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Abstract—In this work a new method based on the adaptive
neuro-fuzzy inference system (ANFIS) was successfully introduced to
determine the characteristic parameters, effective permittivities and
characteristic impedances, of conventional coplanar waveguides. The
ANFIS has the advantages of expert knowledge of fuzzy inference
system and learning capability of neural networks. A hybrid-learning
algorithm, which combines least-square method and backpropagation
algorithm, is used to identify the parameters of ANFIS. There are very
good agreement between the results of ANFIS models, experimental
works, conformal mapping technique, spectral domain approach and a
commercial electromagnetic simulator, MMICTL.

1. INTRODUCTION

Advances in monolithic microwave integrated circuit (MMIC)
technology and progress in computer-aided design (CAD) tools have
led the researchers to develop CAD models for the analysis and
synthesis of the generic transmission lines. CPWs are ideally suited
for modern microwave integrated circuit (MIC) as well as MMIC
applications and high-speed integrated circuits. They have been the
most studied transmission lines because of their planar structures [1–
14] since first introduced by Wen [5]. The principal of a CPW
is that the locations of signal grounds are on the same substrate
surface as the signal line. This eliminates the need for via holes and
thus simplifies the fabrication process. CPW circuits can be made
denser than conventional microstrip circuits and have been employed
in many practical RF circuit designs and also as a feed for excitation of
microstrip antennas. These, and several other advantages, make CPWs
ideally suited for MIC as well as MMIC applications. They are often
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used in designing power dividers, balanced mixers, couplers and filters.
The various CPWs have been analyzed recently by many investigators
using quasi-static methods [1–6] or full-wave methods [7–14]. While
full-wave methods are the most accurate tools for obtaining the
transmission line characteristics and analytically extensive, quasi-static
methods are quite simple but do not threaten the dispersive nature of
generic transmission lines. Consequently, the approximation of the
quasi-static methods becomes worse as the transmission line becomes
dispersive. However, as in the dispersion analysis of transmission
lines presented by Knorr and Kuchler [10], CPW parameters are
only slightly sensitive to variations of the frequency for CPWs with
dimensions not exceeding the substrate thickness for nearly the whole
microwave region. That is why quasi-static methods provide simulation
accuracy comparable with full-wave methods for frequency up to
20 GHz [10].

As mentioned above, the methods used to obtain the characteristic
parameters of CPWs have some drawbacks. Full-wave methods
mainly take tremendous computational efforts, can not still make a
practical circuit design feasible within a reasonable period of time,
and require strong mathematical background knowledge and time-
consuming numerical calculations. So they are not very attractive for
the interactive CAD models. On the other hand, closed-form design
equations obtained by conformal mapping technique (CMT), which
is the simplest and most often used quasi-static method, consist of
complete elliptic integrals. For this reason, the approximate formulas
are proposed in the calculation of elliptic integrals [15]. CMT and
other quasi-static methods require also strong background knowledge.

In this work, an alternative method based on the ANFIS [16–20]
is presented to calculate the characteristic parameters, the effective
permittivities and characteristic impedances, of conventional CPWs
(CCPWs). The ANFIS is a fuzzy inference system (FIS) implemented
in the framework of an adaptive fuzzy neural network. It combines
the benefits of artificial neural networks (ANNs) and FISs in a single
model. Fast and accurate learning, excellent explanation facilities
in the form of semantically meaningful fuzzy rules, the ability to
accommodate both data and existing expert knowledge about the
problem, and good generalization capability features have made neuro-
fuzzy systems popular in the last few years [21, 22]. In [21], ANFIS
was successfully introduced by Guney et al. to compute the input
resistance of rectangular microstrip antennas (MSAs). In [22], Rahouyi
et al. have been successfully applied this technique to a microwave
tunable phase shifter. This modeling technique is relatively new to the
microwave engineering. So, in this work the ANFIS modeling technique
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is introduced to determine the characteristic parameters of CCPWs.
In the following sections, the process of the determination of the
characteristic parameters of CCPWs and ANFIS are described briefly,
and then the application of ANFIS to the calculation of characteristic
parameters of CCPWs is explained.

2. DETERMINATION OF CHARACTERISTIC
PARAMETERS OF CPWs

The cross-section of a CCPW is depicted in Figure 1. In this
figure, the central strip width is represented by S, the distance of
separation between two semi-infinite ground planes is illustrated by
d, and consequently the slot width is given by w. On the other
hand, h indicates the thickness of the dielectric material with relative
permittivity εr.
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h

t

Figure 1. Cross-section of a CCPW.

In quasi-static analysis, all conductor materials assumed that
perfectly conducting and the thickness of the conductors (t) are
ignored. The characteristic parameters of CCPWs can be determined
when the total capacitance and air capacitance per unit length of
CCPWs are known. The total capacitance of CCPW is the sum of
air and partial capacitances. Using the quasi-static approximations,
effective permittivity (εeff ) and characteristic impedance (Z0) are:

εeff =
C

C0
(1)

Z0 =
1

v0 · C0 · √εeff
(2)

where v0 is the speed of light in free space, C is the total capacitance
of the transmission line, C0 is the air capacitance of the corresponding
line when all dielectrics are replaced by air. Therefore, in order to
obtain the characteristic parameters of CCPW one only has to find
the capacitances of C and C0. Thus, the total capacitance of the
transmission line is

C = C0 + C1 (3)
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where C1 is partial capacitance. After a sequence of several conformal
mapping steps applied to the original structure of a CCPW, the air
and partial capacitances C0 and C1 are obtained as described in [3];

C0 = 4 · ε0 ·
K(k0)
K(k′0)

(4)

C1 = 2 · (εr − 1) · ε0 ·
K(k1)
K(k′1)

(5)

where K(ki) and K(k′i) are the complete elliptic integrals of the first
kind with the modulus

k0 =
S

S + 2 · w (6)

k1 =
sinh

(
π·S
4·h

)

sinh
(

π·d
4·h

) (7)

and the complementary modulus

k′i =
√

1 − k2
i (8)

The effective permittivity of CCPW can be determined by
substituting Eqs. (4)–(8) into Eq. (1) as

εeff = 1 + q1 · (εr − 1) (9)

where q1 is partial filling factor;

q1 =
1
2
K(k1)
K(k′1)

· K(k′0)
K(k0)

(10)

and the characteristic impedance (Z0) can be then determined by
substituting Eqs. (4) and (9) into Eq. (2) as

Z0 =
30π
√
εeff

· K(k′0)
K(k0)

(11)

Finally, εeff and Z0 are achieved for CCPWs. These closed-form
expressions obtained by CMT consist of complete elliptic integrals of
the first kind. Approximate formulas were proposed for calculation of
the elliptic integrals [15].

In this work, effective permittivities and characteristic impedances
of CCPWs are easily and simply determined by ANFIS models. The
inputs to ANFIS models are the relative permittivity of the dielectric
material, and two different geometrical dimensions, d/h and S/d, of
CCPWs. The output of the model is εeff or Z0 of CCPWs.
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3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

ANFIS is a FIS implemented in the framework of an adaptive
fuzzy neural network, and is a very powerful approach for building
complex and nonlinear relationship between a set of input and output
data [16, 17]. It combines the explicit knowledge representation of
FIS with the learning power of ANNs. Usually, the transformation
of human knowledge into a fuzzy system (in the form of rules and
membership functions) does not give exactly the target response. So,
the optimum values of the FIS parameters should be found. The
main objective of the ANFIS is to determine the optimum values of
the equivalent FIS parameters by applying a learning algorithm using
input-output data sets. The parameter optimization is done in such a
way that the error between target and actual output is minimized.
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Figure 2. Architecture of ANFIS.

ANFIS architecture consists of fuzzy layer, product layer,
normalized layer, de-fuzzy layer, and summation layer. A typical
ANFIS architecture is shown in Figure 2, in which a circle indicates a
fixed node, whereas a square indicates an adaptive node. For simplicity,
we assume that the FIS under consideration has two inputs x and y
and one output z. The ANFIS used in this work implements a first-
order Sugeno fuzzy model. Among many FIS models, the Sugeno fuzzy
model is the most widely applied one for its high interpretability and
computational efficiency, and built-in optimal and adaptive techniques.
For a first-order Sugeno fuzzy model, a common rule set with two fuzzy
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if-then rules can be expressed as

Rule 1: If x is A1 and y is B1, then z1 = p1x+ q1y + r1 (12)
Rule 2: If x is A2 and y is B2, then z2 = p2x+ q2y + r2 (13)

where Ai and Bi are the fuzzy sets in the antecedent, and pi, qi, and
ri are the design parameters that are determined during the training
process. As in Figure 2, the ANFIS consists of five layers:

Layer 1: Every node i in this layer is an adaptive node with a
node function:

Q1
i = µAi(x), i = 1, 2 (14)

Q1
i = µBi−2(y), i = 3, 4 (15)

where x (or y) is the input of node i. µAi(x) and µBi−2(y) can adopt
any fuzzy membership function (MF). In general, the types of MFs are
determined by trial-and-error method and/or operator’s experience.
After this determination, the parameters of MFs and the number of
fuzzy rules can be optimally obtained by using optimization techniques.
In this paper, the following generalized bell and Gaussian MFs are
used.

bell(x; ai, bi, ci) =
1

1 +
∣∣∣∣
x− ci
ai

∣∣∣∣
2bi

(16)

Gaussian (x; c, σ) = e−
1
2
·(x−c

σ )2

(17)

where {ai, bi, ci} and {c, σ} are the parameter set that changes the
shapes of the MFs. Parameters in this layer are named as the premise
parameters.

Layer 2: Every node in this layer is a fixed node labeled Π, which
multiplies the incoming signals and outputs the product:

Q2
i = wi = µAi(x) · µBi(y), i = 1, 2 (18)

Each node output represents the firing strength of a rule.
Layer 3: Every node in this layer is a fixed node labeled N . The

ith node calculates the ratio of the ith rule’s firing strength to the sum
of all rules’ firing strengths:

Q3
i = w̄i =

wi

w1 + w2
, i = 1, 2 (19)

where w̄i is referred to as the normalized firing strengths.
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Layer 4: Every node i in this layer is an adaptive node with a
node function:

Q4
i = w̄i · zi = w̄i · (pix+ qiy + ri) , i = 1, 2 (20)

where w̄i is the output of layer 3, and {pi, qi, ri} is the parameter set.
Parameters in this layer are referred to as the consequent parameters.

Layer 5: The single node in this layer is a fixed node labeled Σ,
which computes the overall output as the summation of all incoming
signals:

Q5
1 =

2∑
i=1

w̄i · zi =
w1 · z1 + w2 · z2

w1 + w2
(21)

It can be seen from the ANFIS architecture that when the values
of premise parameters are fixed, the overall output can be expressed
as a linear combination of the consequent parameters:

z = (w̄1 x) p1 + (w̄1y) q1 + (w̄1) r1 + (w̄2x) p2 + (w̄2y) q2 + (w̄2) r2 (22)

The optimal values of the consequent parameters can be found by
using the least-mean-square. When the premise parameters are not
fixed, the search space becomes larger and the convergence of training
becomes slower. The hybrid learning (HL) algorithm combining the
least-mean-square and backpropagation (BP) algorithm can be used
to solve this problem. This algorithm converges much faster since it
reduces the dimension of the search space of the BP algorithm. During
the learning process, premise parameters in layer 1 and consequent
parameters in layer 4 are tuned until the desired response of FIS is
achieved.

The HL algorithm has a two-step process. First, while holding
the premise parameters fixed, the functional signals are propagated
forward to layer 4, where the consequent parameters are identified by
the least-mean-square. Then, the consequent parameters are held fixed
while the error signals, the derivative of the error measure with respect
to each node output, are propagated from the output end to the input
end, and the premise parameters are updated by the standard BP
algorithm.

4. APPLICATION TO THE PROBLEM

ANFIS has been adapted for the calculation of the effective
permittivity and characteristic impedance of CCPWs when the values
of relative permittivity εr, the ratio of S/d, and the ratio of d/h are
given. For the ANFIS, the inputs are εr, d/h and S/d, and the output
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is the effective permittivity or characteristic impedance of CCPWs.
5670 data sets have been used to train the ANFIS models. The ranges
of training data sets are among 1 ≤ εr ≤ 21, 0.1 ≤ S/d ≤ 0.9 and
0.38 ≤ d/h ≤ 65. 2941 data sets, which are completely different from
training data set, were used for testing the models. The ANFIS model
used in calculating the characteristic parameters of CCPWs is shown
in Figure 3. Training an ANFIS with the use of the HL algorithm to
compute the characteristic parameters of CCPWs involves presenting
it sequentially with different sets (εr, d/h and S/d) and corresponding
characteristic parameters (εeff or Z0). Differences between the target
outputs and the actual outputs of the ANFIS are evaluated by the HL
algorithm. The adaptation is carried out after the presentation of each
set (εr, d/h and S/d) until the calculation accuracy of the ANFIS is
deemed satisfactory according to some criterion (for example, when
the error between target and the actual output for all the training set
falls below a given threshold) or when the maximum allowable number
of epochs is reached. The training and test data sets used in this
article have been obtained from previous numerical methods [3, 14],
simulation [23] and experimental works [24–26] results. The number of
epochs used for training was 150. The HL algorithm can dramatically
reduce the required training epochs because the training errors are
decoupled and treated separately.

εr

εeffd/h

Z0

ANFIS
MODEL
for εeff

ANFIS
MODEL

for Z0

S/d

Figure 3. The structure of proposed ANFIS model.

The input and output data sets are scaled between 0 and 1 before
training. The membership functions (MFs) for the input variables
εr, d/h and S/d are the Gaussian, generalized bell, and Gaussian,
respectively. The number of rules is then 24 (3 × 2 × 4 = 24). The
types of MFs for the input variables are selected as the generalized bell.
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It is clear from Eqs. (16) and (17) that the Gaussian and generalized
bell MFs are specified by two and three parameters, respectively.
Therefore, ANFIS used here contains a total of 116 fitting parameters,
of which 20 (3 × 2 + 2 × 3 + 4 × 2 = 20) are the premise parameters
and 96 (4 × 24 = 96) are the consequent parameters.

It is well known that ANFIS has one output. For this reason,
in this paper two separate ANFISs with identical structure are used
for calculating the effective permittivity and characteristic impedance.
Although the number of inputs, input values, the number of MFs, and
the types of MFs are the same for each ANFIS, the values of premise
and consequent parameters for each ANFIS are different.

5. RESULTS AND CONCLUSION

The characteristic impedance test results obtained by using ANFIS
model are compared with the results of the CMT [3] and the spectral
domain approach (SDA) [14] in Table 1 for CCPWs with different
geometrical dimensions and different dielectric materials. In order
to make a further comparison, the characteristic impedances results
obtained by a commercial simulator MMICTL [23] are also given in
this table.

Table 1. Comparison of characteristic impedances Z0 (Ω) obtained
by using ANFIS model, CMT, SDA, and MMICTL for CCPWs (h =
200 µm).

Methods 

Parameters

Presented
ANFIS model  

CMT [3]  
SDA [14]  

(f = 1.0 GHz) 
MMICTL [23] 
 (f = 1.0 GHz) 

S/d d/h εr = 20 εr = 12.9 εr = 2.25 εr = 20 εr = 12.9 εr = 2.25 εr = 20 εr = 12.9 εr = 2.25 εr = 20 εr = 12.9εr = 2.25

0.5 57.20 68.45 140.35 54.49 67.95 140.75 55.76 68.28 141.4 55.23 67.86 140.01

1.7 59.16 71.86 143.64 57.52 70.29 142.86 57.52 70.27 142.97 57.43 70.38 142.25

2.3 60.28 73.59 145.18 59.00 72.13 144.83 59.02 71.95 143.95 58.90 72.04 143.28
0.2

3.5 62.75 77.11 148.06 62.89 76.44 147.85 62.6 75.93 146.3 62.44 75.98 145.65

0.5 41.70 50.79 106.44 42.04 51.47 106.57 42.22 51.69 106.99 41.88 51.46 106.11

1.7 44.61 54.42 109.17 43.88 53.60 108.47 43.86 53.56 108.32 43.86 53.73 108.1 

2.3 46.04 56.15 110.42 45.28 55.21 109.82 45.2 55.05 109.34 45.14 55.17 108.95
0.4

3.5 48.82 59.48 112.76 48.46 58.82 112.62 48.24 58.44 111.41 48.12 58.49 110.94

0.5 31.88 39.40 84.05 33.32 40.8 84.45 33.48 40.99 84.83 33.23 40.82 84.15 

1.7 34.86 42.69 86.23 34.87 42.59 86.04 34.86 42.56 85.84 34.94 42.79 85.95 

2.3 36.24 44.21 87.24 35.99 43.87 87.12 35.93 43.76 86.68 35.93 43.9 86.54 
0.6

3.5 38.81 47.07 89.09 38.41 46.63 89.24 38.26 46.36 88.38 38.18 46.42 88.02 

0.5 25.41 31.17 65.05 25.68 31.45 65.09 25.86 31.66 65.51 25.68 31.56 65.06 

1.7 26.96 32.99 66.40 26.81 32.75 66.03 26.8 32.71 66.03 27.07 33.16 66.69 0.8

2.3 27.70 33.84 67.03 27.56 33.61 66.59 27.53 33.54 66.59 27.66 33.82 66.89 

CPW
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The full-wave simulator MMICTL uses a very general, rigorous
numerical method, spectral operator expansion (SOE) technique
(a fast, enhanced spectral domain method) to generate strip
characteristics.

The average percentage errors (APEs) of the ANFIS model with
respect to the other theoretical [3, 14] and electromagnetic simulator
results [23] are listed in Table 2 for the characteristic impedances of
CCPWs. It can be clearly seen from these tables that the results of
ANFIS models are in very good agreement with the results of CMT [3],
SDA [14] and MMICTL [23].

Table 2. The APEs of the ANFIS model with respect to the CMT,
SDA, and MMICTL for the characteristic impedances of CCPWs.

Methods

CCPWs

0.2 < S/d < 0.8 and 0.5 < d/h < 3.5

APEs

εr = 20 εr = 12.9 εr = 2.25

CMT [3] 1.08 1.12 0.67

MMICTL [23] 1.55 1.35 0.77

SDA [14] 1.05 1.11 0.69

The effective permittivity and characteristic impedance test
results of ANFIS models for the CCPWs with different geometrical
dimensions and different dielectric materials are compared with the
results of CMT in Figure 4 and Figure 5, respectively. As it can
be seen from these figures, the results of ANFIS models for both
effective permittivity and characteristic impedance are in very good
agreement with the results of CMT. This very good agreement confirms
the validity of ANFIS models proposed in this work.

In order to further validate the presented method, the
characteristic impedance test results of ANFIS model are compared
with the MMICTL [23] and measured [24–26] results in Figure 5.
It is clear from this figure that the ANFIS results agree quite well
with the results of measured works and also with the results of
MMICTL. There are small differences between the ANFIS model
results and the experimental results. These differences are expected
because it is assumed that the ground planes extend to infinity and
the conductor thicknesses are zero for the ANFIS models, however,
the CPW structures of the experimental works [24–26] have finite
size ground planes in the range of 1270.0µm and 3505.2µm, and the



Progress In Electromagnetics Research B, Vol. 6, 2008 103

3

3.5

4

4.5

5

5.5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7

S/d

εe
ff

 

CMT [3]

ANFIS

(a) S = 1270 µm, h = 1270 µm, and εr = 9.2 

3

3.5

4

4.5

5

5.5

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S/d

εe
ff

CMT [3]
ANFIS

(b) d = 1000 µm, h = 640 µm, and εr = 9.7

3

3.5

4

4.5

5

5.5

6

0.2 0.3 0.4 0.5 0.6

S/d

εe
ff

CMT [3]
ANFIS

(c) S = 508 µm, h = 635 µm, and εr = 9.6 

Figure 4. Comparison of the calculated effective permittivity values
obtained by using ANFIS and CMT [3].
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Figure 5. Comparison of the measured and calculated characteristic
impedances obtained by using ANFIS, CMT [3], and MMICTL [23] for
CCPWs.
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conductor thicknesses in the range of 1.8µm and 15µm.
As a consequence, the ANFIS models trained by the HL algorithm

are presented to accurately calculate the effective permittivities and
characteristic impedances of CCPWs. The proposed method is
not limited to the calculation of the effective permittivities and
characteristic impedances of CCPWs. This method can easily be
applied to other microwave problems.

The ANFIS is a very powerful approach for building complex
and nonlinear relationship between a set of input and output data.
Accurate, fast, and reliable ANFIS models can be developed from
measured/simulated microwave data. Once developed, these ANFIS
models can be used in place of computationally intensive numerical
models to speed up CPWs design. A distinct advantage of neural
computation is that, after proper training, a neuro-fuzzy system
completely bypasses the repeated use of complex iterative processes
for new cases presented to it. It should also be emphasized that better
results may be obtained from the ANFIS either by choosing different
training and test data sets from the ones used in the paper or by
supplying more input data set values for training.
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