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1. INTRODUCTION

Recent years have witnessed a phenomenal growth in our ability to
numerically model, simulate the performance of, and design complex
electromagnetic systems. Nonetheless, as designers, we continue to be
challenged by the need to solve even larger and more complex problems
than we have been able to handle in the past, e.g., antennas mounted
on satellites, aircrafts or ships, as well as communication antennas used
in various applications. There are many competing CEM approaches
at our disposal, for instance, the Fast Multipole Method (FMM) and
similar techniques [1–4] for Method of Moments (MoM) [5] problems;
hybrid techniques [6] that combine the asymptotic methods with
the MoM; and, Finite Element and Finite Difference Time Domain
(FDTD) methods [7, 8]. There are several excellent commercial CEM
tools available in the market today that are based on these methods,
and are being routinely used for modeling and simulation of a wide
variety of electromagnetic structures. Also, in recent years several of
them have successfully incorporated these enhancements to enhance
the scope of their problem-solving capabilities and/or reduce the CPU
time. Their unique advantages as well as limitations are well known
and a discussion of these features is beyond the scope of this paper.
Instead, we focus on a recently-developed MoM-based approach, called
the Characteristic Basis Function Method (CBFM) [9], designed for
solving large-scale electromagnetic problems involving both microwave
circuits as well as open region radiation and scattering problems.
Though we restrict our attention only to MoM-type problems in this
review paper, we mention that the method can also be tailored for
both FEM and FDTD.
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We observe that there is a rapidly growing trend in Computational
Electromagnetics (CEM) that is significantly impacting the computing
landscape, namely the use of highly parallel computers to address
large and complex problems. It is well known, however, that with the
exception of the FDTD-based codes that are “embarrassingly parallel,”
not all computer codes scale equally well on these platforms. The
CBMoM (Characteristic Basis Method of Moments) code, which is
based on CBFM, is another exception, since, unlike the conventional
MoM codes, it also can be parallelized efficiently. This implies that
even problems characterized by a large number of degrees of freedom
(DoFs) can be solved by using direct methods as opposed to iteration;
this is a unique feature of CBMoM that is not present in conventional
MoM codes.

The organization of the paper is as follows. In Section 2 we present
the details of CBFM for microstrip circuits to lay the foundations
of the method. We show how we can use the concepts of domain
decomposition and high-level or macro basis functions to significantly
reduce the size of the MoM matrix, which can then be solved directly,
without relying on iteration. This feature, as well as the fact that,
unlike the FMM, CBFM is not kernel-dependent, makes the CBMoM
somewhat unique — as well as highly desirable — as an approach
for handling large problems. Next, in Section 3, we describe the
version of CBFM suitable for scattering problems that is based on
the same basic concepts outlined in Section 2. Finally, we describe
some recent developments in CBFM in Section 4 and present some
summary conclusions in Section 5.

2. CBFM FOR MICROSTRIP CIRCUITS AND PRINTED
ARRAY ANTENNA PROBLEMS

The CBFM takes advantage of the fact that a microwave circuit or
a printed array antenna typically consists of a number of functional
components that are put together by using interconnecting elements.
The currents induced on each component are due to two types of
sources: (a) local excitations applied at all terminals of this component
that are accompanied with net charge flow in or out of the functional
component; (b) non-local excitations that correspond to the field-
coupling effects between different components. Currents due to local
excitations generally have much higher magnitudes than those arising
from coupling effects; and, in the context of the CBFM, they are
defined as “primary currents”. For each functional component, the
number of primary currents is the same as the number of terminals, or
ports. And because the primary currents typically dominate in their
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contribution to the total solution, only a finite number of mutual-
coupling currents, referred to as the “secondary” bases in CBFM,
need to be retained in the solution process. Consequently, the total
number of characteristic basis (CB) currents, which correspond to the
effective degree of freedom (DoF) for the system, is typically orders of
magnitude less than in the conventional MoM formulation. This, in
turn, leads to a reduced matrix, which is much smaller than the original
MoM matrix, even though it captures all the interactions between
different parts of the circuit without compromising the accuracy.

The CBFM begins by dividing the original problem geometry into
sub-blocks, such that the MoM matrix for each sub-block can be easily
computed and solved on a single personal computer. Next, it generates
the characteristic bases (CBs) that are the induced currents on one of
the sub-blocks by using certain types of excitations, as explained below.
The CB is referred to either a “primary” or a “secondary”, depending
on the type of excitation. Finally, we form the reduced matrix equation
by using the Galerkin procedure. Solving the reduced system gives the
weights of the characteristic bases such that their weighted summation
represents the desired current on the original circuit.

To get into further details of the formulation, we start with the
conventional MoM procedure, whereby the mixed potential integral
equation is discretized into a matrix equation:

Z · I = V. (1)

where Z denotes the conventional MoM impedance matrix; I is the
unknown current vector; and, V is the excitation voltage vector. As
explained earlier, the “finite DoF” premise of the algorithm essentially
asserts that the desired solution I of (1) can be represented as:

I =
∑N

i=1
ciIi, (2)

where Ii (i = 1, . . . , N) represent the characteristic basis currents, and
ci denotes the “magnitudes” or weights of these currents. Methods of
finding Ii and ci will be prescribed later. Note that each Ii would
have non-zero entries only at the positions belonging to a sub-block
and its terminals. When Ii is normalized, the value of ci indicates the
physical significance of the i-th CB and, hence, the “importance” of
certain coupling effects between the sub-circuits. This observation is
useful in determining N , the total number of characteristic bases that
would yield an accurate solution to the problem at hand.

The primary bases are computed by solving a series of smaller
matrix problems resulting from the application of the MoM procedure
to the sub-blocks, under the excitations of delta voltage or current
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source applied at the terminals of the sub-blocks. These terminals
are either the excitation ports of the original problem, or artificial
edges introduced as a result of the division of the original geometry.
Once all of the primary CBs have been computed, we assign the
primary CB on one of the sub-block as the excitation and compute
the secondary currents induced on the other sub-blocks. Likewise, by
using a secondary CB as the excitation, we can obtain the tertiary
CBs, if we so desire.

Let us consider a simple case where the original problem is divided
into two sub-blocks (A and B), each of which has two terminals (1 and
2). For this two-block problem, the system matrix Z in (1) can be
written as:

Z =
[
ZAA ZAB

ZBA ZBB

]
. (3)

Here the sub-matrix ZAA is the MoM matrix for sub-block A; ZBB

corresponds to sub-block B; ZAB represents the coupling between the
sub-blocks A and B. The 4 primary bases can be obtained by solving

ZAA · IA(1, or 2) = VA
(1, or 2), (4)

or ZBB · IB(1, or 2) = VB
(1, or 2). (5)

The subscripts “(1)” and “(2)” appearing above indicate the values
correspond to local excitations at the two terminals (“ports”). The
secondary basis on sub-block B can be derived by solving for the IB
in (6) below:

ZBB · IB = −ZBA · IA, (6)

where IA appearing in the right hand side (RHS) of (6) is taken as
the primary CB supported by sub-block A (solution of (4)). Similarly,
the secondary basis whose support is sub-block A can be computed
by using the primary CB on sub-block B as the excitation. Naturally,
the solutions of (4), (5) or (6) would have to be padded with zeros
at appropriate locations so that all the primary and secondary bases
would have the same dimensions, as in (2).

Our next task is to calculate the weights ci in (2) for a given RHS
corresponding to the excitation of the one of the ports in the original
problem. Towards this end, we apply the Galerkin procedure once
more, and employ the CBs calculated earlier as the testing functions.
This leads us to the following matrix equation for the “reduced current
vector” IR whose entries are the ci’s:

ZR · IR = BT · V. (7)
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Here ZR is an N × N reduced system matrix given by

ZR ≡ BTZRB, (8)

B is a matrix with N columns defined by

B = [I1 I2 . . . IN ] . (9)

The superscript “T” in the above equations denotes a matrix transpose.
Several methods for fast matrix-vector multiplication that are available
in the literature can be used to efficiently compute the coefficients
in (7), if desired. As mentioned before, substituting the solution of
Eq. (7) in to the expression in Eq. (2) gives the induced current. The
other circuit or antenna parameters can be obtained by following the
conventional post-processing procedure.

We next present some numerical examples to demonstrate the
application of the CBFM to microwave circuit [10] and antenna
problems [11].

2.1. Meander Line Filter

Figure 1 shows a meander line filter printed on a dielectric slab with
a ground plane. The dielectric constant is εr = 2.43, the thickness
is 0.49 mm, while the other length parameters as indicated in the
figure are: W = 1.41 mm, S = 2.82 mm and L = 29.61 mm. We
apply the MoM in the conventional way, and discretize the geometry
into 624 rectangular cells corresponding to 1039 unknowns using
rooftop basis functions. The CBFM is implemented for this geometry
over the frequency range of 9 to 11.5 GHz, the computational time
is determined, and the accuracy of the computed S-parameters is
evaluated. We begin by segmenting the geometry into 8 sub-blocks

W

S

L

Figure 1. Geometry of a meander line filter to be analyzed with
the CBFM. The dotted lines indicate the way the original problem is
decomposed into 8 sub-blocks.
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as shown in Fig. 1. We next apply the CBFM in two different schemes
to compute the S-parameters. In the first scheme, we include no
secondary CBs. The S-parameters, thus obtained, are compared with
those from the direct solution (see Fig. 2). Except for minor differences
near the resonance and at frequencies below 9.5 GHz, the two sets of
S-parameters match well with each other. This can be attributed
to fact that the primary CBs constitute the main component of the
induced current and that there exists only a relatively small level of
field coupling between the sub-blocks. In the second scheme, we include
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Figure 2. Comparison of the S-parameters of the meander line
calculated by using the CBFM and the direct method. Only primary
CBs were used. (a) Magnitude of S11. (b) Magnitude of S12.
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all of the secondary CBs, leading to a total of 128 CBs — almost an
order of magnitude smaller than the original number of unknowns in
the conventional MoM. The S-parameters calculated from the second
approach are compared with those obtained from the direct solution in
Fig. 3. The two sets of results are indistinguishable from each other.
This is not unexpected since we have now included all the first-order
mutual coupling effects, which is sufficient for the purpose of evaluating
the S-parameters.
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Figure 3. Comparison of S-parameters of the meander line calculated
by using the CBFM and the direct solver. Primary CBFs and all of
the secondary CBFs were used. (a) Magnitude of S11. (b) Magnitude
of S12.
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2.2. Two-stage Amplifier

For the next example, we present the simulation results of a two-stage
amplifier circuit shown in Fig. 4. The circuit is printed on a 0.254 mm
thick Alumina (εr = 9.8) substrate with a ground plane on the bottom.
This problem requires 1819 unknowns when the conventional Method
of Moments is used. To apply the CBFM, the geometry is segmented
into 7 sub-blocks as shown in Fig. 4. We first ignore all the lumped
circuit components (capacitors, resistors and active transistors) and
simulate the S-parameters of the resulting multi-port circuit over the
frequency band of 8 to 14 GHz. We plot, in Fig. 5, a few selected S-
parameters, calculated via the CBFM as well as by using the direct
method. It is evident that the S-parameters obtained from the CBFM
are in good agreement with those derived via the direct solution. We
then simulate the performance of the entire system by combining the
S-parameters of the multiport circuit with the lumped components in
a circuit simulator. The gain of the amplifier circuit thus obtained is
shown in Fig. 6. We note that the gain plot also shows a very good
agreement between the CBFM and direct solutions. For this problem,
a total of 96 CBs are needed throughout the entire frequency band.
The time required to obtain the S-parameters at the 61 frequency
points is 132 seconds when using the CBFM, in contrast to the 968
seconds required by the direct solution.

2.3. 4×1 Patch Array Antenna

Next we consider the example of a 4×1 patch array fed by microstrip
lines as shown in Fig. 7. Each of the rectangular patches is 50 mm
long and 45 mm wide. The 50 Ω feed-line has a width of 5 mm and a

Figure 4. Layout of the passive components of a two stage amplifier
circuit.
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Figure 5. Comparison of the S-parameters of the passive components
of a two-stage amplifier circuit computed by the CBFM using the
primary and the secondary CBFs with thresholding, and the direct
method. (a) Magnitude of S13. (b) Magnitude of S44.

length of 75 mm. The feed inset for the patch has a width of 5 mm
and a length of 12.5 mm, and was optimized to match a 50 Ω feed-
line. The array is placed on a substrate whose thickness is 1.6 mm and
its dielectric constant is 2.2. The center-to-center separation between
the patch elements is 90 mm. In this example, the array elements
are geometrically isolated, and each of them is identified as a separate
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Figure 6. Comparison of the gain of the entire two-stage amplifier
circuit computed by using the CBFM and the conventional method.

block when applying the CBFM. A conventional approach to modeling
this antenna requires 2.932 unknowns using rectangular rooftop basis
functions. Each of the four blocks has 733 unknowns. The array has an
expected resonant frequency slightly above 2 GHz, and the proposed
CBFM is implemented over a frequency range of 1.8 to 2.7 GHz.

Three different methods are used for generation of the CBs for
each block, with a view to comparing their performance. For the first
case, all of the secondary CBs are constructed with no thresholding
and, hence, 3 secondary CBs are generated for each block, leading to
a total of 16 CBs (including the primary ones). For the second case,
the number of secondary CBs is reduced by applying a threshold level
of 10−5 to the relative norm ‖Isecondary‖/‖Iprimary‖. The number of
secondary CBs is allowed to vary as a function of the frequency. Note
that a larger number of secondary CBs are needed near the resonance
frequency, owing to stronger mutual couplings between the elements.
Finally, we also generate the secondary CBs based on the distance
criterion between the blocks, by retaining only the secondary CBs
that are associated with the surrounding blocks in all directions. The
resulting number of the CBs is now 10 and it remains unchanged over
the frequency band.

For the generation of the CBs and reduced matrices, we take
advantage of identical block geometry and spacing between the array
elements in order to save computation time. For the primary CBs,
we can copy the solution of the first block and re-use them for the
other blocks. For the secondary CBs and reduced matrices, we carry
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out the LU factorization only once for the first block and use it later,
repeatedly, to avoid redundant computation. The number of the CBs
is plotted in Fig. 8 as a function of the frequency for the three cases.

The current coefficients obtained for these cases are compared to
those obtained from the direct solution. The error for the current

coefficients is defined as eI ≡
√∑

n
|ICBFMn − Idirectn |2

/√∑
n
|Idirectn |2.

This error norm and the S-parameters for the three cases are compared
in Figs. 9 and 10, respectively. We observe that except for minor
differences in the S31 and S41 parameters at off-resonance frequencies
— where their levels are very small (below −50 dB) — all of the S-
parameters match well with those predicted by the direct solution.
The radiation patterns for the third case, which utilized a distance
threshold, are compared to those of the direct solution in Fig. 11.

Figure 7. Geometry of a 4×1 patch array fed by microstrip lines.
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Figure 8. The number of the CBFs as functions of the frequency for
the 4×1 patch array fed by microstrip lines.

Figure 9. Relative error in the current coefficients for the 4×1 patch
array fed by microstrip lines (port 1 active).

For this example, the direct solution time for each frequency requires
2.835 s on a Pentium III PC with a 550 MHz processor and 1 GByte
RAM, whereas it is just 15 s using the proposed CBFM with a distance
threshold. Obviously, these times would reduce if we use a faster
machine, though the relative advantage of CBFM over the conventional
MoM would still be retained equally well.
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3. CBFM FOR SCATTERING PROBLEMS

As we saw in the last section, the basic steps in CBFM entail
the generation of primary and secondary basis functions for the
representation of the induced currents and the solution of the reduced
matrix to derive the desired unknown currents. Although we could
follow exactly the same basic procedure for the scattering problems as

(b)

(a)

Figure 10. Comparison of the S-parameters for the 4×1 patch array
fed by microstrip lines: (a) magnitudes of S11 and S21; (b) magnitudes
of S31 and S41.
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(a)

(b)

Figure 11. Comparison of the radiation patterns at 2.25 GHz for
the 4×1 patch array fed by microstrip lines: (a) θ = 0◦ cut; and (b)
φ = 90◦ cut.

we did for the MMIC, we can render the formulation even more efficient
for the latter case by bypassing the generation of the secondaries, and
using only the primaries instead. Since the scattering problems are
typically solved for multiple incident angles, we derive the primaries
up front by using plane waves incident from the entire range of incident
angles in θ and φ. Later, we use the same set of primaries, and hence
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the same reduced matrix, to derive the solutions for different incident
angles by simply changing the RHS of the reduced matrix equation.

Plane Wave Spectrum on Block

Individual Block

Figure 12. Spectrum of plane waves incident on a single block.

As before, we begin by dividing the geometry of the object to
be analyzed into blocks, for instance M in number. Next, we derive
the primary characteristic basis functions by illuminating the isolated
blocks with plane waves, say NPWS in number (see Fig. 12), which
impinge upon the object at intervals of θ and φ, say every 20 degrees,
for two orthogonal polarizations. We can be flexible in choosing the
number of these incident waves, and can also include a part of the
invisible range of the spectrum — if desired — since the SVD will
downselect the number of basis functions to remove the redundancy
and will retain only as many as needed to represent the unknown
current with a certain degree of accuracy, determined by the level of
the SVD threshold we set. In addition, the decomposition of the object
into blocks is also somewhat arbitrary, and there is no limitation on
the number and size of the blocks. The upper size is bounded by
the available RAM needed for the unknowns in the self-blocks that are
solved to generate the CBs. Typically, the block size ranges from a few
hundred to a few thousand sub-domain type of unknowns. As pointed
out earlier, the advantages of following this procedure is that it enables
us to solve for multiple excitations using the same reduced matrix with
a significant time-saving, since only the RHS of the reduced system
needs to be computed for a new excitation.

For the sake of illustration, we consider a thin plate which is
divided into 25 blocks, shown in Fig. 13. Although, in general, the
blocks can have different sizes, we assume that they have approximately
the same dimension Nb in terms of number of unknowns.

Again, as before, all blocks are extended by a fixed amount ∆
(typically 0.2λ to 0.4λ) in all directions when computing the CBs,
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Z

Figure 13. Geometry of a PEC plate divided into 25 blocks. Extended
blocks are represented in dashed lines.

except when the boundaries are free edges, to avoid a singular behavior
in the current distribution within the original block introduced by
the truncation that creates fictitious edges. Each of the M extended
blocks are represented by the Nbe × Nbe self-impedance matrix Zii,
where i = 1, 2, . . . , M , and Nbe is the number of unknowns in the
extended blocks. The matrix Zii is extracted from the original MoM
matrix by using a matrix segmentation procedure. The concept of
MoM matrix segmentation is illustrated in Fig. 14, where the extended
and individual blocks are shown by dotted and solid lines, respectively.
The self-impedance matrix is then used to generate the primary CBs
induced on a given block by exciting the block with a set of windowed
plane waves, impinging upon the object with different incident angles
(θ, φ), and with two linear different polarizations. The windowing
is used to reduce the effect of truncation employed in the process of
domain decomposition.

Let Nθ and Nφ indicate the number of samples in elevation and
azimuth (θ and φ) respectively. This results in a total of NPWS =
NφNθ plane wave excitations, which are arranged in a matrix VPWS

ii ,
whose size is Nβε ·NφNθ. After exciting the block, NφNθ primary CBs
are determined for each block by solving the following linear system of
equations:

Zext
ii · JCBFsii = VPWS

ii , (10)

where Jii is an Nbe × NφNθ matrix, representing of the CBs, as yet
untruncated, for block i (i = 1, 2, . . . , M). Next, the above CBs are
truncated by discarding the current weight coefficients belonging to
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Zext

Zext

Figure 14. MoM matrix segmentation procedure. Individual and
extended blocks are shown in solid and dotted line, respectively.

the extension region, so that the resulting CBs are now confined within
the original block, and their size is now reduced to Nb × NφNθ. Even
though the size N of the complete MoM matrix may be very large if
the original structure is large in terms of the wavelength, the dimension
of each block can still be kept to a manageable level and, hence, the
linear system (10) can be solved by using an LU decomposition. This
factorization is highly desirable since we have to solve (10) NφNθ times,
once for each incident plane wave, to compute the complete set of
primary basis functions.

Typically, the number of plane waves we use to generate the CBs
would exceed the number of degrees of freedom (DoFs) associated
with the block, and it is desirable to remove the redundancy in the
basis functions by applying a Singular Value Decomposition (SVD)
procedure, and thresholding Jii. This is done by expressing the latter
as:

JCBFsii = UDVt, i = 1, 2, . . . , M, (11)

where U is an Nbe × NφNθ orthogonal matrix, V is an NφNθ × Nbe

orthogonal matrix, and D is an NφNθ × NφNθ diagonal matrix. The
elements of the diagonal matrix are the singular values of Jii. Next,
we construct a new set of basis functions that are linear combinations
of the original CBs via the SVD approach, and only those with
relative singular values above a certain threshold are retained. The
threshold is chosen by normalizing the singular values with respect to
the maximum. We then discard those normalized values (set them
equal to zero) which fall below the threshold, typically chosen to be
10−3, in accordance with the level of accuracy we desire. This filtering
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process of eliminating the post-SVD CBs is important to reduce their
redundancy and, consequently, improve the condition number of the
reduced matrix. For the sake of simplicity, we assume that all of the
blocks contain the same number K of CBs after SVD, where K is
always smaller than NφNθ.

It is worthwhile mentioning that the “new” primaries have all
the desired characteristics of wavelets; however, in contrast to the
wavelets, they are tailored to the geometry of the object. Thus, unlike
the wavelets, the post-SVD CBs can be used for an arbitrary three-
dimensional object, without any restrictions.

Following the procedure described above, we construct KM
primary basis functions, K for each of the M blocks. The solution
to the entire problem is then expressed as a linear combination of the
CBs as follows:

J =
K∑
k=1

α
(1)
k




[
J(1)
k

]
[0]
...

[0]


 +

K∑
k=1

α
(2)
k




[0][
J(2)
k

]
...

[0]




+ . . . +
K∑
k=1

α
(M)
k




[0]
[0]
...[

J(M)
k

]


 (12)

where α
(m)
k , for m = 1, 2, . . . , M , are the unknown expansion

coefficients to be determined by using the reduced matrix, and J(m)
k is

the kth CB of block m, for k = 1, 2, . . . K. The final step is to generate
the reduced KM × KM MoM matrix for the KM unknown complex
coefficients αk by performing the inner product on Eq. (1) once J has
been expressed as in (12).

The reduced coefficient matrix has the form:

[Z]KM×KM =




〈
Jt

11Z11J11

〉 〈
Jt

11Z12J22

〉
. . .

〈
Jt

11Z1MJMM

〉
〈
Jt

22Z21J11

〉 〈
Jt

22Z22J22

〉
. . .

〈
Jt

22Z1MJMM

〉
...

...
. . .

...〈
Jt

MMZM1J11

〉 〈
Jt

MMZM2J22

〉
. . .

〈
Jt

MMZMMJMM

〉


 , (13)

where Zmn is the coupling matrix linking the original (unextended)
blocks m and n; Zii is the self-coupling matrix of these blocks, and Jii
is the truncated-CBs matrix of block i after the SVD. Note that each
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of the inner product entries in the above matrix results in a sub-matrix
of size K ×K, and the MoM matrix reduction involves MK2 complex
matrix-vector products. The time advantage of reducing number of
primaries, via the SVD approach, is shown in Table 1, which presents
the time performance results for different SVD thresholds.

After performing the necessary operations indicated in (13), the
original MoM matrix in (10) is reduced to a smaller one. The
induced surface current distribution for the entire structure can now
be obtained by substituting the values of α in (12). Once the current
density distribution has been derived, the electrical parameters such
as RCS, scattered field, etc., can be computed in the usual manner.

The most computationally intensive part of the proposed method
is associated with the generation of the primary CBs and the matrix
reduction procedure. However, the latter task can be speeded up by
observing that the following relationship holds:〈

JtmmZmnJnn
〉

=
〈
JtmmZmnJnn

〉t =
〈
JtnnZnmJmm

〉
, (14)

since Zt
mn = Znm. Taking advantage of this, the complexity in

computing (13) can be reduced by a factor of two, since we need only
generate the upper or lower triangular parts of the reduced matrix.

Generation of CBs is one of the time-consuming and memory-
demanding tasks. It requires the filling the self-impedance matrix Zii

for the extended block and its factorization in an LU form. Since the
CBs are independent of the incident angles, this factorization needs to
be performed only once, and the resulting primaries can be reused for
multiple incident angle directions. This implies that the final reduced
matrix (5) is independent of the excitation, and this fact enables us
to solve a problem involving multiple excitations by only solving the
reduced system for the new r.h.s. (excitation). Moreover, we can store
the reduced matrix on the hard disk and reuse it whenever we need
to analyze a new excitation. Furthermore, if the geometry within a
particular block is modified, only the CBs belonging to this block need
to be recomputed.

The technique described above realizes a saving in the CPU
running time and RAM requirement with respect to a conventional
MoM technique. The memory requirement is now proportional to
the square of the self impedance matrix of the extended block, and
this is different from that in the conventional MoM where the storage
requirement is related to the square of the dimension of the entire
impedance matrix. Moreover, we realize a consistent saving in the
execution time, which reduces to O(M(Nbe)3) instead of O(N3).

Next, we present below some numerical examples to illustrate the
application of CBFM to scattering problems.
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3.1. Plane Wave Scattering by a 4λ Radius PEC Sphere

To validate the accuracy of the method we will compare the CBFM
solution with the analytical one for a PEC sphere of radius 4λ, at a
frequency of 300 MHz. The object is excited by a normally incident
(θ = 0◦, φ = 0◦) theta-polarized plane wave. The discretization is
carried out by using triangular patches with a mean edge length of 0.1λ,
resulting in a problem with 85155 unknowns. The geometry is divided
into 16 blocks with an average size of 8000 unknowns. Each block is
extended by ∆ = 0.4λ in all directions, and analyzed for a spectrum
of plane waves incident from 0◦ ≤ θ < 180◦ and 0◦ ≤ φ < 360◦, with
Nθ = Nφ = 20. This results in a total of 800 CBs but, after SVD, only
310 are retained on each block. The 85155×85155 MoM matrix is then
reduced to only 4925×4925, which is solved directly.

At this point we mention that the construction of the CBs can be
speeded up, with little loss of accuracy, by using a sparsified version of
the self-blocks — that retain only the near-region interactions — rather
than working with the full versions of these blocks. It is possible to
work with the sparsified matrices, because they are used to generate
only the basis functions and not yet the solution. Thus, so long as
the basis functions span the solution space, they need not strictly be
solutions of the original self-blocks. To validate this concept, we have
analyzed the problem at hand by using both dense and sparse matrix
approaches. The use of the latter allows us to reduce the computational
cost by a factor of approximately 4. The bi-static E- and H-plane
RCS results are presented in Figs. 15(a) and 15(b), respectively, using
the dense and sparse approaches, as well as the MIE series, and they
show an excellent agreement for all scattering directions, including the
grazing angles.

3.2. Parallel CBFM Applied to the Scattering of a 4λ PEC
Cube

One of the important attributes of the CBFM is that the algorithm
is easily parallelizable. Although we do not present the details of the
parallelization algorithm in this review work, we outline just the basic
steps here. First, we recognize that the generation of the CBs can
proceed independently, on separate processors, since these processors
do not need to communicate with each other at this point. Once the
CBs have been generated, the next step is to construct the reduced
matrix by using the Galerkin approach, which entails matrix-vector
multiplications involving the CBs, and the self- as well as off-block
matrices. A bulk of these processes can also be readily parallelized,
because, at no point we need to deal with the entire MoM matrix
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Figure 15. RCS of 4λ radius PEC sphere at 0.3 GHz: (a) E-plane;
(b) H-plane.

concurrently. Fig. 16 plots the performance of the parallelized CBMoM
code for a 4λ cube problem, while Fig. 17 compares the results obtained
by using the parallel and serial codes for the sake of validation. We see
from Fig. 16 that the CBMoM code scales well, and the accompanying
Fig. 17 confirms that there is no loss in accuracy encountered in the
process of parallelization.
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4. SOME RECENT DEVELOPMENTS IN CBFM

The basic CBFM has been embellished in recent years in several
ways, and we will touch on them briefly in this section. First, as
has been mentioned before, it is necessary to extend the block by ∆
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to mitigate the effects of truncation introduced during the process of
domain decomposition of the original object. Recently [16], it has been
demonstrated that by stretching the RWG (or rooftop) basis functions
near the edges, it is possible to push the edge effects further out, so
that their presence inside the block is minimal. The advantage of using
this approach is that the number of unknowns to be solved for in the
self-blocks is not increased, as it is when the block is extended by ∆.
For smooth bodies, without free edges, there is even a simpler approach
that works well for the generation of the CBs. In this method [13], we
simply use the Physical Optics (PO) solutions for different plane wave
incident fields as the primaries, thereby eliminating the artificial edge
effects entirely in the process. The method has also been extended
to handle cases where the scatter has free edges, the edge effects are
therefore physical, and must be accounted for to generate accurate
solutions.

Next, we turn to one of the computationally intensive steps
in CBFM, namely the matrix-vector multiplication, required in
the process of generating the reduced matrix. We can speed
up this step by several ways, namely by: (i) using the FMM
approach [14]; (ii) implementing the Adaptive Cross Approximation
(ACA) algorithm [15]; or, (iii) employing a newly-developed
interpolation approach [17]. We should mention that neither the ACA,
nor the interpolation approaches are “kernel-dependent,” and, hence,
may be preferable to the FMM for general situations.

Yet another time-saving technique [18] entails the use of multi-
level SVD. In this method, we work with a partial range of incident
angles at a time, rather than with the entire range of 360 degrees. This,
in turn, enables us to work with smaller size matrices at a time, and
thereby results in time-saving when computing the SVDs.

Next, we mention the application of CBFM to locally-modified
problems that are handled very efficiently by using this method. This
is because we specify that the region that is to be modified locally is
to be contained entirely within a single block, say block-1. In this way,
we can bypass the CB generation anew in the other blocks when the
geometry of block-1 is altered, and derive the CBs in the other blocks
only once and for all. We can also limit the generation of the entries for
the mutual interactions between the unmodified blocks in the reduced
matrix to only once, since they do not change when block-1 is modified.
This is a unique feature of the CBFM, not available in the iterative
techniques for solving large problems.

CBFM has also been used [19] for solving problems involving
scatterers with apertures. The aperture-type problems are handled
by using a two-step procedure. First, we solve the aperture field by
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localizing the problem, and derive the aperture field distribution. Next,
we close the aperture with equivalent currents backed by a PEC. This
move enables us to replace the original problem, that of an aperture in
an object, with a closed-body problem that has an equivalent magnetic
current located on its surface where the aperture was located in the
original geometry. To solve this equivalent scattering problem, we
need only to modify the RHS, in a way such that it now comprises two
sources — the first one being the original plane wave source, while the
other is the field radiated by the equivalent current in free space. The
CBFM approach itself remains essentially unchanged, except for the
fact that now we not only use the plane waves, but also the equivalent
current sources to construct the CBs.

Finally, we mention that the CBFM is currently can be generalized
to handle dielectric bodies, as well as dielectric-coated PEC objects,
by following the same general procedure as outlined above.

5. CONCLUSION AND FUTURE WORK

In this paper we have briefly reviewed the basic concepts of the
Characteristic Basis Function Method and have demonstrated how
it can be applied to a variety of problems — both guided-wave
and scattering types. Although the general concepts of domain
decomposition (DD) have been well known, previous methods relied
heavily upon iteration to solve large problems, often using a Jacobi-
type algorithm, which is often fraught with convergence problems.
The CBFM presents a systematic approach to solving large problems,
without the use of iteration, by deriving a reduced matrix whose rank is
typically an order of magnitude smaller than that of the original MoM
matrix of the scatterer. (However, thought not discussed here, we point
out that further reduction can be achieved by using multilevel CBFM).
This tactic enables us to solve multiple RHS much more efficiently
than when using iterative approaches. Other benefits include efficient
solution of locally-modified problems, and frequency sweeping by re-
using the basis functions that have been generated for the highest
frequency in the range of interest.

We close with the remark that CBFM is evolving continuously,
and techniques for further improving the numerical efficiency of
the technique are constantly being researched. Also, recently the
underlying concept of CBFM has been successfully incorporated in
FEM [20], as well as in FDTD [21, 22], with appropriate modifications.
For convenience, we include additional references [23–52] that are
relevant to CBFM that the reader might find useful.
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