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Abstract—This work reports some recent advances in diffraction
theory by canonical shapes like wedges or cones with impedance-
type boundary conditions. Our basic aim in the present paper is to
demonstrate that functional difference equations of the second order
deliver a very natural and efficient tool to study such a kind of
problems.† To this end we consider two problems: diffraction of a
normally incident plane electromagnetic wave by an impedance wedge
whose exterior is divided into two parts by a semi-infinite impedance
sheet and diffraction of a plane acoustic wave by a right-circular
impedance cone. In both cases the problems can be formulated in
a traditional fashion as boundary-value problems of the scattering
theory.

For the first problem the Sommerfeld-Malyuzhinets technique
enables one to reduce it to a problem for a vectorial system of functional
Malyuzhinets equations. Then the system is transformed to uncoupled
second-order functional difference-equations (SOFDE) for each of the
unknown spectra. In the second problem the incomplete separation
of variables leads directly to a functional difference-equation of the
second order. Hence, it is remarkable that in both cases the key
† For a thorough and up-to-date overview of the scattering and diffraction in general the
readers are referred to a special section of the journal “Radio Science” edited by Uslenghi [1].
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mathematical tool is an SOFDE which is an analog of a second-order
differential equation with variable coefficients. The latter is reducible
to an integral equation which is known to be the most traditional tool
for its solution. It has recently been recognised that reducing SOFDEs
to integral equations is also one of the most efficient approaches for
their study.

The integral equations which are developed for the problems at
hand are both of the second kind and obey Fredholm property. In
the problem of diffraction by a wedge the generalised Malyuzhinets
function is exploited on the preliminary step then “inversion” of a
simple difference operator with constant coefficients leads to an integral
equation of the second kind. The corresponding integral operator is
represented as a sum of the identical operator and a compact one [2].
However, in the second problem the situation is slightly different:
the integral operator can be represented by a sum of the boundedly-
invertible (Dixon’s operator) and compact operators. This situation
was earlier considered by Bernard in his study of diffraction by an
impedance cone, and important advances have been made (see [3–6]).

The Fredholm property is crucial for the elaboration of different
numerical schemes. In our cases we exploited direct numerical
approaches based on the quadrature formulae and computed the far-
field asymptotics for the problems at hand. Various numerical results
are demonstrated and discussed.

1. DIFFRACTION BY AN IMPEDANCE WEDGE WITH
A SEMI-INFINITE IMPEDANCE SHEET ATTACHED
TO ITS EDGE

This section deals with diffraction of a normally incident plane wave
in a wedge-shaped region which consists of an impedance wedge and
a semi-infinite impedance sheet joint at the edge of the wedge. The
looked-for fields on both sides of the impedance sheet are expressed in
terms of the Sommerfeld integrals. Inserting the Sommerfeld integrals
into the boundary conditions on the faces of the wedge and across the
impedance sheet, and inverting the resultant expressions, one obtains
a system of difference equations for the spectra. Eliminating one of the
spectra leads to a functional difference-equation of higher order. The
latter can be converted by means of a recently developed technique for
second-order functional difference-equations into an equivalent integral
expression. For points located on the imaginary axis of the complex
angle α the integral expression turns out to be an integral equation of
the second kind which permits an efficient solution by use of quadrature
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method. From evaluation of the Sommerfeld integrals by virtue of the
saddle-point method a first-order uniform asymptotic solution follows.

The results to be given below follow the same line as [2, 7].
Therefore, the following exposition is confined to main steps and the
readers are referred to [2, 7] for details.

1.1. Statement of the Problem

Figure 1 depicts the scattering obstacle. For convenience, a cylindrical
co-ordinate system (r, ϕ, z) is chosen in such a way that the edge of the
wedge and one rim of the semi-infinite impedance sheet coincide with
the z-axis, the wedge faces and the impedance sheet are half-planes
given by ϕ = ±Φ and ϕ = Φ0 with 0 < Φ ≤ π. In the following, it is
assumed that 0 ≥ Φ0 ≥ −Φ.

Figure 1. Diffraction of a normally incident plane wave in a wedge-
shaped region.

A plane wave impinges perpendicularly on the edge from the
direction ϕ = ϕ0 with Φ0 < ϕ0 < Φ assumed in this study. The
alternative case can be dealt with analogously. The incident electric
field oscillates along the edge of the wedge-shaped region and is given
by (a time-dependence e−iωt is assumed and suppresed in this section)

Einc
z (r, ϕ) = E0 exp [−ikr cos(ϕ− ϕ0)] , (1)

where E0 is the amplitude of the incident wave.
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This incident wave will be scattered by the obstacle. Owing to
the translational symmetry of both the incident wave and the wedge-
shaped region with respect to the z-axis, the boundary value problem
is a two-dimensional one and the total electric field has only one
component Ez(r, ϕ).

In the region surrounding the wedge and the sheet, Ez obeys
the two-dimensional Helmholtz equation. On the faces of the wedge
ϕ = ±Φ, the boundary conditions to be met by Ez read

1
r

∂

∂ϕ
Ez ∓ i

k

η±
Ez = 0, (2)

η±Z0 being the surface impedance of the upper (lower) wedge face and
Z0 the intrinsic impedance of the surrounding medium.

The electric property of the impedance sheet is given by ys/Z0, the
shunt admittance. On the impedance sheet at ϕ = Φ0, Ez is subjected
to the semi-transparency conditions [8]:[

1
r

∂

∂ϕ
Ez

]+

−
[
1
r

∂

∂ϕ
Ez

]−
+ i k

ys
2

[E+
z + E−

z ] = 0,

[E+
z − E−

z ] = 0.

(3)

Furthermore, Ez must satisfy the Meixner’s edge condition Ez = O(1)
as r → 0 and the radiation conditions [9] (see also [10]).

1.2. Higher-Order Functional Difference-Equation

According to Sommerfeld, the solution can be constructed through a
superposition of plane waves

Ez =
E0

2πi

∫
γ
S±(α+ ϕ) exp(−i kr cosα) dα, ϕ ∈

{
[Φ0,Φ]

[−Φ,Φ0]
(4)

γ denotes the Sommerfeld double loops (see [9, 10]). S±(α) are the
complex spectra of the electric field Ez in the angular regions above
and below the impedance sheet.

Inserting the above expressions for Ez into (2) and (3) and then
inverting the Sommerfeld integrals, we obtain a coupled system of
Malyuzhinets equations

(sinα± sinϑ±)S±(α± Φ) = (− sinα± sinϑ±)S±(−α± Φ), (5)
(sinα− sinϑ)[S+(α+ Φ0) − S−(−α+ Φ0)]

= (sinα+ sinϑ)[S−(α+ Φ0) − S+(−α+ Φ0)], (6)
S+(α+ Φ0) − S−(α+ Φ0) = S+(−α+ Φ0) − S−(−α+ Φ0). (7)
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Complex angles ϑ and ϑ± have been introduced according to

sinϑ = ys/2, 0 ≤ Reϑ ≤ π/2; sinϑ± = η−1
± , 0 ≤ Reϑ± ≤ π/2.

To satisfy the radiation conditions we demand

S+(α) − 1/(α− ϕ0) be regular in Π(Φ0,Φ),

S−(α) be regular in Π(−Φ,Φ0).
(8)

The presence of a pole at the point α = ϕ0 for the function S+ serves
to recover the incident plane wave. And the Meixner’s condition
determines the asymptotic behaviour of the spectral functions:
S±(α) = O(1) as α→ ±i∞.

By eliminating S− from (5)–(7) we arrive at a difference-equation
for S+ alone

−
(

1 +
sinϑ
sinα

)
S+(α− Φ0 + 2Φ)
R+(α− Φ0 + Φ)

+
[
1 − sinϑ

sin(α− 2Φ0 − 2Φ)

]

×R−(α− Φ0 − Φ)S+(α− Φ0 − 2Φ) =
sinϑ
sinα

S+(α+ Φ0)

+
sinϑ

sin(α− 2Φ0 − 2Φ)
R−(α− Φ0 − Φ)
R+(α− 3Φ0 − Φ)

S+(α− 3Φ0). (9)

where R±(α) = (sinα − sinϑ±)/(sinα + sinϑ±) is the reflection
coefficient of the upper (lower) wedge face. Apparently, the poles in
the basic strip Π(−2Φ, 2Φ) and their principal parts are

S+(α) = 1/(α− ϕ0) + . . . ,
S+(α) = H(Φ + 2Φ0 − ϕ0)R(ϕ0 − Φ0)/[α− (2Φ0 − ϕ0)] + . . .

and R(ϕ) = − sinϑ/(sinϑ+sinϕ) means the reflection coefficient of the
impedance sheet. As usual, H(·) is the Heaviside unit step function.

Unlike the functional difference-equations encountered in our
previous works [2, 7], Equation (9) is of higher order and reduces to an
equation of the second order merely for Φ0 = 0. Despite this difference,
the technique developed in [2, 7] can be applied to solving (9).

1.3. Simplified Functional Difference-Equation

Let us construct an even function now and begin with the boundary
condition on the upper wedge face, see (5). By making use of
a generalised Malyuzhinets function χΦ which obeys a first-order
functional difference-equation and is specially normalised

χΦ(α+ 2Φ)
χΦ(α− 2Φ)

= cos
(
α

2

)
(10)
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and its relationship to the well-known Malyuzhinets function
ψΦ [2, 8, 11–13]

ψΦ(α) =
1

[χΦ(π/2)]2
χΦ(α+ π/2)
χΦ(α− π/2)

, (11)

we come to the conclusion that (5) is equivalent to

S+(α+ Φ)/Ψ+(α+ Φ) = S+(−α+ Φ)/Ψ+(−α+ Φ),

with Ψ±(α) = ψΦ(α+ ϑ± ± Φ − π/2)ψΦ(α− ϑ± ± Φ + π/2).
Therefore, the looked-for even function ψ(α) is defined as

ψ(α) = S+(α+ Φ)/Ψ+(α+ Φ). (12)

Its principal parts at two poles α = −Φ + 2Φ0 − ϕ0 and α = −Φ + ϕ0

located in the strip Π(−2Φ, 0) are known

ψ(α) =
H(Φ + 2Φ0 − ϕ0)R(ϕ0 − Φ0)

[α+ (Φ − 2Φ0 + ϕ0)] Ψ+(2Φ0 − ϕ0)
+ · · · ,

ψ(α) =
1

[α+ (Φ − ϕ0)] Ψ+(ϕ0)
+ · · · .

(13)

In view of the evenness of ψ(α) the other two poles in the strip
Π(−2Φ, 2Φ) and their principal parts are also known. From (9) follows
the governing equation for ψ(α). Introduce once again a new function
F (α) via ψ(α) = χ(α)F (α) where χ(α) must be even and regular in
the basic strip and furthermore meet the following first order difference
equation

χ(α+2Φ)
χ(α−2Φ)

=−sin(α−Φ0−Φ)−sinϑ
sin(α+Φ0+Φ)+sinϑ

sin(α+ Φ0 + Φ)
sin(α− Φ0 − Φ)

R−(α). (14)

By virtue of (10) and (11), an appropriate χ(α) with all the necessary
properties is found to be (cf. [2, 7])

χ(α) =
χΦ(α− Φ0 − Φ − ϑ+ π)χΦ(α− Φ0 − Φ + ϑ)
χΦ(α+ Φ0 + Φ + ϑ− π)χΦ(α+ Φ0 + Φ − ϑ)

×χΦ(α+ Φ0 + Φ − π)χΦ(α+ Φ0 + Φ)
χΦ(α− Φ0 − Φ + π)χΦ(α− Φ0 − Φ)

Ψ−(α+ Φ).

The asymptotic behaviours of χΦ(α) and ψΦ(α) dictate that of χ(α):
χ(α) = O(e∓iµα/2) as Imα → ±∞. Here, µ = π/(2Φ). Therefore,
F (α) is of the order of e±iµα as Imα→ ±∞.
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Using F (α) in place of ψ(α) in the governing equation for the
latter and making use of (14), one gets the following simple difference
equation for F (α)

F (α+2Φ)−F (α−2Φ)=Q1(α)F (α+ 2Φ0)+Q2(α)F (α−2Φ0),

Q1(α) = −R(α+ Φ0 + Φ)
χ(α+ 2Φ0)
χ(α+ 2Φ)

Ψ+(α+ 2Φ0 + Φ)
Ψ+(α− Φ)

,

Q2(α) = −R(α+ Φ0 + Φ)
χ(α− 2Φ0)
χ(α+ 2Φ)

Ψ+(α− 2Φ0 + Φ)
Ψ+(α− Φ)

×sin(α+ Φ0 + Φ)
sin(α− Φ0 − Φ)

R−(α)
R+(α− 2Φ0)

.

(15)

Q1 and Q2 are related to each other: Q1(−α) = −Q2(α), therefore, the
right-hand side of the FD equation for F (α) is odd. In addition, the
asymptotic behaviour of Q1 and Q2 is found to be Q1,2(α) = O(e±iα)
as Im α→ ±∞.

1.4. Fredholm Integral Equation of the Second Kind

It follows from the evenness of F (α) and the relation between Q1(α)
and Q2(α) that (15) amounts to

F (α±2Φ)−F (−α±2Φ) = ± [Q1(α)F (α+ 2Φ0) +Q2(α)F (α− 2Φ0)] .

Considering the right-hand sides of the latter equations as inhomo-
geneity terms, the solution of the above equations contains the general
solution of the homogeneous equations and the particular solution of
the inhomogeneous equations. If the right-hand side of (15), an odd
function of the order e±iα(1+µ) as Im α→ ±∞, is known, the particular
solution can be constructed using the so-called S-integrals [8, 10, 14].
This way is comparable to utilising a modified Fourier transform with
integration along the imaginary axis. Hence we have an integral equiv-
alent to (15), namely

F (α) =
C1µ cos(µϕ0)

cos(µα) − sin(µϕ0)

+
C2µ cos[µ(ϕ0 − 2Φ0)]

cos(µα) + sin[µ(ϕ0 − 2Φ0)]
H(Φ + 2Φ0 − ϕ0)

+
i

4Φ

∫ i∞

−i∞

Q1(t) sin(µt)F (t+ 2Φ0) dt
cos(µt) + cos(µα)

, µ = π/(2Φ).(16)

Here, the first two terms solve the homogeneous equation, pos-
sessing the required poles at given points ±(Φ − ϕ0), ±(Φ −
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2Φ0 + ϕ0) in the basic strip Π(−2Φ, 2Φ) with known principal
parts. Therefore, C1 = 1/ [χ(Φ − ϕ0)Ψ+(ϕ0)] , C2 = R(ϕ0 −
Φ0)/ [χ(Φ − 2Φ0 + ϕ0)Ψ+(2Φ0 − ϕ0)] .

Because (16) is valid for every point α inside the basic strip
Π(−2Φ, 2Φ) of the complex plane, it also remains true for points on a
shifted imaginary axis Reα = 2Φ0. Exactly for this shifted imaginary
axis, (16) becomes a Fredholm integral equation of the second kind. A
brief discussion on how to solve this integral equation numerically will
be given in the next subsection.

Having found the numerical value for F (α) along the shifted
imaginary axis Reα = 2Φ0, (16) is used to calculate F (α) and therefore
S+(α) inside the basic strip Π(−2Φ, 2Φ) and analytical extension where
necessary. S−(α), the other spectral function, is determined through
its relation to S+(α)

S−(α) =
[
1 − sinϑ

sin(α− Φ0)

]
S+(α) +

sinϑ
sin(α− Φ0)

S+(−α+ 2Φ0). (17)

Evaluating asymptotically the Sommerfeld integrals yields a first-
order uniform asymptotic solution which is of particular interest:

Ez(r, ϕ) ∼ Ego
z (r, ϕ) + Ed

z (r, ϕ) + Esw
z (r, ϕ). (18)

As usual, the super indices “go”, “d”, and “sw” signify geometrical-
optics, diffracted, and surface-wave parts. Especially, there is

Ed
z (r, ϕ) =

exp (ikr)√
r

D±(r, ϕ)E0, ϕ ∈
{

[Φ0,Φ]
[−Φ,Φ0]

where D±(r, ϕ) denotes the uniform diffraction coefficient of such a
canonical structure (see for instance [2]).

1.5. Verification and Numerical Solution

To solve the Fredholm equation of the second kind (16), we transform
the semi-infinite interval into a finite one. Applying some approximate
quadrature rule, for instance the N -point Gauß-Legendre rule, to the
integral at the right-hand side and enforcing the fulfilment of the
resulting equation at the same abscissae, we obtain a system of linear
algebraic equations which are solved with help of standard algorithm.

To facilitate numerical calculation, the asymptotic behaviour of
the function F (α) has been taken into account explicitly. In this
way, as few as 10 integration points suffice to deliver sufficiently
accurate results for engineering applications. For the example shown
40-point Gauß-Legendre rule has been used. For the calculation of
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the generalised Malyuzhinets function χΦ, we resort to a procedure
described in detail in [13].

It is worth mentioning that the solution described above reduces
both analytically and numerically to the one given in [7] in which the
semi-infinite impedance sheet bisects the exterior of the impedance
wedge, that is Φ0 = 0.

Also a 90◦ angle formed by a perfectly conducting half-plane and
a semi-infinite impedance sheet can be studied. Fig. 2 displays the
amplitude of the total electric field on a circle of radius kr = 12 centred
on the edge, together with the results obtained in [15] by means of an
approximate procedure, the parabolic equation method. Away from
the impedance sheet located at ϕ = Φ0 = −90◦, the two results agree
very well, confirming additionally the present work and furthermore
demonstrating the surprisingly high accuracy of the parabolic equation
method.
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Figure 2. Diffraction by a perfectly conducting half-plane attached
to a semi-infinite impedance sheet. Comparison between the approach
presented in this work and the parabolic equation method (PEM) [15].
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2. ACOUSTIC SCATTERING OF A PLANE WAVE BY A
RIGHT-CIRCULAR IMPEDANCE CONE

The analytic solution is constructed on the basis of the incomplete
separation of variables and of reduction to a problem for a second-
order functional difference-equation (SOFDE). Though the latter
is equivalent to a Carleman boundary-value problem for analytic
vectors, the solution is sought for by means of the direct reduction
converting the SOFDE to a Fredholm-type integral equation. Its
unique solvability will be then studied and the expression for the
scattering amplitude of the spherical wave from the vertex be discussed.

This section is based on [3, 4, 6, 16]. We note that a similar analysis
is presented in [5] in which numerical results for axial incidence are
given and therefore, will be called upon for comparison purposes.

2.1. Statement of the Problem

In the spherical coordinates (r, θ, ϕ) which are related to the Cartesian
ones (x1, x2, x3) via

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (19)

the axis Ox3 coincides with the axis of the right-circular impedance
cone under study, where θ = θ1 is the equation of the cone’s surface
with π/2 < θ1 < π (Fig. 3).

The incident plane wave field in the spherical coordinates is given
by

U i = e−ikr cos θ̂(ω,ω0), k = Ω/c . (20)
where ω0 = (θ0, ϕ0) is the unit vector attached to the direction
of incidence, ω = $r/r = (θ, ϕ), cos θ̂(ω, ω0) = cos θ cos θ0 +
sin θ sin θ0 cos(ϕ − ϕ0), c is the wave speed in the acoustic medium.
The harmonic dependence on time e−iΩt is omitted throughout this
section. We assume also that the incident wave illuminates completely
the conical surface from the exterior that is θ0 < π − θ1.‡

The scattered acoustic field U satisfies the Helmholtz equation(
 + k2

)
U = 0, (21)

and the boundary conditions

1
r

∂
(
U + U i

)
∂θ

∣∣∣∣∣
θ=θ1

− ikη
(
U + U i

)∣∣∣∣∣
θ=θ1

= 0 , (22)

‡ The procedure given here can equally be used to study the case of a partly-lit impedance
cone.
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Figure 3. Diffraction of an acoustic plane wave by a right-circular
impedance cone.

as well as the Meixner’s condition at the tip of the cone and the
condition at infinity. See [3–6, 16].

2.2. Incomplete Separation of Variables

The scattered acoustic field U is sought in the form of the Kontorovich-
Lebedev integral [3, 4, 6, 16]

U(kr, ω, ω0) =
4

i
√

2π

∫ i∞

−i∞
ν sin(πν)uν(ω, ω0)

Kν(−ikr)√
−ikr

dν , (23)

where ω = (θ, ϕ) denotes the direction of scattering and ω0 specifies the
direction of incidence. Kν(·) stands for the modified Bessel function
(Macdonald function). We can separate the angular variables for
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uν(ω, ω0) by dint of a Fourier expansion in azimuth ϕ:

uν(ω, ω0) =
+∞∑

n=−∞
in e−inϕRu(ν, n)

P
−|n|
ν−1/2(cos θ)

dθ1P
−|n|
ν−1/2(cos θ1)

, (24)

where P−|n|
ν−1/2(cos θ) is a Legendre function. In a similar fashion, the

incident field U i is also expressed in the form of the Kontorovich-
Lebedev integral

U i(kr, ω, ω0) =
4

i
√

2π

∫ i∞

−i∞
ν sin(πν)ui

ν(ω, ω0)
Kν(−ikr)√

−ikr
dν (25)

where ui
ν(ω, ω0) is given by

ui
ν(ω, ω0) =

+∞∑
n=−∞

in e−inϕRi(ν, n)
P

−|n|
ν−1/2(− cos θ)

dθ1P
−|n|
ν−1/2(− cos θ1)

(26)

with

Ri(ν, n) =
in

−4 cos(πν)
Γ(ν + |n| + 1/2)
Γ(ν − |n| + 1/2)

×dθ1P
−|n|
ν−1/2(− cos θ1)P

−|n|
ν−1/2(cos θ0).

Inserting the above expressions for the scattered field and the
incident field in the boundary condition on the cone’s surface (22)
and inverting the integrals, we arrive at the governing relation for the
unknown Ru(ν, n) :

Ru(ν + 1, n) −Ru(ν − 1, n) = −2i ηw(ν, n)Ru(ν, n) + S(ν, n), (27)

which is a second-order functional difference-equation (SOFDE). w, S
are known meromorphic function of ν:

S(ν, n) = − [Ri(ν + 1, n) −Ri(ν − 1, n)] − 2i ηwi(ν, n)Ri(ν, n),

w(ν, n) = −iν
P

−|n|
ν−1/2(cos θ1)

dθ1P
−|n|
ν−1/2(cos θ1)

,

wi(ν, n) = −iν
P

−|n|
ν−1/2(− cos θ1)

dθ1P
−|n|
ν−1/2(− cos θ1)

.

The functional difference-equation must be solved in an
appropriate class of meromorphic functions, n is an integer.
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2.3. Reduction to a Fredholm Integral Equation

As in the first problem for a wedge the SOFDE (27) is reduced to a
integral equation of the second kind§

Ru(ν, n) = η

∫ i∞

0

w(t, n)Ru(t, n) sin(πt)
cos(πt) + cos(πν)

dt + Si(ν, n) . (28)

with

Si(ν, n) = −Ri(ν, n) + η
∫ i∞

0

wi(t, n)Ri(t, n) sin(πt)
cos(πt) + cos(πν)

dt.

Having obtained Ru(t, n) as t ∈ iR, this function is then analytically
continued as a meromorphic function. A remarkable property of the
integral equation (28) is that its solution is unique (Re η > 0) in the
respective class of functions. We demonstrate subsequently that the
integral equation possesses the Fredholm property (its operator can be
represented as a sum of boundedly-invertible and compact operators)
then its solvability follows from uniqueness, which is a standard trick
for this kind of equations. This equation is to be solved by use of
numerical methods.

Replacing in the Kontorovich-Lebedev integral (23) the Macdon-
ald function by its approximate expression for large arguments, the
scattered acoustic pressure U in “oasis”, i.e., in the domain not illumi-
nated by the reflected rays, has the asymptotics

U(kr, ω, ω0) = D(ω, ω0)
eikr

−ikr

(
1 + O

(
1
kr

))
, (29)

where

D(ω, ω0) =
2
i

∫ i∞

−i∞
ν sin(πν)uν(ω, ω0) dν (30)

is the scattering diagram (amplitude) or diffraction coefficient. It is
noted that the asymptotics (29) is valid solely inside the oasis, hence
non-uniform.

2.4. Perturbative Solution of the SOFDE

In case of large or small amplitude of the impedance η, a perturbative
solution of the functional difference-equation (27) can be constructed.

For example, for large |η| the following series for Ru(ν, n) seems
feasible

Ru(ν, n) = R(0)
u (ν, n) + η−1R(1)

u (ν, n) + η−2R(2)
u (ν, n) + . . . (31)

§ This kind of equation was studied in [6] for diffraction by an impedance cone.
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Inserting the above Ansatz in the SOFDE for Ru(ν, n) and equating
the coefficients of like powers of η we get

R(0)
u (ν, n) = −wi(ν, n)

w(ν, n)
Ri(ν, n), (32)

R(1)
u (ν, n) =

i
2w(ν, n)

[
R(0)

u (ν + 1, n) −R(0)
u (ν − 1, n)

+Ri(ν + 1, n) −Ri(ν − 1, n)
]
, (33)

R(2)
u (ν, n) =

i
2w(ν, n)

[
R(1)

u (ν + 1, n) −R(1)
u (ν − 1, n)

]
. (34)

Clearly, the zeroth-order term R
(0)
u (ν, n) represents the exact solution

of (27) for an acoustically soft cone, whereas the first-order and
higher-order terms refine the approximate solution to the functional
difference-equation (27) for large but finite |η|.

The perturbative solution of (27) for small |η| can be deduced in
a similar way.

2.5. Numerical Aspects and Examples

As implied by the above formulae, the determination of the diffraction
coefficient (scattering diagram) D for a right-circular impedance cone
consists of solving at first the integral equation (28) for each Ru(ν, n)
and then carrying out the integration along the imaginary axis of the
ν plane (29).

Also for the cone problem we take into account the known
asymptotic behaviour of Ru(ν, n). The infinitely large interval is
transformed into a finite one via

ν =
ip

θ1 − θ0
ln

1 − ξ
1 + ξ

, p� 1.

The Gauß-Legendre scheme is used in the numerical solution of the
integral equation (28). For the integration contained in the diffraction
diagram D it proves beneficial to employ the Gauß-Laguerre scheme.

The first example in this Section concerns the axisymmetric case
(the plane wave is incident along the axis of the cone θ0 = 0).
Fig. 4 displays the amplitude of the diffraction coefficient |D(ω, ω0)|
as a function of both the surface impedance η and the co-latitude
θ. The diffracted field which is proportional to D(ω, ω0) increases
monotonically with θ for θ < θs. The value θs = 2θ1−π corresponds to
the singular directions in which the scattering amplitude grows without
limit and formula (30) is not applicable. In a neighbourhood of the



Progress In Electromagnetics Research B, Vol. 6, 2008 253

singular directions the far field is described by the parabolic cylinder
functions (see for instance [6]).

Shown in Fig. 4 as symbols are the data obtained in [5] which
corroborate our results.

0 50 100
θ (degree)

10-1

100

|D
(ω

,ω
0)

|

η = 1010

η = 1
η = 0
Antipov

θ1 = 150o, θ0 = 0o

Figure 4. Diffraction by a right-circular impedance cone at axial
incidence. Comparison with the results of Antipov [5].

At non-axial incidence, the diffraction coefficientD(ω, ω0) depends
in addition upon the azimuth ϕ. This is also true for the singular
direction θs(ϕ) with its smallest value occurring at ϕ = ϕ0; θs(ϕ0) =
2θ1−θ0−π and its maximum value attained at ϕ = ϕ0±π : θs(ϕ0±π) =
2θ1 + θ0 − π. This fact explains the tilted contours shown in Fig. 5.

Displayed in Fig. 5 are also results based on the first two terms of
the perturbation series (31).

3. EPILOGUE

In this paper we have reported some of our recent works on diffraction
of waves by bodies of canonical shape: scattering of a normally
incident plane electromagnetic wave by a semi-infinite impedance
sheet attached to an impedance wedge and scattering of a non-axially
incident plane acoustic wave by a right-circular impedance cone.

The key steps of the solution procedure are the following: 1)
representing the unknown fields in terms of either Sommerfeld integrals
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Figure 5. Contours of the scattering diagram for a right-circular
impedance cone at non-axial incidence [solid line: integral equation
(28), broken line: perturbation series (31)].

(wedge-shaped regions) or Kontorovich-Lebedev integrals (cones), 2)
deducing from the boundary conditions in the spatial domain via
inversion of integrals a system of difference equations for the spectra, 3)
deriving one second-order functional difference equation (SOFDE) for a
spectrum on elimination, 4) simplifying the SOFDE for wedge problem
by virtue of a generalised Malyuzhinets function, 5) converting the
simplified SOFDE to an equivalent integral expression valid on a strip
in a complex plane and obtaining for points on either the imaginary
axis or a shifted imaginary axis a Fredholm-type integral equation of
the second kind, 5) solving the integral equation for the spectra on use
of quadrature method, 6) evaluating the Sommerfeld integrals or the
Kontorovich-Lebedev integrals asymptotically and yielding in this way
first-order far-field expressions.

At the moment, we are developing convergent expressions for
the diffraction coefficient of cones outside the oasis and uniform
asymptotics which are valid in addition at singular directions. We
hope to present soon our results in this respect.

At the end of this paper it is worth mentioning that the presented
approach can equivally be applied to skew incidence on wedges [17, 18]
and diffraction of electromagnetic waves by either a right-circular
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impedance cone [19] or a conical surface of circular cross-section [20].
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