, s), the RHS vanishes, and we get a

Neumann BC. In the opposite case (σ → 0) the spatial scale of N(s)
(length of the pulse “dispersion tail”) is growing but its absolute value
is tending to zero, so only the local term

√
ε−1
ε

∂Π
∂s (x, z, s) remains.

In a similar way, a time-domain generalization of the transparency
BC (13) is derived which grants the absence of spurious reflections a
from the artificial computational boundary z = zmax. Applying to
Eq. (13) the Fourier transform (29), (32) and denoting k = ip, we get

∂Π
∂z

(x, zmax, s) =
i

π
√

2π

∫ i∞

−i∞
epx√pdp

∫ x

0

dξ√
x− ξ

∫ ∞

0
e−pη ∂Π

∂ξ
(ξ, zmax, η)dη

=
i

π
√

2π

∫ x

0

dξ√
x− ξ

∫ ∞

0

∂2Π
∂ξ∂η

(ξ, zmax, s)
∫ i∞+0

−i∞+0
ep(s−η) dp√

p
(35)

Finally, evaluating the inner integral we obtain an elegant 2D boundary
condition

∂Π
∂z

(x, zmax < s) = −
√

2
π

∫ x

0

∫ s

0

∂2Π
∂ξ∂η

(ξ, zmax, η)
dξdη√

(x− ξ)(s− η)
(36)

symmetric with respect to the variables x, z, which could be expected
from the symmetry of the TDPE (24).
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(a)

(b)

Figure 11. Propagation of ultrawide-band pulse (21) over nonuniform
earth surface. Initial Gaussian beam parameters: z0 = 300 m, w0 = 80
rm,m, ρ0 = 300 m, β = −0.1. Soil conductivity: σ = 0.01 S/m (a),
σ = 0 (b).
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Figure 12. Received pulse waveform depending on soil conductivity:
σ = 0.01 S/m (solid line), σ = 0.001 S/m (dashed line); initial pulse
(dots).

A simulated example of ultrawide-band EM pulse propagation
over a nonuniform earth surface with soil parameters ε = 10, σ =
9 · 107 s−1 (0.01 S/m) is depicted in Fig. 11. Evolution of the spatial
amplitude distribution for a pulsed signal generated by a Gaussian
source: A0(z) = exp[−(z − z0)2/w2

0] with a skew curved wave front:
Φ0(z) = (z − z0)2/2ρ0 + β(z − z0) is shown in a gray color scale. The
initial pulse waveform f(ct) is a damped sinusoid (21) with a = b
and spatial length Λ = π/a = 30 m. The snapshots clearly show the
reflected pulse generation at the earth surface. The transparency BC
(36) imposed at the height zmax = 500 m assures unimpeded radiation
exit from the computational domain. Finite soil conductivity causes
signal dispersion appearing in a certain delay of the reflected pulse.
It is obvious from the comparison with a similar plot calculated for a
model non-conducting soil σ = 0 - Fig. 11b.

A quantitative estimation of the effect can be made by means
of Fig. 12 revealing a considerable dependence of the pulse waveform
on the soil conductivity. This effect caused by the pulse penetration
into the ground can be used for ecological monitoring (water pollution,
earthquake precursors, etc.).
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5. HYBRID TDPE AND SHORT HIGH-FREQUENCY
PULSE PROPAGATION

An important practical issue is overland propagation of short EM
pulses with high-frequency carrier. Basically, having absolute stability,
TDPE (24) is capable to describe wide-band radio pulse propagation.
However, the computational expense is drastically growing with
increasing carrier frequency. If ω0 considerably exceeds the spectral
band of the signal it is useful to factor out the carrier:

Π(x, z, s) = U(x, z, s) exp[i(k0x− ω0t)] (37)

and to consider the transient signal envelope U(x, z, s) satisfying a
hybrid equation

2
(
ik0 −

∂

∂s

)
∂U

∂x
+

∂2U

∂z2
= 0 (38)

combining the features of standard Leontovich PE (4) with Claerbout
TDPE (24). Unfortunately, despite a relatively slow variations of
U(x, z, s) in space-time, straightforward numerical solution of this
hybrid TDPE (HPE) entails considerable difficulties, as the large
coefficient k0 by ∂U/∂x demands a dense computational grid. On the
other hand, the presence of a big parameter allows us to construct an
asymptotic solution of HPE (38) radically reducing the computational
burden.

In order to find a proper asymptotic Ansatz, consider
monochromatic PE (4) at the carrier frequency ω0 = k0c with the
initial condition u(0, z) = A0(z)eik0Φ0(z). We admit complex values
of the eikonal Φ0(z) to describe relatively narrow wave packets, like a
Gaussian beam (6). For k0 → ∞, we obtain an asymptotic solution

u(x, z, k0) = A(x, z)eik0Φ(x,z) (39)

where Φ(x, z) satisfies a “parabolic” eikonal equation

Φx +
1
2
Φ2

z = 0 (40)

while slowly varying amplitude A(x, z) is governed by the paraxial
transport equation

Ax + ΦzAz +
1
2
ΦzzA = 0 (41)

Eqs. (40)–(41), being an approximate form of the well-known laws
of geometric optics (GO) [4], can be easily solved by the method of
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characteristics. Consider a particular solution of the eikonal equation
(40) corresponding to a bundle of rays spreading from a central point
x = 0, z = z0:

Φ(x, z) =
(z − z0)2

2x
≈

√
x2 + (z − z0)2 − x (42)

At a characteristic line z = z0 + γx we have Φ(x, γx) = γ2x/2. The
envelope of the family (42) solves the boundary value problem with an
arbitrary initial condition Φ(0, z) = Φ0(z). Define

Φ[x, z0 + γ(z0)x] = Φ0(z0) +
1
2
γ2(z0)z (43)

By differentiating Eq. (43) with respect to x and z0 we obtain

Φx + γΦz =
1
2
γ2, (1 + γ

′
x)Φz = Φ

′
0 + γγ

′
x (44)

Function (43) will satisfy the eikonal equation (40) if the ray direction
is matched with the local wave front tilt: γ(z0)Φ

′
0(z0). Having

constructed the eikonal Φ(x, z) we reduce the transport equation (41)
to an ODE

d

dx
A(x, z0 + γx) +

1
2

γ
′
(z0)

1 + γ′(x0)x
A(x, z0 + γx) = 0 (45)

with an evident integral

A[x, z0 + γ(z0)x] =
A0(z0)√

1 + γ′(z0)x
(46)

In a similar way, an asymptotic solution of the modified Claerbout
equation (38) can be found. Substituting the Ansatz U(x, z, s) =
I(x, z, s) exp[ik0Φ(x, z)] into Eq. (38) we obtain

−k2
0

(
Φx+

1
2
Φ2

z+ik0

)
+ik0

(
Ix−ΦxIs+ΦzIz+

1
2
ΦzzI

)
+

1
2
Izz−Ixs = 0

(47)
The leading term O(k2

0) disappears in virtue of the eikonal equation
(40). Thus, to the accuracy O(k−1

0 ), a space-time transport equation
arises for the slowly varying amplitude I(x, z, s):

Ix − ΦxIs + ΦzIz +
1
2
ΦzzI = 0 (48)
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As the coefficients of Eq. (48) do not depend on s, it has a solution of
the following form

I(x, z, s) + A(x, z)g[s− Ψ(x, z)] (49)

Here, A(x, z) is a solution of the stationary transport equation (41)
while g(s) is an arbitrary function of s = ct − x, and Ψ(x, z) satisfies
a linear PDE

Ψx + ΦzΨz = −Φx (50)

Solving Eq. (50) by characteristics one easily gets

Ψ[x, z0 + γ(z0)x] = Φ[x, z0 + γ(z0)x] + θ(z0) (51)

where θ(z0) is an arbitrary function. So, the solution of the HPE (38)
has asymptotic representation

U9x, z, s)k0→∞ ∼ A(x, z)g[s− Ψ(x, z)] exp[ik0Φ(x, z)] =

= g[s− Φ(x, z) − θ(z0)]u(x, z, k0) (52)

Here, u(x, z, k0) is a solution of the standard Leontovich PE (4),
A(x, z) and Φ(x, z) are its amplitude and eikonal, respectively; g(s)
and θ(z0) are arbitrary functions, and z0(x, z) is to be found from the
transcendental equation z0 + Φ

′
0(z0)x + z. Asymptotic solution (52) is

a paraxial version of the space-time GO [29], the rays and wave fronts
being defined numerically via parabolic equation. Functions A(x, z)
and Φ(x, z) are generally complex-valued, so distinction between wave
amplitude and complex “phase” is made solely on the basis of their
different dependence on frequency. In particular, complex eikonal
Φ(x, s), defined as

Φ(x, z) = −i
∂

∂k0
log u(x, z, k0) ≈

u(k1) − u(k2)

i(k1 − k2)u
(

k1+k2
2

) (53)

is calculated from PE numerical solutions at two close frequencies
ω1,2 = k1,2c. Physically, complex eikonal in Eq. (52) appears due to
diffraction effects described by PE (4). An important consequence is
the absence of singularities in the constructed asymptotic solution, as
the “parabolic” rays do not produce caustics in the real space. Another
effect caused by diffraction - pulse envelope distortion also is taken
into account via complex values of the signal delay ψ(x, z)/c. Physical
meaning of complex s = ct − x is provided by the theory of analytic
signal [22].
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Figure 13. Monochromatic attenuation function over curved
reflecting surface.

Arbitrary functions in Eq. (52) are determined by the initial
conditions. In the simplest case the constructed transient (37) has
the form

H(z, x, t) ≡ Π(x, z, ct− x) ≈ A(x, z)F+[ct− x− Φ(x, z)] (54)

where A(x, z) and Φ(x, z) are complex amplitude and eikonal evolved
from the initial A0(z), Φ0(z) given by Eq. (23) and F+(ct) ≈
f(ct) exp(−iωt) is the analytic signal (19) corresponding to the real
signal f(ct). Physical meaning has the real part of the complex solution
(54) or, from the practical point of view, its normalized envelope
|H(x, z, s)|/

√
2.

In virtue of the superposition principle, a more general asymptotic
solution can be constructed as a number of terms (54). That is a
direct analogy with ordinary GO where the incident and reflected waves
correspond to different ray families. An important practical example
is radar pulse propagation over the earth surface when the direct and
reflected from the ground pulses can be distinguished and used for
target location [23].

Consider first a model example: a short pulse with carrier
frequency F0 = 200 MHz and damped sinusoidal envelope (21),
propagating over a slowly rolling boundary z = h(x). Initial pulse
parameters are: a = b, Λ = π/a ≈ 9 m; w0 = 15 m, β = −0.01,
ρ0 = 200 m. Stationary field distribution calculated by numerical
integration of PE (4) at k0 = 2πf0/c produces a regular interference
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Figure 14. Reflected wave phase distribution.

Figure 15. Received pulse envelope as function of receiver altitude.

pattern - Fig. 13. It can be represented as a superposition of
the incident Gaussian beam (6) ui(x, z, k0) with the reflected wave
ur(x, z, k0) ≡ u − ui determined by the terrain z = h(x) and the
impedance BC (11). Functions Ai(x, z), Φi(x, z) are given by the
asymptotic solution (39)–(41), and eikonal Φr(x, z) is reconstructed
from the spatial phase distribution of the reflected wave - see Fig. 14.
In accordance with such a monochromatic framework, a two-term
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asymptotic formula arises for the pulsed transient:

H(x, z, t) ∼ Ai(x, z)F+[ct− x− Φi(x, z)]+

+Ar(x, z)F+[ct− x− Φr(x, z)] = ui(x, z)e−ikΦi(x,z)F+[ct−
−x− Φi(x, z)] + ure

−ikΦr(x,z)(x, z)F+[ct− x− Φr(x, z)] (55)

Note that to find the amplitude and complex delay of the incident and
reflected signals we need just to solve the standard PE in frequency
domain at two close frequencies ω1,2 ≈ ω0 - see Eq. (53). In time
domain, calculation reduces to the evaluation of an analytic function
F+ for the given argument values of interest. That radically diminishes
the required computational resources compared with direct numerical
integration of the TDPE (24).

At such large ranges (X = 100 km) the Earth sphericity must
be taken into account. For this purpose, a parabolic hump x(X −
x)/2R∗

earth has been added to the real terrain profile plotted in Fig. 9
of [23]. Atmospheric refraction has been considered by using the
equivalent Earth radius R∗

earth = 4/3Rearth [12]. Global field strength
distribution produced by the incident carrier wave at f0 = 141 MHz is
depicted in Fig. 17a.

The envelope of the received analytic signal (55), as a function of
s = ct− x and the receiver height z, for x = 7 km is shown in Fig. 15.
One can see profound interference minima near the earth surface and
a good separation of the direct and reflected pulse to heights above
400 m. Figures 16a,b compare the asymptotic solution with direct
numerical integration of the Claerbout TDPE (24). Qualitatively,
they are almost identical. Some hardly seen discrepancy is due to a
limited accuracy of the asymptotic solution and FD scheme (27). This
comparison demonstrates the efficiency of the developed approach.
Substantial acceleration of the numerical procedure (by around 200
times in this example) makes a good reason to use it in realistic
conditions.

As an example, we simulate an experimental situation [23]: radar
pulse propagation between two aircrafts flying by parallel routs over
an irregular terrain. The experiment [23] was aimed at simultaneous
determination of the target range and altitude from the measured
return times of the direct radar pulse and the echo signal from the
earth surface. Our goal is to develop an efficient method of EM field
calculations under conditions of multipath and signal distortion.

Despite evident multipath character of the reflected wave
(Fig. 17b) its eikonal Φr(x, z) has a rather regular structure. Therefore,
our PE based version of complex GO can be applied to simulate the
averaged parameters of the received radar pulse (the actually observed
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(a)

(b)

Figure 16. Comparison between numerical solution of TDPE (24) (a)
and asymptotic solution (55) (b).
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(a)

(b)

Figure 17. Simulation of experiment [23]: global field strength
(attenuation function) at f0 = 141MHz (a), reflected wave (b).
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Figure 18. Gaussian pulse envelope as function of relative delay and
receiver altitude.

Figure 19. Target height determination from reflected pulse delay
[23].

signal is a stochastic quantity with normal distribution [23]). Its
envelope, as a function of the distance from the paraxial wave front
s = ct − x and the receiver height z, is depicted in Fig. 18. A
Gaussian pulse waveform is chosen with the parameters corresponding
to the experimental situation [23]: z0 = 5.3 km, f0 = 141 MHz,
Λ ≈ 75 m. The direct and reflected pulses are distinctly separated
for z > 4.5 km which allows one to reliably solve the triangle R,R1, R2

for target altitude determination - see Fig. 19 borrowed from [23].
Variability and statistics of the simulated reflected pulse resemble the
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Figure 20. Received pulse envelope: asymptotic HPE solution (solid
line), experiment [23] (dash), stochastic model calculation [23] (dots).

experimental plots presented in [23], and the calculated received pulsed
signal envelope for a fixed receiver height z = 5.3 km (Fig. 20) agrees
well both with the experimental data and the results of thorough
statistical modeling [23]. The quantitative discrepancy in the reflected
pulse amplitude does not exceed the inherent uncertainty due to the
errors in terrain description.
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