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Abstract—The diffraction by a finite parallel-plate waveguide with
four-layer material loading is rigorously analyzed by means of the
Wiener-Hopf technique for the H-polarized plane wave incidence.
Taking the Fourier transform for the unknown scattered field as
well as the Helmholtz equation and applying boundary conditions
in the transform domain, the problem is formulated in terms of the
simultaneous Wiener-Hopf equations. The Wiener-Hopf equations are
solved via the factorization and decomposition procedure together
with the use of rigorous approximation procedures leading to an
efficient approximation solution. The scattered field in the real
space is evaluated explicitly by taking the inverse Fourier transform.
Illustrative numerical examples on the radar cross section (RCS) are
presented and the far field scattering characteristics of the waveguide
are discussed.

1. INTRODUCTION

The analysis of the scattering from open-ended metallic waveguide
cavities has received much attention from the viewpoints of
electromagnetic theory as well as engineering applications such as radar
technologies [1–4]. Cavity structures exist in many radar targets such
as aircrafts and ships; therefore it is often required to reduce the radar
cross section (RCS) either by loading the interior of cavities with
absorbing materials or by shaping cavities. A number of diffraction
problems involving two- and three-dimensional (2-D and 3-D) cavities
have been analyzed thus far by means of high-frequency ray techniques
and numerical methods [5–11]. The solutions obtained by these
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approaches, however, may not be uniformly valid for arbitrary cavity
dimensions. There are also important contributions to studies on the
cavity RCS based on a rigorous function-theoretic approach due to the
Wiener-Hopf technique [12, 13].

In the previous papers [14–17], we have carried out a rigorous RCS
analysis of 2-D cavities with and without material loading, formed by
a parallel-plate waveguide, using the Wiener-Hopf technique, where
efficient approximate solutions valid over a broad frequency range have
been obtained. Some of the important results on our RCS studies of
several 2-D cavities are summarized in [18]. We have also considered
a finite parallel-plate waveguide with three-layer material loading as a
geometry that can form cavity structures, and carried out a rigorous
Wiener-Hopf analysis of the plane wave diffraction [19, 20].

This paper is composed of two parts. We shall consider
a finite parallel-plate waveguide with four-layer material loading
as an important generalization to the geometry in [19, 20], and
analyze the plane wave diffraction for both E and H polarizations
rigorously by means of the Wiener-Hopf technique. In Part I [21]
of this two-part paper, we have analyzed the case of E polarization,
whereas in this second part, the H-polarized case will be considered.
Introducing the Fourier transform for the unknown scattered field and
applying boundary conditions in the transform domain, the problem
is formulated in terms of the simultaneous Wiener-Hopf equations.
The Wiener-Hopf equations are then solved via the factorization
and decomposition procedure leading to the exact solution. This
solution is, however, formal in the sense that it contains infinite
series with unknown coefficients as well as infinite branch-cut integrals
with unknown integrands. Employing a rigorous asymptotics, an
approximate solution efficient for numerical computation is derived.
Taking the inverse Fourier transform and using the saddle point
method, a scattered field expression inside and outside the waveguide
is explicitly evaluated. Representative numerical examples on the RCS
are presented, and the far field scattering characteristics are discussed
in detail. Some comparisons with the E-polarized case [21] will also be
given. Since the method of solution employed here is similar to that
in Part I, only the main results will be summarized.

The time factor is assumed to be e−iωt, and suppressed throughout
this paper.

2. FORMULATION OF THE PROBLEM

We consider the diffraction of an H-polarized plane wave by a finite
parallel-plate waveguide with four-layer material loading, as shown
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in Fig. 1, where the waveguide plates are infinitely thin, perfectly
conducting, and uniform in the y-direction. The material layers
I (D1 < z < D2), II (D2 < z < D3), III (D3 < z < D4), and IV (D4 <
z < D5) are characterized by the relative permittivity/permeability
(εm, µm) for m = 1, 2, 3, and 4, respectively.

Figure 1. Geometry of the problem.

Let the total magnetic field φt(x, z)
[
≡ Ht

y(x, z)
]

be

φt(x, z) = φi(x, z) + φ(x, z), (1)

where φi(x, z) is the incident field defined by

φi(x, z) = e−ik(x sin θ0+z cos θ0), 0 < θ0 < π/2 (2)

with k [≡ ω(ε0µ0)1/2] being the free-space wavenumber. We shall
assume that the vacuum is slightly lossy as in k = k1 + ik2 with
0 < k2 � k1, and take the limit k2 → +0 at the end of analysis.

The total field φt(x, z) satisfies the 2-D Helmholtz equation[
∂2/∂x2 + ∂2/∂z2 + µ(x, z)ε(x, z)k2

]
φt (x, z) = 0, (3)

where

µ(x, z) =




µ1(layer I)
µ2(layer II)
µ3(layer III)
µ4(layer IV)
1(otherwise)

, ε(x, z) =




ε1(layer I)
ε2(layer II)
ε3(layer III)
ε4(layer IV)
1(otherwise)

. (4)

Once the solution of (3) has been determined, nonzero components of
the total electromagnetic fields are derived from(

Ht
y, E

t
x, E

t
z

)
=

[
φt,

1
iωε0ε(x, z)

∂φt

∂z
,

i

ωε0ε(x, z)
∂φt

∂x

]
. (5)
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Let us define the Fourier transform of the scattered field as

Φ(x, α) = (2π)−1/2

∫ ∞

−∞
φ(x, z)eiαzdz,

α = Reα+ iImα(≡ σ + iτ). (6)

Introducing the Fourier integrals as

Φ±(x, α) = ±(2π)−1/2

∫ ±∞

±L
φ(x, z)eiα(z∓L)dz, (7)

Φ1(x, α) = (2π)−1/2

∫ D1

−L
φt(x, z)eiαzdz, (8)

Φm(x, α) = (2π)−1/2

∫ Dm

Dm−1

φt(x, z)eiαzdz, m = 2, 3, 4, 5, (9)

Φ6(x, α) = (2π)−1/2

∫ L

D5

φt(x, z)eiαzdz, (10)

we can express Φ(x, α) as

Φ(x, α) = Ψ(x, α) +
6∑

m=1

Φm(x, α), (11)

where

Ψ(x, α) = e−iαLΨ−(x, α) + eiαLΨ(+)(x, α), (12)

Ψ−(x, α) = Φ−(x, α) +A
e−ikx sin θ0

α− k cos θ0
, (13)

Ψ(+)(x, α) = Φ+(x, α) −B
e−ikx sin θ0

α− k cos θ0
, (14)

A =
eikL cos θ0

(2π)1/2i
, B =

e−ikL cos θ0

(2π)1/2i
. (15)

Taking appropriate Fourier integrations and transforms of (3)
and solving the resultant equations with the aid of the procedure
similar to that employed in Part I [21], we obtain the scattered field
representation in the Fourier transform domain as in

Φ(x, α)=∓γ−1Ψ′(±b, α)e∓γ(x∓b) for x ≷ ±b,

=Ψ′(b, α)
cosh γ(x+ b)
γ sinh 2γb

− Ψ′(−b, α)
cosh γ(x− b)
γ sinh 2γb
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−1
b

∞∑
n=0

δn
e−iαD5c+5n(α) − e−iαD1c−1n(α)

α2 + γ2
n

cos
nπ

2b
(x+ b)

+
1
b

4∑
m=1

∞∑
n=0

δn
eiαDmc+mn(α) − eiαDm+1c−m+1,n(α)

α2 + Γ2
mn

· cos
nπ

2b
(x+ b) for |x| < b, (16)

where γ = (α2 − k2)1/2 with Reγ > 0, and

Ψ′(±b, α)=e−iαLU−(α) ± V−(α)
2

+ eiαLU(+)(α) ± V(+)(α)
2

, (17)

U−(α)=Ψ′
−(b, α) + Ψ′

−(−b, α), (18)
U(+)(α)=Ψ′

(+)(b, α) + Ψ′
(+)(−b, α), (19)

V−(α)=Ψ′
−(b, α) − Ψ′

−(−b, α), (20)
V(+)(α)=Ψ′

(+)(b, α) − Ψ′
(+)(−b, α), (21)

δ0=1/2; δn = 1 for n ≥ 1, (22)

γ0=−ik; γn =
[
(nπ/2b)2 − k2

]1/2 forn ≥ 1, (23)

Γm0=−iKm; Γmn=
[
(nπ/2b)2−K2

m

]1/2for n≥1(m=1, 2, 3, 4),(24)

c−1n(α)=ε−1
1 f1n − iαg1n, c

+
1n(α) = f1n − iαg1n, (25)

c−2n(α)=(ε1/ε2)f2n − iαg2n, c
+
2n(α) = f2n − iαg2n, (26)

c−3n(α)=f3n − iαg3n, c
+
3n(α) = (ε3/ε2)f3n − iαg3n, (27)

c+4n(α)=f4n − iαg4n, c
−
4n(α) = f4n − iαg4n, (28)

c−5n(α)=f5n − iαg5n, c
+
5n(α) = ε−1

4 f5n − iαg5n (29)

with Km = (µmεm)1/2k. The prime in (17)–(21) implies differentiation
with respect to x. The coefficients fmn and gmn for m = 1, 2, 3, 4, 5
appearing in (25)–(29) are defined in Appendix.

Setting x = b± 0 and x = −b± 0 in (16) and taking into account
the boundary conditions, we derive that

Jd
1 (α) = −

e−iαLU−(α) + eiαLU(+)(α)
M(α)

+
∞∑

n=1, odd

2
b

[
eiαD5c+5n(α) − eiαD1c−1n(α)

α2 + γ2
n

−
4∑

m=1

eiαDmc+mn(α) − eiαDm+1c−m+1,n(α)
α2 + Γ2

mn

]
, (30)
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Js
1(α) = −

e−iαLV−(α) + eiαLV(+)(α)
N(α)

−
∞∑

n=0, even

2
b
δn

[
eiαD5c+5n(α) − eiαD1c−1n(α)

α2 + γ2
n

−
4∑

m=1

eiαDmc+mn(α) − eiαDm+1c−m+1,n(α)
α2 + Γ2

mn

]
, (31)

where

Jd, s
1 (α) = J1(b, α) ∓ J1(−b, α), (32)

J1(±b, α) = Φ1(±b± 0, α) − Φ1(±b∓ 0, α), (33)

M(α) = γe−γb cosh γb, N(α) = γe−γb sinh γb. (34)

Equations (30) and (31) are the desired simultaneous Wiener-Hopf
equations satisfied by the unknown functions. In the next section,
we will solve the Wiener-Hopf equations, and derive exact and
approximate solutions.

3. SOLUTION OF THE WIENER-HOPF EQUATIONS

The kernel functions M(α) and N(α) given by (34) are factorized
as [20]

M(α) = M+(α)M−(α), N(α) = N+(α)N−(α), (35)

where

M+(α)[= M−(−α)]

= (cos kb)1/2ei3π/4(k + α)1/2 exp{(iγb/π) ln[(α− γ)/k]}
· exp {(iαb/π)[1 − C + ln(π/2kb) + iπ/2]}

·
∞∏

n=1, odd

(1 + α/iγn)e2iαb/nπ, (36)

N+(α)[= N−(−α)]

= (k sin kb)1/2eiπ/2 exp{(iαb/π) ln[(α− γ)/k]}
· exp{(iαb/π)[1 − C + ln(2π/kb) + iπ/2]}

·(1 + α/iγ0)
∞∏

n=2, even

(1 + α/iγn)e2iαb/nπ (37)
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with C(= 0.57721556 . . . ) being Euler’s constant. We multiply both
sides of (30) and (31) by e±iαLM±(α) and e±iαLN±(α), respectively,
and apply the decomposition procedure. Omitting the details, we
obtain that

U−(α) = b1/2M−(α)

[
− Au

b (α− k cos θ0)
+
J

(1)
u (α)
b1/2

+
∞∑

n=2

e−2γ2n−3(L+D1)X−
2n−3anpnu

−
n

b (α− iγ2n−3)

+
∞∑

n=2

e−γ2n−3(2L+D1−D5)Y −
2n−3anpnu

+
n

b (α− iγ2n−3)

]
, (38)

U(+)(α) = b1/2M+(α)

[
Bu

b (α− k cos θ0)
+
J

(2)
u (α)
b1/2

−
∞∑

n=2

e−2γ2n−3(L−D5)X+
2n−3anpnu

+
n

b (α+ iγ2n−3)

−
∞∑

n=2

e−γ2n−3(2L+D1−D5)Y +
2n−3anpnu

−
n

b (α+ iγ2n−3)

]
, (39)

V−(α) = b1/2N−(α)

[
− Av

b (α− k cos θ0)
+
J

(1)
v (α)
b1/2

+
∞∑

n=1

δ2n−2e
−2γ2n−2(L+D1)X−

2n−2bnqnv
−
n

b (α− iγ2n−2)

+
∞∑

n=1

δ2n−2e
−γ2n−2(2L+D1−D5)Y −

2n−2bnqnv
+
n

b (α− iγ2n−2)

]
, (40)

V(+)(α) = b1/2N+(α)

[
Bv

b (α− k cos θ0)
+
J

(2)
v (α)
b1/2

−
∞∑

n=1

δ2n−2e
−2γ2n−2(L−D5)X+

2n−2bnqnv
+
n

b (α+ iγ2n−2)

−
∞∑

n=1

δ2n−2e
−γ2n−2(2L+D1−D5)Y +

2n−2bnqnv
−
n

b (α+ iγ2n−2)

]
, (41)
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where

a1 = (biγ0)−1; an = (biγ2n−3)
−1 for n ≥ 2, (42)

b1 = (biγ0)−1; bn = (biγ2n−2)
−1 for n ≥ 2, (43)

p1 = b1/2M+(iγ0); pn = b1/2M+(iγ2n−3) for n ≥ 2, (44)

q1 = b1/2N+(iγ0); qn = b1/2N+(iγ2n−2) for n ≥ 2, (45)

u−1 = U−(−iγ0); u−n = b−1U−(−iγ2n−3) for n ≥ 2, (46)

u+
1 = U(+)(iγ0); u+

n = b−1U(+)(iγ2n−3) for n ≥ 2, (47)

v−1 = V−(−iγ0); v−n = b−1V−(−iγ2n−2) for n ≥ 2, (48)

v+
1 = V(+)(iγ0); v+

n = b−1V(+)(iγ2n−2) for n ≥ 2, (49)

Au =
2A′ cos(kb sin θ0)
b1/2M−(k cos θ0)

, Bu =
2B′ cos(kb sin θ0)
b1/2M+(k cos θ0)

, (50)

Av =
2iA′ sin(kb sin θ0)
b1/2N−(k cos θ0)

, Bv =
2iB′ sin(kb sin θ0)
b1/2N+(k cos θ0)

, (51)

A′ = −kb sin θ0eikL cos θ0

(2π)1/2
, B′ = −kb sin θ0e−ikL cos θ0

(2π)1/2
, (52)

J (1)
u (α) =

1
πi

∫ k+i∞

k
e2iβL M+(β)U(+)(β)

(β2 − k2)1/2(β − α)
dβ, (53)

J (2)
u (α) =

1
πi

∫ k+i∞

k
e2iβL M+(β)U−(−β)

(β2 − k2)1/2(β + α)
dβ, (54)

J (1)
v (α) =

1
πi

∫ k+i∞

k
e2iβL N+(β)V(+)(β)

(β2 − k2)1/2(β − α)
dβ, (55)

J (2)
v (α) =

1
πi

∫ k+i∞

k
e2iβL N+(β)V−(−β)

(β2 − k2)1/2(β + α)
dβ. (56)

Equations (38), (39) and (40), (41) are the exact solutions of
the Wiener-Hopf Equations (30) and (31), respectively, but they
are formal since the infinite series with the unknown coefficients
u±n (n = 2, 3, 4, . . . ) and v±n (n = 1, 2, 3, . . . ) as well as the branch-
cut integrals J (1), (2)

u (α) and J
(1), (2)
v (α) with the unknown integrands

U−(α), U(+)(α), V−(α), and V(+)(α) are involved. Applying a rigorous
asymptotics similar to that employed for the E-polarized case [21],
an approximate solution efficient for numerical computation can be
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obtained as follows:

U−(α) ≈ b1/2M−(α)
(

Au

b (α− k cos θ0)

+a1p1

{[
u+

1 +
2B′ cos (kb sin θ0)
kb (1 − cos θ0)

]
ξ(−α)

+
2B′L
b

cos (kb sin θ0)
ξ(−α) − ξ(−k cos θ0)

(−α+ k cos θ0)L

}

+
N−1∑
n=2

anpnX
−
2n−3e

−2γ2n−3(L+D1)u−n
b (α− iγ2n−3)

+
N−1∑
n=2

anpnY
−
2n−3e

−γ2n−3(2L+D1−D5)u+
n

b (α− iγ2n−3)

+K(1)
u

∞∑
n=N

e−2γ2n−3(L+D1)X−
2n−3 (bγ2n−3)

−1

b (α− iγ2n−3)

+K(2)
u

∞∑
n=N

e−γ2n−3(2L+D1−D5)Y −
2n−3 (bγ2n−3)

−1

b (α− iγ2n−3)

)
, (57)

U(+)(α) ≈ b1/2M+(α)
(
− Bu

b (α− k cos θ0)

+a1p1

{[
u−1 +

2A′ cos (kb sin θ0)
kb (1 + cos θ0)

]
ξ(α)

+
2A′L
b

cos (kb sin θ0)
ξ(α) − ξ(k cos θ0)
(α− k cos θ0)L

}

−
N−1∑
n=2

anpnX
+
2n−3e

−2γ2n−3(L−D5)u+
n

b (α+ iγ2n−3)

−
N−1∑
n=2

anpnY
+
2n−3e

−γ2n−3(2L+D1−D5)u−n
b (α+ iγ2n−3)

−K(1)
u

∞∑
n=N

e−2γ2n−3(L−D5)X+
2n−3 (bγ2n−3)

−1

b (α+ iγ2n−3)

−K(2)
u

∞∑
n=N

e−γ2n−3(2L+D1−D5)Y +
2n−3 (bγ2n−3)

−1

b (α+ iγ2n−3)

)
, (58)
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V−(α) ≈ b1/2N−(α)
(
− Av

b (α− k cos θ0)

+b1q1

{[
v+
1 − 2iB′ sin (kb sin θ0)

kb (1 − cos θ0)

]
ξ(−α)

−2iB′L
b

sin (kb sin θ0)
ξ(−α) − ξ(−k cos θ0)

(−α+ k cos θ0)L

}

+
N−1∑
n=1

δ2n−2bnqnX
−
2n−2e

−2γ2n−2(L+D1)v−n
b (α− iγ2n−2)

+
N−1∑
n=1

δ2n−2bnqnY
−
2n−2e

−γ2n−2(2L+D1−D5)v+
n

b (α− iγ2n−2)

+K(1)
v

∞∑
n=N

e−2γ2n−2(L+D1)X−
2n−2 (bγ2n−2)

−1

b (α− iγ2n−2)

+K(2)
v

∞∑
n=N

e−γ2n−2(2L+D1−D5)Y −
2n−2 (bγ2n−2)

−1

b (α− iγ2n−2)

)
, (59)

V(+)(α) ≈ b1/2N+(α)
(

Bv

b (α− k cos θ0)

+b1q1

{[
v−1 − 2iA′ sin (kb sin θ0)

kb (1 + cos θ0)

]
ξ(α)

−2iA′L
b

sin (kb sin θ0)
ξ(α) − ξ(k cos θ0)
(α− k cos θ0)L

}

−
N−1∑
n=1

δ2n−2bnqnX
+
2n−2e

−2γ2n−2(L−D5)v+
n

b (α+ iγ2n−2)

−
N−1∑
n=1

δ2n−2bnqnY
+
2n−2e

−γ2n−2(2L+D1−D5)v−n
b (α+ iγ2n−2)

−K(1)
v

∞∑
n=N

e−2γ2n−2(L−D5)X+
2n−2 (bγ2n−2)

−1

b (α+ iγ2n−2)

−K(2)
v

∞∑
n=N

e−γ2n−2(2L+D1−D5)Y +
2n−2 (bγ2n−2)

−1

b (α+ iγ2n−2)

)
, (60)
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where

ξ(α) =
(kL)1/2ei(2kL−3π/4)

π
Γ1 [1/2, −2i(α+ k)L] , (61)

In (61), Γ1(·, ·) is the generalized gamma function [22] defined by

Γm(u, v) =
∫ ∞

0

tu−1e−t

(t+ v)m
dt (62)

for Reu > 0, |v| > 0, |arg v| < π, and positive integer m. In
the derivation of (57)–(60), it has been taken into account that, in
view of the edge condition, the unknowns u±n (n = 2, 3, 4, . . . ), and
v±n (n = 1, 2, 3, . . . ) defined by (47) and (48) show the asymptotic
behavior

u−n ∼ −21/2iK(1)
u (bγ2n−3)

−1/2 , u+
n ∼ −21/2iK(2)

u (bγ2n−3)
−1/2 ,(63)

v−n ∼ −21/2iK(1)
v (bγ2n−2)

−1/2 , v+
n ∼ −21/2iK(2)

v (bγ2n−2)
−1/2 (64)

as n → ∞.
Equations (57), (58) and (59), (60) are approximate solutions of

the Wiener-Hopf Equations (30) and (31), respectively, which are valid
for large positive integer N and large |k|L. The unknown u±n and v±n
for n = 1, 2, . . . , N − 1 and K

(1),(2)
u ,K

(1),(2)
v are involved in (57)–(60),

which can be determined with high accuracy by solving appropriate
2N × 2N matrix equations numerically.

4. SCATTERED FIELD

The scattered field can be derived by taking the inverse Fourier
transform of (16) in accordance with

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(x, α)e−iαzdα, |c| < k2 cos θ0. (65)

After some manipulations, an explicit expression for the total field
inside the waveguide is found to be

φt(x, z) =
∞∑

n=0

[
T+

Lne
γn(z−D1) − T−

Lne
−γn(z−D1)

]
cos

nπ

2b
(x+ b)

for − L < z < D1,

=
4∑

m=1

∞∑
n=0

[
T+

mne
Γm(z−Dm) − T−

mne
−Γm(z−Dm)

]
cos

nπ

2b
(x+ b)

for Dm < z < Dm+1(m = 1, 2, 3, 4),
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=
∞∑

n=0

[T+
Rne

γn(z−D5)−T−
Rne

−γn(z−D5)] cos
nπ

2b
(x+ b)

for D5 < z < L, (66)

where

T−
Ln = κne

−γn(L+D1)U−(−iγn) for oddn,

=−κne
−γn(L+D1)V−(−iγn) for evenn, (67)

T+
Ln = κn

[
X−

n e
−γn(L+D1)U−(−iγn)

·Y −
n e−γn(L−D5)U(+)(iγn)

]
for oddn,

=−κn

[
X−

n e
−γn(L+D1)V−(−iγn)

·Y −
n e−γn(L−D5)V(+)(iγn)

]
for evenn, (68)

T−
Rn =−χn

[
Y +

n e−γn(L+D1)U−(−iγn)

·X−
n e

−γn(L−D5)U(+)(iγn)
]

for oddn,

= χn

[
Y +

n e−γn(L+D1)V−(−iγn)

·X−
n e

−γn(L−D5)V(+)(iγn)
]

for evenn, (69)

T+
Rn =−χne

−γn(L−D5)U(+)(iγn) for oddn,

= χne
−γn(L−D5)V(+)(iγn) for evenn, (70)

T−
mn =Kmn

[
R−

mnU−(−iγn) + S−
mnU(+)(iγn)

]
for oddn (m = 1, 2, 3, 4),

=−Kmn

[
R−

mnV−(−iγn) + S−
mnV(+)(iγn)

]
for evenn (m = 1, 2, 3, 4), (71)

T+
mn =Kmn

[
R+

mnU−(−iγn) + S+
mnU(+)(iγn)

]
for oddn (m = 1, 2, 3, 4),

=−Kmn

[
R+

mnV−(−iγn) + S+
mnV(+)(iγn)

]
for evenn (m = 1, 2, 3, 4), (72)

R−
1n =P1n − Γ1nR1n, R

+
1n = (ε1/ε2)P2n + Γ1nR2n, (73)

S−
1n =Q1n − Γ1nS1n, S

+
1n = (ε1/ε2)Q2n + Γ1nS2n, (74)

R−
2n =P2n − Γ2nR2n, R

+
2n = P3n + Γ2nR3n, (75)

S−
2n =Q2n − Γ2nS2n, S

+
2n = Q3n + Γ2nS3n, (76)



Progress In Electromagnetics Research B, Vol. 6, 2008 279

R−
3n=(ε3/ε2)P3n − Γ3nR3n, R

+
3n = P4n + Γ3nR4n, (77)

S−
3n=(ε3/ε2)Q3n − Γ3nS3n, S

+
3n = Q4n + Γ3nS4n, (78)

κn=
(π

2

)1/2 nπ

2b2γn
;Kmn =

(π
2

)1/2 nπ

2b2Γmn
for m = 1, 2, 3, 4. (79)

The coefficients Pmn, Qmn, Rmn, and Smn in (73)–(78) are defined in
Appendix.

Using the field representation for |x| > b in (16) and evaluating
its inverse Fourier transform asymptotically with the aid of the saddle
point method, the scattered far field is found to be

φ(ρ, θ) ∼ ±Ψ′(±b,−k cos θ0)e∓ikb sin θ0
ei(kρ−3π/4)

(kρ)1/2
, x ≷ ± b (80)

as kρ → ∞, where (ρ, θ) is the cylindrical coordinate defined by
x = ρ sin θ, z = ρ cos θ for 0 < |θ| < π.

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we shall present illustrative numerical examples of the
RCS and discuss the far field scattering characteristics of the waveguide
in detail. Numerical results presented below are based on the scattered
far field expression given by (80) together with (17). We have used
the approximate expressions as derived in (57)–(60) for computing
U−(α), U(+)(α), V−(α), and V(+)(α) involved in (17). Since we treat
the 2-D scattering problem, the RCS per unit length is given by

σ = lim
ρ→∞

(
2πρ|φ|2/|φi|2

)
, (81)

which reduces by using (80) to

σ = λ|Ψ′(±b,−k cos θ)|2, θ ≷ 0 (82)

with λ being the free-space wavelength.
Figures 2, 3 and 4, 5 show numerical results of the monostatic

RCS versus the incidence angle θ0 and the bistatic RCS versus the
observation angle θ, respectively, where the values of σ/λ are plotted
in decibels [dB] by computing 10 log10 σ/λ. In the bistatic RCS, the
incidence angle has been fixed as θ0 = 45◦ for numerical computation.
In order to enable comparison between different polarizations, we
have chosen the same parameters as in the E-polarized case analyzed
in Part I [21]. The normalized waveguide aperture width and the
waveguide dimension ratio are taken as kb = 3.14, 15.7, 31.4, and
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Figure 2a. Monostatic RCS σ/λ [dB] for L/b = 1.0, kb = 3.14.
-·-·-·-·-·-·- empty waveguide (layers I-IV: vacuum). : cavity
with no loading (layer I: perfect conductor; layers II-IV: vacuum;
tL = 0.6L, tPEC = 0.4L, tR = L). : cavity with two-layer
loading (layer I: perfect conductor; layer II: ε2 = 3.14+i10.0, µ2 = 1.0;
layer III: ε3 = 1.6+i0.9, µ3 = 1.0; layer IV: vacuum; tL = 0.6L, tPEC =
0.4L, tR = L, t2layer = 0.4L). ——–: cavity with three-layer loading
(layer I: perfect conductor; layers II-IV: Emerson & Cuming AN-73;
tL = 0.6L, tPEC = 0.4L, tR = L, t3layer = 0.6L).

Figure 2b. Monostatic RCS σ/λ [ dB] for L/b = 1.0, kb = 15.7. Other
particulars are the same as in Fig. 2a.
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Figure 2c. Monostatic RCS σ/λ [ dB] for L/b = 1.0, kb = 31.4. Other
particulars are the same as in Fig. 2a.

Figure 3a. Monostatic RCS σ/λ [ dB] for L/b = 3.0, kb = 3.14. Other
particulars are the same as in Fig. 2a.

L/b = 1.0, 3.0, respectively. By choosing layer I as perfect conductors,
we have formed the two cavities at the left (−L < z < D1) and right
(D2 < z < L) sides of the waveguide. We have fixed the cavity depth
as tL(= D1 + L) = 0.6L and tR(= L − D2) = L for the left and
right cavities, respectively, and the thickness of perfect conductors
(layer I) has been chosen as tPEC(= D2 − D1) = 0.4L. In order
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Figure 3b. Monostatic RCS σ/λ [ dB] for L/b = 3.0, kb = 15.7. Other
particulars are the same as in Fig. 2a.

Figure 3c. Monostatic RCS σ/λ [ dB] for L/b = 3.0, kb = 31.4. Other
particulars are the same as in Fig. 2a.

to investigate the RCS reduction effect, numerical computation has
been carried out for the three different cavity geometries, namely, an
empty cavity with layers II-IV being vacuum and the case where the
two- and three-layer materials are loaded in the right cavity. As an
example of existing three-layer materials, Emerson & Cuming AN-
73 has been chosen in numerical computation, where the material
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parameters in layers II–IV are εr2 = 3.14 + i10.0, µr2 = 1.0, εr3 =
1.6 + i0.9, µr3 = 1.0, εr4 = 1.4 + i0.35, µr4 = 1.0, and the layer
thickness is such that D3 −D2 = D4 −D3 = D5 −D4(= t3layer/3). We
have also computed the cavity RCS for the two-layer material loading,
where εr2 = 3.14 + i10.0, µr2 = 1.0, εr3 = 1.6 + i0.9, µr3 = 1.0,
εr4 = µr4 = 1.0, and D3 −D2 = D4 −D3(= t2layer/2). This two-layer
material loading is the case where layer IV of Emerson & Cuming
AN-73 has been removed. The thickness of the two- and three-layer
materials is chosen as t2layer = 0.4L and t3layer = 0.6L, respectively.
The results for the parallel-plate waveguide with no material loading
(layers I-IV are vacuum) have also been added for comparison.

From Figs. 2 and 3, we see that, as in the E-polarized case [21],
the monostatic RCS for the empty cavity shows noticeable peaks
at θ0 = 0◦, 90◦, 180◦ in all examples which are due to the specular
reflection from the upper plate at x = b and the internal plates at
z = D1, D2 of the waveguide. The RCS at θ0 = 0◦ is reduced
for the case of material loading inside the right cavity as expected.
The other common feature between the E and H polarizations is
that, the RCS characteristics for empty and loaded cavities are nearly
identical to each other over the range 90◦ ≤ θ0 ≤ 180◦, whereas there
are great differences in the scattering characteristics over the range
0◦ ≤ θ0 ≤ 90◦ depending on materials inside the right cavity. It is
therefore confirmed that the differences in the material inside the right
cavity affects the backscattering only for the region (0◦ ≤ θ0 ≤ 90◦)
where the aperture of the right cavity is visible from the incident
direction. Similarly we see that, for the region 90◦ ≤ θ0 ≤ 180◦,
only the left cavity (no material loading) is visible from the incident
direction and hence, structural differences in the interior of the right
cavity do not contribute to the monostatic far field scattering.

Next we shall investigate the RCS reduction characteristics by
comparing the RCS results for empty and loaded cavities. It is seen
from Figs. 2 and 3 that, for cavities of kb = 15.7, 31.4 with no
material loading, the monostatic RCS exhibits fairly large values for
0◦ ≤ θ0 ≤ 70◦ and 110◦ ≤ θ0 ≤ 180◦ due to the interior irradiation
from both the left and right cavities, whereas the irradiation for the
range 0◦ ≤ θ0 ≤ 70◦ is reduced for the case of material loading in the
right cavity. We also observe that this RCS reduction is noticeable for
larger cavities. By comparing the characteristics for the two-layer case
with those for the three-layer case, it is found that the RCS reduction is
more significant in the three-layer case. From these characteristics, it is
inferred that the multi-layer loading gives rise to better RCS reduction
over a broad frequency range.

Let us now make comparisons of the monostatic RCS results for
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the H polarization in this paper with those for the E polarization
analyzed in Part I [21], and investigate the differences on the
backscattering characteristics depending on the incident polarization.
Comparing the RCS curves in Figs. 2 and 3 for the H polarization with
those in Figs. 3 and 4 in Part I for the E polarization, we see differences
in all numerical examples. In particular, the monostatic RCS for the H
polarization oscillates rapidly in comparison to the E-polarized case.
This difference is due to the fact that the effect of edge diffraction
depends on the incident polarization. We also see that, if the cavity
aperture opening is small as in kb = 3.14, there are great differences
in the RCS characteristics between the H polarization (Figs. 2(a) and
3(a) in this paper) and the E polarization (Figs. 3(a) and 4(a) in Part
I) except in the neighborhood of the main lobe direction θ0 = 90◦.
This is because the diffraction phenomena at low frequencies strongly
depend on the incident polarization. It is also found that, with an
increase of the cavity opening, the RCS exhibits close features for both
polarizations.

Figures 4 and 5 show numerical examples of the bistatic RCS as
a function of observation angle θ, where the incidence angle is fixed

Figure 4a. Bistatic RCS σ/λ [ dB] for L/b = 1.0, kb = 3.14, θ0 = 45◦.
-·-·-·-·-·-·- empty waveguide (layers I-IV: vacuum). : cavity
with no loading (layer I: perfect conductor; layers II-IV: vacuum;
tL = 0.6L, tPEC = 0.4L, tR = L). : cavity with two-layer
loading (layer I: perfect conductor; layer II: ε2 = 3.14+i10.0, µ2 = 1.0;
layer III: ε3 = 1.6+i0.9, µ3 = 1.0; layer IV: vacuum; tL = 0.6L, tPEC =
0.4L, tR = L, t2layer = 0.4L). ——–: cavity with three-layer loading
(layer I: perfect conductor; layers II-IV: Emerson & Cuming AN-73;
tL = 0.6L, tPEC = 0.4L, tR = L, t3layer = 0.6L).
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Figure 4b. Bistatic RCS σ/λ [ dB] for L/b = 1.0, kb = 15.7, θ0 = 45◦.
Other particulars are the same as in Fig. 4a.

Figure 4c. Bistatic RCS σ/λ [ dB] for L/b = 1.0, kb = 31.4, θ0 = 45◦.
Other particulars are the same as in Fig. 4a.

as θ0 = 45◦ and the other parameters are the same values as in the
monostatic RCS. It is seen that in all numerical examples, the bistatic
RCS shows sharp peaks at θ = −135◦ and θ = 135◦, which correspond
to the incident and reflected shadow boundaries, respectively. There
are also some peaks at θ = ±45◦ for empty cavities (no material loading
in the right cavity) with kb = 15.7, 31.4 (Figs. 4(b), 4(c), 5(b), 5(c)),
which arise due to the interior irradiation. It is found from these figures
that the propagation direction along which the reradiated fields from
the cavity are strongly excited depends on the incident angle for large
cavity openings.

Next we shall compare the RCS characteristics between the empty
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Figure 5a. Bistatic RCS σ/λ [ dB] for L/b = 3.0, kb = 3.14, θ0 = 45◦.
Other particulars are the same as in Fig. 4a.

Figure 5b. Bistatic RCS σ/λ [ dB] for L/b = 3.0, kb = 15.7, θ0 = 45◦.
Other particulars are the same as in Fig. 4a.

and loaded cavities. On comparing the bistatic RCS data for the
empty case (no material loading in the right cavity) with those for
the loaded case (material loading in the right cavity), the bistatic RCS
for |θ| < 60◦ is reduced for the loaded cavities. This is because, the
aperture of the right cavity is then visible from observation point and
hence, the interior features of the cavity significantly affect the far field
bistatic scattering. The RCS reduction for loaded cavities is noticeable
for fairly large cavity openings (kb = 15.7, 31.4). In addition, it is found
that the three-layer material loading leads to a better RCS reduction
compared with the two-layer case for large cavities.

It has already been clarified that the monostatic RCS for the two
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Figure 5c. Bistatic RCS σ/λ [ dB] for L/b = 3.0, kb = 31.4, θ0 = 45◦.
Other particulars are the same as in Fig. 4a.

different polarizations shows similar features with an increase of the
cavity dimension over the region where the cavity aperture is visible
from the indent direction. In the bistatic scattering, however, we
find by comparing the results for fairly large cavities in Figs. 4(b),
4(c), 5(b), and 5(c) (kb = 15.7, 31.4) for the H-polarized case with
the corresponding results for the E-polarized case (Figs. 5(b), 5(c),
6(b), and 6(c) in Part I [21]), there is a difference depending on the
incident polarization over a wide range of the observation angle. Hence,
it is confirmed that the bistatic RCS characteristics depend on the
polarization even at high frequencies.

6. CONCLUSIONS

In this paper, we have considered a finite parallel-plate waveguide with
four-layer material loading as a 2-D geometry that can form cavities,
and analyzed the H-polarized plane wave diffraction rigorously by
means of the Wiener-Hopf technique. We have obtained the solution
valid for the waveguide length greater than the incident wavelength.
We have carried out numerical computations and given representative
numerical examples on the monostatic and bistatic RCS to discuss the
scattering characteristics of the waveguide in detail. The final results
obtained in this two-part paper for both polarizations are considered
as reference solutions and can be used for investigating the range of
applicability of other approximate methods.
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APPENDIX A. SOME USEFUL FORMULAS FOR THE
FOURIER COEFFICIENTS

The Fourier coefficients fmn and gmn form = 1, 2, 3, 4, 5 arising in (25)–
(29) are defined as

fmn = e−γn(L+D1)PmnU−(−iγn)+e−γn(L−D5)QmnU(+)(iγn) for odd n,

= −e−γn(L+D1)PmnV−(−iγn)

+e−γn(L−D5)SmnV(+)(iγn) for even n, (A1)

gmn = e−γn(L+D1)RmnU−(−iγn) + e−γn(L−D5)SmnU(+)(iγn) for oddn,

= −e−γn(L+D1)RmnV−(−iγn)

+e−γn(L−D5)SmnV(+)(iγn) for evenn, (A2)

where

P5n = (16/G)ε2ε3γnΓ4ne
−Γ4n(D5−D4)

·e−Γ3n(D4−D3)e−Γ2n(D3−D2)e−Γ1n(D2−D1), (A3)
Q5n = (1/H){µ2

4γnρ43n(ρ4n − 1)

+µ4γn[ρ43nρ4n − e−2Γ4n(D5−D4)]}, (A4)

R5n = (16/G)ε2(ε3/ε4)γnΓ4ne
−Γ4n(D5−D4)

· e−Γ3n(D4−D3)e−Γ2n(D3−D2)e−Γ1n(D2−D1), (A5)

S5n = −(ε4/H)
[
ρ43n − e−2Γ4n(D5−D4)

]
, (A6)

P4n = (8/G)ε2Γ4n(ε4γn + Γ4n)e−Γ3n(D4−D3)

·e−Γ2n(D3−D2)e−Γ1n(D2−D1)
[
e−2Γ4n(D5−D4) + ρ4n

]
, (A7)

Q4n =− 1
H

[
ε4
ε3

Γ4n(ρ43n + ε4)e−Γ4n(D5−D4)

−ε4ρ43n(ρ4n + 1)
(
γn

ε24
2ε3

δ4n + Γ4n

)
eΓ4n(D5−D4)

]
, (A8)
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R4n = (1/G)
[
(8ε2ε3/ε4)(ε4γn + Γ4n)e−Γ3n(D4−D3)

·e−Γ2n(D3−D2)e−Γ1n(D2−D1) (e−2Γ4n(D5−D4) − ρ4n)
]
, (A9)

S4n=
1
H

[
ε4(ρ43n − 1)e−Γ4n(D5−D4) − ε4

2
ρ43n(ρ4n + 1)

·
(
γn

Γ4n
ε4δ4n + 1

)
eΓ4n(D5−D4)

]
, (A10)

P3n=
1
G

4ε22
ε3ε4

(ε4γn + Γ4n)
(

Γ3nε3
ε4

+ Γ4n

)
e−Γ2n(D3−D2)

·e−Γ1n(D2−D1)
{
e−2Γ4n(D5−D4)

[
e−2Γ3n(D4−D3) + ρ3n

]
+ρ4nρ3n

[
e−2Γ3n(D4−D3) + 1

]}
, (A11)

Q3n =
1
H

{
ε2I

2ε3
e−Γ4n(D5−D4)

[
x3ne

−Γ3n(D4−D3)−eΓ3n(D4−D3)
]

+
ε2J

2ε3s
ρ4n+1e

Γ4n(D5−D4)
[
y3ne

−Γ3n(D4−D3)+eΓ3n(D4−D3)
]}
, (A12)

R3n = (1/G) ((4ε2/Γ3n) (ε4γn + Γ4n) [(ε3Γ3n/ε4) + Γ4n]

·e−Γ2n(D3−D2)e−Γ1n(D2−D1)
{
e−2Γ4n(D5−D4)

·
[
e−2Γ3n(D4−D3)−ρ3n

]
+ρ4n

[
ρ3ne

−2Γ2n(D4−D3)−1
]})

, (A13)

S3n =
1
H

{
I

2Γ3n
eΓ4n(D5−D4)

[
x3ne

−Γ3n(D4−D3) + eΓ3n(D4−D3)
]

+
J

2Γ3n
(ρ4n + 1) eΓ4n(D5−D4)

[
y3ne

−Γ3n(D4−D3) − e−Γ3n(D4−D3)
]}

, (A14)

P2n =
2ε2
G

(ε4γn + Γ4n)
(
ε3Γ3n

ε4
+ Γ4n

)
(R1 +R2), (A15)

Q2n = (1/4H)(R3 +R4), (A16)

R2n =
2ε2
G

(ε4γn + Γ4n)
(
ε3Γ3n

ε4
+ Γ4n

)
e−Γ1n(D2−D1)(S1+S2), (A17)

S2n = (1/4H)(S3 + S4), (A18)
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P1n =
1
G

{
(ε4γn + Γ4n)

(
ε3Γ3n

ε4
+ Γ4n

)

·R1

(
ε1 +

ε2Γ3n

Γ2n
ξ1n

) [
e−2Γ1n(D2−D1) + ω1n

]

+R2

(
ε1 +

ε2Γ3n

Γ2n
ξ1n

′
) [

e−2Γbn(D2−D1) + ω′
1n

]}
, (A19)

Q1n =
1
H

{
R3

(
ε1
2ε2

+
Γ1n

2Γ2n
τ1n

) [
e−Γ1n(D2−D1) + eΓ1n(D2−D1)τ1n

]

+R4

(
ε1
2ε2

+
Γ1n

2Γ2n
τ ′1n

)[
e−Γ1n(D2−D1)+eΓ1n(D2−D1)τ ′

1n

]}
, (A20)

R1n =
1
G

{
S1

2Γ1n
(ε4γn + Γ4n)

(
ε3Γ3n

ε4
+ Γ4n

)

·
(
ε1 +

ε3Γ3n

ε2
ξ1n

) [
e−2Γ1n(D2−D1) − ω1n

]

+S2

(
ε1 +

ε3Γ3n

ε2
ξ′1n

) [
e−2Γ1n(D2−D1) − ω′

1n

]}
, (A21)

S1n =
1

4H

{
S3

(
ε1
ε2

+
τ1nΓ1n

Γ2n

) [
e−Γ1n(D2−D1) + eΓ1n(D2−D1)τ1n

]

+S4

(
ε1
ε2

+
τ ′1nΓ1n

Γ2n

) [
e−Γ1n(D2−D1)+eΓ1n(D2−D1)τ ′1n

]}
, (A22)

G= (ε1γn + Γ1n) (ε4γn + Γ1n)
(
ε3
ε4

+
δ32nΓ4n

Γ3n

) (
ε2
ε1

+
δ1nΓ2n

Γ1n

)

·
[
ρ43nρ4n − e−2Γ4n(D5−D4)

] [
ρ32n + e−2Γ3n(D4−D3)

]
·
[
ρ21n + e−2Γ2n(D3−D2)

] [
1 + e−2Γ1n(D2−D1)ρ1n

]
, (A23)

H = (ε4γ4n + Γ4n)
[
ρ43nρ4n − e−2Γ4n(D5−D4)

]
, (A24)

I = [ε4Γ3n (ρ43n − 1) + Γ4n(ε4/ε3) (ρ4n + ε4)]
−1 , (A25)

J =
[
ε4ρ43n

(
ε24δ4nγn

2ε3
+ Γ4n

)
+
ε4
2

Γ3nρ43n

(
ε4δ4nγn

Γ4n
+1

)]−1

, (A26)

R1 = e−Γ4n(D5−D4)
[
e−Γ3n(D4−D3) + ρ3n

]
·
(
ε1
ε2

+
δ′32Γ2n

Γ3n

) [
e−2Γ2n(D3−D2) + ξ2n

]
, (A27)
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R2 = ρ4n

[
e−2Γ3n(D4−D3)ρ3n + 1

]
·
(
ε1
ε2

+
δ′32nΓ2n

Γ3n

) [
e−2Γ2n(D3−D2) + ξ′32n

]
, (A28)

R3 = Ie−Γ4n(D5−D4)
[
e−Γ3n(D4−D3) + eΓ3n(D4−D3)

]
x3n

·
(
ε2x2n

ε3
+

Γ2n

Γ3n

) [
e−Γ2n(D3−D2) + eΓ2n(D3−D2)τ2n

]
, (A29)

R4 = J (ρ4n + 1) e−Γ4n(D5−D4)
[
e−Γ3n(D4−D3) + eΓ3n(D4−D3)

]
y3n

·
(
ε2
ε3

+
Γ2ny2n

Γ3n

) [
e−Γ2n(D3−D2) + eΓ2n(D3−D2)τ ′2n

]
, (A30)

S1 = e−2Γ4n(D5−D4)
[
e−2Γ3n(D4−D3) + ρ3n

]
·
(
ε1
ε2

+
δ32nΓ2n

Γ3n

) [
e−Γ2n(D3−D2) + ξ2n

]
, (A31)

S2 = ρ4n

[
e−2Γ3n(D4−D3)ρ3n + 1

]
·
(
ε2
ε3

+
δ′32nΓ2n

Γ3n

) [
e−2Γ2n(D3−D2) − ξ′32n

]
, (A32)

S3 = (I/Γ2n)e−Γ4n(D5−D4)
[
x3ne

−Γ3n(D4−D3) + eΓ3n(D4−D3)
]

·
(
ε2x2n

ε3
+

Γ4n

Γ3n

) [
e−Γ2n(D3−D2) − eΓ2n(D3−D2)τ2n

]
, (A33)

S4 = (J/Γ2n) (ρ4n + 1) eΓ4n(D5−D4)
[
y3ne

−Γ3n(D4−D3) + eΓ3n(D4−D3)
]

·
(
ε2
ε3

+
Γ4ny2n

Γ3n

) [
e−Γ2n(D3−D2) − eΓ2n(D3−D2)τ ′2n

]
, (A34)

x3n =
ε3ε4Γ4n(ρ43n − 1) − ε4Γ3n(ρ4n + ε4)
ε3ε4Γ4n(ρ43n − 1) + ε4Γ3n(ρ4n + ε4)

, (A35)

y3n =
ε4ρ43n

(
γnε

2
4δ4n/ε3+2Γ4n

)
−ε4Γ3nρ43n (γnε4δ4n/Γ4n+1)

ε4ρ43n

(
γnε24δ4n/ε3+2Γ4n

)
+ε4Γ3nρ43n (γnε4δ4n/Γ4n+1)

, (A36)

x2n =
x3ne

−Γ3n(D4−D3) − e−Γ3n(D4−D3)

x3ne−Γ3n(D4−D3) + e−Γ3n(D4−D3)
, (A37)

y2n =
y3ne

−Γ3n(D4−D3) − e−Γ3n(D4−D3)

y3ne−Γ3n(D4−D3) + e−Γ3n(D4−D3)
, (A38)

ρ43n =
ε3Γ3n − δ32nε4Γ4n

ε3Γ3n + δ32nε4Γ4n
, ρ32n =

ε3Γ2n − δ21nε2Γ3n

ε3Γ2n + δ21nε2Γ3n
, (A39)
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ρ21n=
ε1Γ1n − δ21nε2Γ2n

ε1Γ1n + δ21nε2Γ2n
, ρ4n =

ε4γn − Γ4n

ε4γn + Γ4n
, (A40)

ρ3n=
ε4Γ4n − ε3Γ3n

ε4Γ4n + ε3Γ3n
, ρ1n =

ε1γn − Γ1n

ε1γn + Γ1n
, (A41)

δ32n=
e−2Γ3n(D4−D3) − ρ32n

e−2Γ3n(D4−D3) + ρ32n
, δ21n =

e−2Γ2n(D3−D2) − ρ21n

e−2Γ2n(D3−D2) + ρ21n
, (A42)

δ1n =
e−2Γ1n(D2−D1) − ρ1n

e−2Γ1n(D2−D1) + ρ1n
, δ′

32n
=
e−2Γ3n(D3−D2)ρ3n − 1
e−2Γ3n(D4−D3)ρ3n + 1

, (A43)

δ4n = (ρ4n − 1)/(ρ4n + 1), (A44)

ξ2n =
ε2Γ3n − ε3Γ2nδ32n

ε2Γ3n + ε3Γ2nδ32n
, ξ′2n =

ε2Γ3n − ε3Γ2nδ
′
32n

ε2Γ3n + ε3Γ2nδ′32n

, (A45)

ξ1n =
e−2Γ2n(D3−D2) − ξ2n

e−2Γ2n(D3−D2) + ξ2n
, ξ′1n =

e−2Γ2n(D3−D2) − ξ′2n

e−2Γ2n(D3−D2) + ξ′2n

, (A46)

τ2n =
ε2x2nΓ3n − ε3Γ2n

ε2x2nΓ3n + ε3Γ2n
, τ ′2n =

ε2Γ3n − ε3y2nΓ2n

ε2Γ3n + ε3y2nΓ2n
, (A47)

τ1n =
e−Γ2n(D3−D2) − e−2Γ2n(D3−D2)τ2n

e−Γ2n(D3−D2) + e−2Γ2n(D3−D2)τ2n
,

τ ′1n =
e−Γ2n(D3−D2) − e−2Γ2n(D3−D2)τ ′2n

e−Γ2n(D3−D2) + e−2Γ2n(D3−D2)τ ′2n

, (A48)

ω1n =
ε1Γ2n − ε2Γ3nξ1n

ε1Γ2n + ε2Γ3nξ1n
, ω′

1n =
ε1Γ2n − ε2Γ3nξ

′
1n

ε1Γ2n + ε2Γ3nξ′1n

, (A49)
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