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EFFICIENT ELECTRICALLY SMALL PROLATE
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Abstract—An efficient, electrically small prolate spheroidal antenna
coated with confocal double-negative (DNG) metamaterials (MTMs)
shell is presented. The radiation power of this antenna-DNG shell
system excited by a delta voltage across an infinitesimally narrow gap
around the antenna center is obtained using the method of separation
of the spheroidal scalar wave functions. Our results show that this
electrically small dipole-DNG shell system has very high radiation
efficiency comparing with the normal electrically small antenna due to
the inductive effect of the MTMs shell that cancel with the capacitive
effect of the electrically small antenna. It is found that the spheroidal
shell can achieve more compact structure and higher radiated power
ratio than the corresponding spherical shell. This dipole-DNG shell
systems with different sizes are analyzed and discussed.

1. INTRODUCTION

In all areas of electrical engineering, there has been much interest in
miniaturization of the electronic devices, such as in electromagnetics
and antennas [1–6]. Electrically small antennas are antennas with
small geometrical dimensions compared to the wavelength of the
electromagnetic (EM) fields they radiate. More specifically, an
electrically small antenna in free space is defined as k0re � 0.5 in [5]
where k0 is the wave number in free space and re is the effective radius
of the sphere enclosed the electrically small antenna.

With the development of wireless technologies for communications
and sensor network, the efficient, electrically small antennas with
wide bandwidth are desirable. However, these requirements are
always contradictory. It is well-known that electrically small dipole
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antennas in free space are inefficient radiators because of having a
very small resistance and very large capacitive reactance. However,
with the development of new materials, such as MTMs, there is a new
challenging opportunity to solve this limitation. MTMs are artificial
constructed materials which are engineered media having qualitatively
new response functions that do not occur or may not be easily available
in nature [7], which have gained increasing interest [8–20]. Efficient
electrically small antennas have been constructed by coating a DNG
or epsilon-negative (ENG) MTMs shell [8, 9], which have both large
overall efficiency and large FBW. This is based on the MTMs shell has
inductive reactance from a circuit point of view, while the electrically
small antenna has capacitive reactance. Therefore, the electrically
small antenna and the DNG MTMs shell are matched to form a
resonant CL circuit, and the radiated power is greatly enhanced.

Spheroidal wave functions are special functions in mathematical
physics [21] which have many applications [22, 23], especially in the
analysis and design of antennas [24–27], since spheroidal antennas
can be used to model many antenna shapes, from wire/cylindrical
antennas via spherical antennas to disk antennas. And the full-
wave analyses of the spheroidal antennas coated with a confocal
radome are presented in [26]. In this paper, an electrically small
prolate spheroidal antenna coated with confocal DNG MTMs shell is
investigated. DNG MTMs studied in this paper is assumed to be
lossless and nondispersive. The excitation is assumed to be a delta
voltage across an infinitesimally narrow gap around the antenna center.
The solution of the radiation power is obtained using the method
of separation of the spheroidal scalar wave functions. Our results
show that this electrically small dipole-DNG shell system has very
high radiation efficiency comparing with the normal electrically small
antenna. It is found that the spheroidal shell can achieve more compact
structure and higher radiated power ratio than the corresponding
spherical shell. This dipole-DNG shell systems with different sizes
are analyzed and discussed.

2. FORMULATIONS

2.1. Geometry of Prolate Spheroidal Antenna

A perfectly conducting prolate spheroidal antenna coated with a
confocal spheroidal DNG MTMs shell, as shown in Fig. 1, is studied
in this paper, which is assumed to be excited by a source field Ea over
a infinitesimal gap on its surface center. In the prolate spheroidal
coordinates (η, ξ, φ), the surfaces from inner to outer spheroid are
given by ξ = ξ1, ξ = ξ2, and ξ = ξ3 respectively, the length of the
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Figure 1. Geometry of the problem.

corresponding semimajor and semiminor axes are a1, a2, a3, and b1,
b2, b3 respectively, and the length of the common interfocal distance is
d, which have the relation as follows,

ξ =
2a
d

=
a√

a2 − b2
(1)

The thickness of the DNG MTMs shell layer along the semiminor axis
is denoted as t = b3 − b2. The separation between the antenna and
the shell is denoted as s = b2 − b1. The media of the coating layers in
region I, II and III are all assumed to be linear, homogeneous, isotropic,
lossless and nondispersive with relative permittivities εr1 , εr2 , and εr3

and relative permeabilities µr1 , µr2 , and µr3 respectively. The region
I and III are usaully free space with permittivity ε0 and permeability
µ0. A time dependence of ejwt is assumed and suppressed throughout.

2.2. Prolate Spheroidal Antenna Coated with a DNG
MTMs Shell

Due to the symmetry (i.e., ∂/∂φ = 0), the Maxwell’s equations in free
space are as follows,

jwε0Eξ =
1

hηhφ

∂(hφHφ)
∂η

(2a)
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jwε0Eη = − 1
hφhξ

∂(hφHφ)
∂ξ

(2b)

jwµ0Hφ =
1

hξhη

[
∂(hξEξ)

∂η
− ∂(hηEη)

∂ξ

]
(2c)

where the metrical coefficients hη, hξ, and hφ in prolate spheroidal
coordinates are defined by

hη =
d

2

(
ξ2 − η2

1 − η2

) 1
2

(3a)

hξ =
d

2

(
ξ2 − η2

ξ2 − 1

) 1
2

(3b)

hφ =
d

2
[(
ξ2 − 1

) (
1 − η2

)] 1
2 (3c)

It is seen from (2) that if the source field on the gap has only Eη

component, the excited magnetic field will have only Hφ component
and Eφ = 0. It can be shown that the EM fields can be determined in
terms of an auxiliary scalar wave function A [24],

Hφ =
A

hφ
(4)

Eξ =
4

jwε0d2

1√
(ξ2 − 1)(ξ2 − η2)

∂A

∂η
(5)

Eη = − 4
jwε0d2

1√
(1 − η2)(ξ2 − η2)

∂A

∂ξ
(6)

The auxiliary wave function in region I (ξ1 � ξ � ξ2) can be
expressed as follows [26],

A1 =
∞∑

n=1,2

Vn(h1, η)
[
M1

n

(
Un(h1, ξ) −

U ′
n(h1, ξ1)Tn(h1, ξ)

T

′

n
(h1, ξ1)

)

+
pnTn(h1, ξ)
T ′

n(h1, ξ1)

]
(7)

and

Vn(h1, η) =
√

1 − η2S
(1)
1,n(h1, η) (8)

Un(h1, ξ) =
√

ξ2 − 1R(4)
1,n(h1, ξ) (9)

Tn(h1, ξ) =
√

ξ2 − 1R(3)
1,n(h1, ξ) (10)
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where S
(1)
1,n are the prolate spheroidal angular functions, R(3)

1,n and R
(4)
1,n

are the prolate spheroidal radial functions of third kind and fourth
kind respectively [21], and h1 = 2πfd√εr1µr1ε0µ0/2. In the case of an
infinitesimally thin excitation slot, pn can be expressed as

pn ≈

jwε1d

2N1,n(h1)
V̄ Vn(h1, η0) (11)

where V̄ is the applied voltage across the slot.
In region II (ξ2 � ξ � ξ3) and III (ξ � ξ3), the auxiliary scalar

wave functions A2 and A3 are given by

A2 =
∞∑

n=1,2

[
M2

nUn(h2, ξ) + N2
nTn(h2, ξ)

]
Vn(h2, η) (12)

A3 =
∞∑

n=1,2

M3
nUn(h3, ξ)Vn(h3, η) (13)

where M2
n, N2

n and M3
n are the unknown expansion coefficients to be

solved by boundary conditions, with h2 = 2πfd√εr2µr2ε0µ0/2 and
h3 = 2πfd√εr3µr3ε0µ0/2.

To determine the unknown expansion coefficients, imposing the
boundary conditions at spheroidal surfaces ξ = ξ2 and ξ = ξ3 which
require the continuity of the tangential fields,

A1 = A2

∣∣∣
ξ=ξ2

(14a)

1
ε1

∂A1

∂ξ
=

1
ε2

∂A2

∂ξ

∣∣∣∣∣
ξ=ξ2

(14b)

A2 = A3

∣∣∣
ξ=ξ3

(14c)

1
ε2

∂A2

∂ξ
=

1
ε3

∂A3

∂ξ

∣∣∣∣∣
ξ=ξ3

(14d)

To solve these equations, the expansion form of Vn is used,

Vn(h, η) =
∞∑

r=0,1

√
1 − η2d1,n

r (h)P 1
1+r(η) (15)

where d1,n
r (h) are the expansion coefficients which are nonzero when

r is even (odd) and n is odd (even). And P 1
1+r(η) is the associated
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Legendre function. Comparing the coefficients of P 1
1+r(η) in both sides

of the equations, we can obtain a set of linear equations as follows,




[A] −[C] −[D] 0
[E] −[G] −[H] 0
0 [J ] [K] −[L]
0 [O] [P ] −[Q]







[M1
n]

[M2
n]

[N2
n]

[M3
n]


 =



−[B]
−[F ]

0
0


 (16)

where the intermediate terms A — Q are given in [26] and 0 is the
zero matrix.

Once the expansion coefficients are solved, the EM fields of this
antenna system would be known. In the far-field zone (ξ → ∞), the
magnetic and electric fields can be obtained as follows,

Hφ ≈

2e−jk3r

k3rd sin θ

∞∑
n=1,2

ej(n+1
2

)πM3
nVn(h3, cos θ) (17)

Eθ ≈

√
µr3µ0

εr3ε0
Hφ (18)

where k3 = √
εr3µr3k0, and k0 is the wavenumber in free space.

2.3. Radiation Power of Antenna-DNG System

The EM fields of prolate spheroidal antenna coated with DNG MTMs
shell have been given in the last section. Therefore, the power radiated
by antenna-DNG shell system can be obtained in terms of the integral
of the Poynting vector over a closed surface containing the spheroidal
antenna,

Prad =
1
2
Re


∫

✞
✝

�
✆

∫
S

(E × H∗) · ξ̂dS




=
1
2
Re

[∫ 2π

0
dφ

∫ +1

−1
hφhη

(
(−η̂)Eη × φ̂H∗

φ

)
· ξ̂dη

]

= πRe
[∫ +1

−1
hφhηEηH

∗
φdη

]
(19)
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where S is the surface of the confocal spheroid ξ = ξ3. Substituting
(4), (6) and (13) into (19), we obtain,

Prad = Re
[
j2π
wε3d

∫ +1

−1

(
1 − η2

)−1 ∂A3

∂ξ
A∗

3dη

]

= Re


 j2π
wε3d

∫ +1

−1

(
1 − η2

)−1
[ ∞∑
n=1,2

M3
nU

′
n(h3, ξ3)Vn(h3, η)

]

×
[ ∞∑
n′=1,2

M3
n′Un′(h3, ξ3)Vn′(h3, η)

]∗ (20)

Using the orthogonality property of function Vn(h, η),
∫ 1

−1
(1 − η2)−1Vn(h, η)Vn′(h, η)dη =

{
N1,n(h) if n = n′,
0 if n �= n′. (21)

The radiated power is obtained,

Prad = Re


 j2π
wε3d

∞∑
n=1,2

∣∣M3
n

∣∣2 U ′
n(h3, ξ3)U∗

n(h3, ξ3)N1,n(h3)


 (22)

The current distribution on the spheroidal surface in the η direction
can be expressed as

I(η) =
∫ 2π

0
Jηhφdφ =

∫ 2π

0
Hφ|ξ=ξ1hφdφ = 2πA1|ξ=ξ1 (23)

where Jη is the surface current, which is equal to Hφ|ξ=ξ1 in magnitude.
The “average current” Iav over the length along the angular direction
on the surface of spheroidal dipole is defined as

Iav =

∫ +1

−1
I(η)hηdη

∫ +1

−1
hηdη

(24)

Therefore, the radiated power by antenna system with 1 A average
current can be obtained,

Pnorm =
Prad

|Iav|2
(25)
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Finally, the radiated power ratio (RPR) can be expressed as follows,

RPR =
Pnorm, DNG shell

Pnorm, uncoated
(26)

3. RESULTS AND DISCUSSION

An electrically small antenna in free space is defined as k0re � 0.5
in [5]. The frequency of interest here, f0 = 300 MHz, the free space
wavelength λ0 = 1.0 m, and the electrically small antenna should be
inside the sphere with radius re = 79.58 mm. For electrically small
antennas, we need only consider the dominant lowest order mode
(n = 1) to calculate the RPRs using (26). Region I and Region III
as shown in Fig. 1 are assumed to be free space, i.e., εr1 = εr3 = εr0

and µr1 = µr3 = µ0.
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Figure 2. Radiated power of an infinitesimal electric dipole (2a1 =
10.0 mm = λ0/100, ξ1 = 1.005) coated with a DNG shell (εr2 = −3.0
and µr2 = −1.0) for various thickness t (or a3) at different separations
s normalized by the power radiated by the same infinitesimal electric
dipole in free space.

Figure 2 shows the RPRs of the infinitesimal electric dipole-DNG
shell system versus the outer shell semi-major axis a3 with different
separations s between dipole and shell. The dipole antenna is modelled
by thin spheroid (ξ1 = 1.005, i.e., a1/b1 = 10.0). The total length of
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antenna is 2a1 = 10.0 mm = λ0/100. It is shown that, with DNG shell
(εr2 = −3.0, µr2 = −1.0), the infinitesimal electric dipole-DNG shell
system has a natural resonance due to the cancellation of the inductive
reactance introduced by DNG MTMs shell and the capacitive reactance
of the electrically small antenna. It is seen that the maximum RPR is
85.78 dB at a3,max = 7.64 mm with s = λ0/1000. It is found that the
maximum RPR is enhanced by more than 20 dB comparing with the
maximum RPR coated with the corresponding spherical ENG shell
presented in [9] and the outer shell semi-major axis a3,max is about
60% smaller than the corresponding radius of the outer ENG sherical
shell (r2,max = 18.79 mm). It is also seen that the peak of the RPR
occurs at an increasing outer shell semi-major axis a3 as the separation
s increasing.

Figures 3(a) and (b) show the RPRs of the infinitesimal electric
dipole-DNG shell system with different relative permittivity εr2 and
different relative permeability µr2 of DNG shells respectively. It
is found that a3 of the peak of the RPR is approximately inverse
proportional to the relative permittivity εr2 . However, the change of
µr2 have no effect on the peak of the RPR. This is because only εr2

will change the effective reactance and this relation can be expressed
as follows [9],

Xshell ∝ jw0
1

w2
0|εr2 |∆r

(27)

where ∆r is the thickness of the shell and in our case ∆r = t = b3−b2.

Figure 4 shows frequency dependence of the RPRs of the
infinitesimal electric dipole-DNG shell system which is the same as
the one considered in Fig. 2 with a3 = a3,max = 7.64 mm. Therefore,
the FBW can be obtained by the relation [1, 8],

FBW =
∆f3 dB

f0 dB
=

1
QBW

(28)

where ∆f3 dB = f+,3 dB − f−,3 dB and QBW is the radiation quality
factor. f+,3 dB and f−,3 dB denote the frequencies above and below
f0 dB where the RPR is 3 dB lower than its maximum value. It is
found that, in Fig. 4, the maximum value of RPR is 86.45 dB at
f0 dB = 297.19 MHz, f−,3 dB = 290.21 MHz and f+,3 dB = 304.01 MHz.
Therefore, the FBWDNG = 4.64% and the quality factor QBW, DNG =
21.55.

Figure 5 shows the RPRs of an electrically small dipole (2a1 =
20.0 mm = λ0/50) coated with a DNG shell. It is found that, at



250 Huang and Tan

R
ad

ia
te

d 
po

w
er

 r
at

io
 (

dB
)

90

80

70

60

50

40

30

20
6 7.5 8 8.5

Outer shell semi-major axis, a  (mm)3

R
ad

ia
te

d 
po

w
er

 r
at

io
 (

dB
)

90

80

70

60

50

40

30

20
7 7.2 7.4 7.6 7.8

Outer shell semi-major axis, a  (mm)3

8 8.2

=-2.9ε r2

=-3.0ε r2

=-3.1ε r2

=-0.9µr2

=-1.0µr2

=-1.1µr2

=-1.0µr2(a)

=-3.0r2(b)

∋

Figure 3. Radiated power of an infinitesimal electric dipole (2a1 =
10.0 mm = λ0/100, ξ1 = 1.005) coated with DNG shells, (a) µr2 = −1.0
and different εr2 , (b) εr2 = −3.0 and different µr2 , at separation s =
λ0/1000 normalized by the power radiated by the same infinitesimal
electric dipole in free space.

a3,max = 14.78 mm, the maximum RPR is 68.85 dB which is 16.93 dB
smaller than the one with 2a1 = λ0/100 presented in Fig. 2. This is
because the size of this dipole-DNG antenna system is 43% larger than
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Figure 4. Frequency dependence of radiated power of an infinitesimal
electric dipole (2a1 = 10.0 mm = λ0/100, ξ1 = 1.005) coated with a
DNG shell (εr2 = −3.0 and µr2 = −1.0) at separation s = λ0/1000
with a3 = 7.64 mm normalized by the power radiated by the same
infinitesimal electric dipole in free space.
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that considered in Fig. 2.
In Fig. 6, it is found that the maximum value of RPR is 68.94 dB at

f0 dB = 298.07 MHz, f−,3 dB = 284.39 MHz and f+,3 dB = 311.15 MHz.
Therefore, the FBWDNG = 8.98% and the quality factor QBW, DNG =
11.14. From above figures, it is found that, with the increasing size of
antenna system, the maximum value of RPR and the quality factor Q
decrease, while the FBW increases.

Figure 7 shows the RPRs of an electrically small dipole (2a1 =
100.0 mm = λ0/10) coated with a DNG shell. It is found that the
maximum RPR is 22.98 dB at a3,max = 79.39 mm which is just a little
bit smaller than the maximum radius of the electrically small antenna
79.58 mm at 300 MHz. It can be seen that the peak value of RPR of
this electrically small dipole-DNG system is reduced more than 60 dB
comparing with the one with 2a1 = λ0/100 presented in Fig. 2 due to
the larger size of antenna.

4. CONCLUSION

An efficient, electrically small prolate spheroidal antenna coated with
confocal DNG MTMs shell is presented in this paper. Using the
method of separation of the spheroidal scalar wave functions, the
radiation power of this antenna-DNG shell system excited by a delta
voltage across an infinitesimally narrow gap around the antenna center
is obtained. It is found that this electrically small dipole-DNG shell
system has very high radiation efficiency comparing with the normal
electrically small antenna. It is found that the spheroidal shell can
achieve more compact structure and higher radiated power ratio than
the corresponding spherical shell. This dipole-DNG shell systems with
different sizes (up to λ/10) are analyzed and discussed. It is found
that the maximum value of RPR and the quality factor Q decrease
due to the size of antenna system increasing, while the FBW of this
electrically small dipole-DNG shell system increases with antenna size
increasing.
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