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Abstract—This work is aimed at presenting a methodology that
exploits the scattered electromagnetic radiation collected on a
measurement region outside the area under investigation to locate and
characterize multiple unknown profiles. In many practical cases, an
accurate quantitative imaging of the scenario under test is required
and it can be reached by using a high resolution representation of the
dielectric profile of the scatterers. Towards this aim, an enhanced
iterative multi-resolution procedure that exploits a morphological
processing for detecting and focusing on different non-connected
regions-of-interest is developed. A suitable set of representative
numerical results is presented for demonstrating that the proposed
approach is able to efficiently detect the objects located in the
test domain and to enhance the accuracy in reconstructing multiple
scatterers.

1. INTRODUCTION

Microwave imaging techniques are based on the numerical processing
of the scattered electromagnetic radiation collected on a measurement
domain lying outside the region under test. Such methodologies find
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a variety of applications [30, 31] in biomedical sciences (e.g., breast
cancer imaging [1–4]), in the context of the subsurface inspection [5–
7, 32] and of the non-destructive industrial testing [8, 9].

However, whatever the application, the information content of the
problem data turns out to be intrinsically bounded [10] and thus a
high-resolution and uniform quantitative imaging of the scenario under
test cannot be realized by simply processing the scattered data and
without proper countermeasures. On the other hand, every practical
application requires the representation of the dielectric or conductivity
profiles (i.e., discontinuities with respect to the background medium)
with a detailed level of spatial resolution.

In order to address such issues, different kinds of multiresolution
approaches have been proposed [11–15] in order to meet the accuracy
requirements although in the presence of a limited amount of
informative data. These techniques avoid a fine and homogeneous
discretization in the whole investigation domain by properly employing
a high resolution level only in some regions-of-interest (RoIs) belonging
to the area under test.

Pursuing this idea, Miller et al. [11, 12] proposed statistically-
based approaches, while other works introduced a wavelet expan-
sion [13, 14] of the unknowns in the test domain. Successively, the
Iterative Multi-Scaling Algorithm (IMSA) has been presented in [15].
Such a methodology iteratively reconstructs an unknown scenario ex-
ploiting an adaptive allocation of the resolution levels according to
the information gained during a multi-step retrieval process. There-
fore, an enhanced resolution in the regions-of-interest is guaranteed,
since the data collected through the field measurement are efficiently
exploited and new information on the scenario is acquired during the
multi-step procedure. Notwithstanding the effectiveness of the IMSA
in many situations and conditions [15], it presented some limitations in
dealing with multiple-scatterers configurations. Thus, the integration
of a suitable procedure able to localize multiple objects in a search
domain was mandatory. Certainly, many different approaches could
be, in principle, integrated in the IMSA, as for example the method
of decomposition of the time reversal operator (DORT) [16, 17] or the
level set method (LSM) [18, 19]. The former allows locating a set of
unknown scatterers with a reduced sensitivity to the noise, but the
sizes of the scatterers have to be smaller than half a wavelength and
the objects should be separated by more than a third of a wavelength.
The LSM is also very effective in determining the location and the
shape of unknown obstacles but it requires the knowledge of the di-
electric parameters of the scatterers under test. Moreover, a technique
for finding the minimum circular envelope enclosing a set of scatterers
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and successively localize them has been proposed in [20]. Even though
it avoids the solution of the full inverse problem, such an approach
cannot provide any estimation of the extension of the RoIs.

However, in several applications a quantitative characterization
of the dielectric properties of multiple RoIs is required and the
localization or the shaping of the scatterers is not enough. For
such a reason an improved version of the IMSA has been proposed
in [21] by integrating a clustering procedure [21] between successive
steps of the multi-scaling algorithm. The numerical and the
experimental assessment have demonstrated the accuracy of the
approach in resolving different non-connected regions-of-interest
exploiting a suitable processing of intermediate reconstructions. The
pixel representation of the retrieved profile is firstly binarized by
thresholding the arising image according to the histogram analysis.
Successively, a scanning of the image allows the detection and the
definition of the RoIs where the scatterers are supposed to be located
and where the resolution level will be increased. Unfortunately, such
a procedure presents some deficiencies since the arising reconstruction
accuracy turns out to be dependent in a significant fashion on the
thresholding process in the histogram analysis. Therefore, a new
set of morphological transformations [22, 23] has been developed and
integrated in the multi-scaling algorithm in order to substitute the
clustering procedure [21] and allow a more detailed detection of the
RoIs without a large increase in the overall computational burden.

This paper will be structured as follows. In Section 2, the
mathematical formulation of the morphological processing for the RoIs
definition and its integration in the IMSA will be presented. In
Section 3, a comparative analysis will be carried out in order to assess
the advantages and the robustness of the proposed approach [called
morphological IMSA, (M-IMSA)] in dealing with a selected set of
representative scattering configurations. Eventually, some conclusions
are drawn (Section 4).

2. PROBLEM FORMULATION

The two-dimensional geometry of Fig. 1 showing a cross sectional view
of an inhomogeneous investigation domain DI will be considered in the
following. Such a scenario is sensed through a set of monochromatic
incident electric fields TM polarized impinging from V different
directions [Einc

v (x, y)ẑ, v = 1, . . . , V ].
The properties of the dielectric profile under test are modeled by
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Figure 1. Problem geometry.

means of the object function τ(x, y)

τ(x, y) = εr − 1 − j
σ(x, y)
ωε0

(1)

where εr and σ denote the relative permittivity and the conductivity,
respectively.

The measures of the scattered field [Escatt
v (xm, ym)ẑ, v = 1, . . . , V ]

are collected at m = 1, . . . ,M positions belonging to the measurement
domain DO located outside DI . These data are related to the contrast
function τ(x, y) by means of the well-known integral equations [24]

Escatt
v (xm, ym) = Sext

v

[
τ(xn, yn), Etot

v (xn, yn)
]

(2)

Einc
v (xn, yn) = Etot

v (xn, yn) − Sint
v

[
τ(xn, yn), Etot

v (xn, yn)
]

(3)

where the external and internal scattering operators [24] are denoted
by Sext

v [·] and Sint
v [·], respectively; τ(xn, yn) and Etot

v (xn, yn), n =
1, . . . , N , are the unknowns whose N -dimensional finite representation
has to be reconstructed by solving a non-linear and ill-posed problem.

Moreover, an efficient allocation of the unknowns and thus a
suitable discretization of the Regions-of-Interests (RoIs) of DI are
necessary for a reliable processing of the limited amount of information
collectable from the field measures.
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Towards this purpose, the M-IMSA aims at defining, through a
multi-step (s = 1, . . . , Sopt) procedure, a multiresolution reconstruction
of the unknown domain under test according to the flow-chart in Fig. 2,
where the sequence of the main M-IMSA operations and the integrated
morphological processing are sketched.

Figure 2. The flow-chart of the M-IMSA strategy.

More specifically, the structure of the algorithm can be described
by considering four macro-blocks: the Profile Retrieval stage, the
Profile Processing stage, the Convergence Check, and the block
responsible for the definition of the resolution level in the RoIs.
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2.1. Profile Retrieval

After the initialization of the unknowns to the free-space configuration,
the number of RoIs is set to I(0) = 1 and D

(1)
RoI(0) ≡ DI . Successively,

the following cost function is defined

Φ(s) = Φ(s)
Data + Φ(s)

State (4)

where

Φ(s)
Data =

V∑
v=1

M∑
m=1

∣∣∣Escatt
v (xm, ym) − Sext

v

[
τ(x, y), Etot

v (x, y)
]∣∣∣2

V∑
v=1

M∑
m=1

∣∣∣Escatt
v (xm, ym)

∣∣∣2
(5)

Φ(s)
State =

1
V∑

v=1

N∑
m=1

∣∣∣Einc
v (xn, yn)

∣∣∣2
{

V∑
v=1

N∑
n=1

∣∣∣Einc
v (xn, yn)−

Etot
v (xn, yn) + Sint

v

[
τ(xn, yn), Etot

v (xn, yn)
]∣∣∣2} (6)

and minimized for determining the optimal unknowns configuration
that can be related to the problem data through the scattering
model defined through (2) and (3). The functional (4) can be
minimized by using any available optimization tool (e.g., [25–27]) and
the reconstructed image of the object function distribution can be
processed to acquire information about the number of RoIs (I(s)) in
DI and their extension

(
D

(i)
RoI(s)

)
.

2.2. Profile Processing

After the “Profile Retrieval”, the retrieved image of the unknown
scenario is processed with a set of morphological operations described
in the following. Firstly, a noise clipping stage reduces the presence of
the image noise thus avoiding an overestimate of the number of RoIs.
Thanks to such an operation a new distribution τ

(s)
nc

τ (s)
nc (xn, yn) =

{
0 if τ (s)(xn, yn) ≤ η

τ (s)(xn, yn) if τ (s)(xn, yn) > η
(7)

is defined, where η = µmax
{
τ (s)(xn, yn)

}
, µ being a parameter to

be heuristically calibrated. Moreover, in order to obtain a smother
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distribution and to reduce the intensity of the image artifacts, the
distribution τ (s)

nc is low-pass filtered by applying a weighted average over
a neighborhood (L = 9, L being the dimension of the neighborhood)
centered around (xn, yn)

τ
(s)
f (xn, yn) = ατ

(s)
cl (xn, yn) +

1∑
p=−1

1∑
t=−1

βτ
(s)
cl (xn+p, yn+t) (8)

with p+ t �= 0 and where

α = 1 − χ+ 20
100

(9)

β =
χ+ 20

100
1

(L− 1)
. (10)

The filtering strength is determined by the value of the parameter
χ heuristically selected during the calibration of the thresholding
stage. Successively, the RoIs are identified by firstly applying a binary
transformation to τ

(s)
f

τ
(s)
T (xn, yn) =




0 if τ (s)
f (xn, yn) ≤ κ

1 if τ (s)
f (xn, yn) > κ

(11)

where κ = χmax
{
τ

(s)
f (xn, yn)

}
, then an erosion of the estimated

binary profiles allows to estimate the number of RoIs [I(s)] lying in
the area under test. Towards this aim, the image of τ (s)

T is processed
by means of a square structuring element Σ defined over a window of
LΣ = 3 × 3 neighborhood pixels for defining the binary distribution
τ

(s)
E

τ
(s)
E (xn, yn) =




1 if τ (s)
T (xn, yn) = 1∧

1∑
p=−1

1∑
t=−1

τ
(s)
T (xn+p, yn+t) = 1

0 otherwise

(12)

and in order to isolate at least one pixel (seed) per object in DI .
Finally, the RoI to which a seed belongs to is determined by finding the
minimum square area including the subset of non-zero pixels around
the considered seed.
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2.3. Convergence Check

The block concerned with the Profile Processing allows the estimate
of the number of RoIs, their position and their extension. By means
of these information, the convergence of the M-IMSA algorithm to
a stationary reconstruction is estimated according to the stability
criterion described in [21].

2.4. Definition of the Level of Resolution in the RoIs

If the convergence check does not hold true, the basis functions are
allocated in the I(s) estimated RoIs according to the following rule

N
(s)
i = INT






N (1) A

(s)
i

I(s)∑
i=1

A
(s)
i




1
2




(13)

where N
(s)
i and A

(s)
i are the number and the area of the i-th region

at the s-th step of the M-IMSA, respectively. Moreover, the function
INT [·] provides the greater integer of its argument.

In such a way, the spatial resolution in the RoIs of DI is increased
and the accuracy of the reconstruction turns out to be further improved
through the optimization of the multi-resolution version [28] of the cost
function in Eq. (4).

3. NUMERICAL ANALYSIS

The aim of this Section is twofold. Firstly, some results of the
analysis of the impact of the thresholding parameters on the approach
performance are reported to give some indications on their optimal
setting. By considering the so-defined parameter configuration, the
effectiveness and robustness of the M-IMSA approach are then assessed
when dealing with different scattering scenarios and conditions.

3.1. Calibration

As far as the morphological processing is concerned, µ and χ have to
be heuristically calibrated. The first parameter is related to the noise
clipping stage and it should be properly set in order to remove the
image noise without compromising the reconstruction of the profile
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under test since an incorrect large value might significantly alter the
reconstructed distribution of the object function compared to the
actual one. Moreover, the binarization stage requires the tuning of χ
in order to accurately identify the RoIs. As a matter of fact, a suitable
setting guarantees the detection of the number of scatterers belonging
to the investigation domain without compromising the effectiveness
of the proposed approach in terms of both convergence rate and
computational costs.

According to these considerations a set of numerical simulations
has been performed in order to define the optimal compromise between
clipping effectiveness and inversion accuracy versus the values of the
morphological parameters. A representative result of such a calibration
is reported in Fig. 3.
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 5
 

2.70                  IMSAM
tot

-ξ                 3.86

(a) (b)

Figure 3. Calibration procedure. (a) Reference distribution of the
representative test case used for calibrating the parameters µ and χ.
(b) Results of the calibration experiments reported in terms of the
total reconstruction error.

It concerns with the test case shown in Fig. 3(a) characterized
by two 0.6λ0-sided square homogeneous dielectric (τ1 = 2.0, τ2 =
0.5) scatterers located in a square investigation area LDI

= 3.0λ0-
sided. The two objects are located at (x(1)

o = y
(1)
o = 0.75λ0) and

(x(2)
o = y

(2)
o = −0.6λ0). The investigation domain has been initially

partitioned in N (1) = 144 square subdomains. As far as the imaging set
up is concerned, an incident plane wave impinging from V = 8 different
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equally-spaced directions has been assumed and the field measures have
been collected at M (v) = 15, v = 1, . . . , V , positions on a circular
observation domain of radius 4λ0. In order to blur the scattering data,
a Gaussian noise characterized by a signal-to-noise ratio (SNR) of 20 dB
has been added to the simulated field values.

For an exhaustive analysis, several simulations have been carried
out varying the parameters values in the range 5 ≤ µ ≤ 30 and
10 ≤ χ ≤ 35. The results of these experiments are resumed in
Fig. 3(b) where a color map of the total reconstruction error (as
defined in [15]) as a function of µ and χ is reported. As it can be
observed, ξM−IMSA

tot is lower and more stable in the regions defined by
10 ≤ µ ≤ 20 and 10 ≤ χ ≤ 30. Moreover, it reaches its minimum value
in correspondence with µ = 20 and χ = 15 that have been assumed as
optimal setting and used in the following.

3.2. Assessment

In this Sub-Section, a multiple object configuration will be considered
in order to point out the effectiveness and the improvements allowed
by the M-IMSA when compared to the standard multiple region IMSA
(indicated in the following as IMSA). The imaging setup is similar
to that previously described, but some geometrical parameters have
been changed in order to test the effectiveness of the morphological
processing in a different scenario with respect to that used in the
calibration. In particular, the incident field is still a plane wave
impinging from V = 8 different equally-spaced directions, but the
field measures have been collected at M (v) = 15 locations on a
circular observation domain 2λ0 in radius. Likewise the test case in
Subsection 3.1, the scenario was characterized by SNR = 20 dB.

As a first test case, let us consider the configuration shown in
Fig. 4 where three 0.15λ0-sided square homogeneous dielectric (τ1 =
τ2 = 2.0, τ3 = 0.5) scatterers are located in a square investigation area
LDI

= 1.5λ0-sided at the following positions: x(1)
o = −x(2)

o = −0.3λ0,
y

(1)
o = y

(2)
o = 0.525λ0, and x

(3)
o = 0.0λ0, y

(3)
o = −0.525λ0.

As far as the inversion results are concerned, the object function
reconstructed at the first step (s = 1) of the M-IMSA is shown in
Fig. 5(a). The set of morphological operations, described in Section 2,
have then applied to such a profile for obtaining the binary image in
Fig. 5(b) where the detected RoIs are indicated.

Successively, the spatial resolution has been increased in the RoIs
taking into account the discretization rule defined through Eq. (13) and
the arising multi-resolution cost function has been still minimized. The
result of the second step (s = 2) of minimization is shown in Fig. 6(a).
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Figure 4. Original distribution of the reference profile.

(a) (b)

Figure 5. Three homogeneous scatterers. (a) Reconstructed profile
with SNR = 20 dB at the first step (s = 1) of the M-IMSA and (b)
result of the RoIs definition process.

The accuracy of the estimated contrast is improved as well as the
effectiveness of the morphological operations in refining the extensions
and the positions of the RoIs. Eventually, the last step of minimization
provided the convergence profile (s = Sopt = 3) displayed in Fig. 6(b)
where the stronger scatterers are faithfully retrieved although the
estimated profile of the weak-contrast object turns out to be slightly
deteriorated.

For comparison purposes, the reconstructed distribution obtained
by means of the IMSA (according to the implementation proposed
in [21]) is shown in Fig. 7. As it can be noticed, the M-IMSA
significantly overcomes the standard IMSA since this latter is not
able to detect the RoI of the weak scatterer, which is neglected from
the second step onward. Quantitatively, ξM−IMSA

tot = 1.53% while
ξIMSA
tot = 2.41% for the standard implementation of the IMSA. Such

an event is mainly due to the high sensitivity to the noisy conditions
of the clustering procedure detailed in [21].
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(a) (b)

Figure 6. Three homogeneous scatterers. Reconstructed profile by
means of the M-IMSA with SNR = 20 dB when (a) s = 2 and (b)
s = 3.

Figure 7. Three homogeneous
scatterers. Reconstructed profile
by means of the IMSA with
SNR = 20 dB at the convergence
step (b) s = 3.

Figure 8. Three homogeneous
scatterers. Image of the object
function obtained by the IMSA
at s = 1 after thresholding.

As a matter of fact, the image histogram corresponding to the
profile reconstructed at s = 1 is thresholded with Tτ = 0.7 [21] and the
RoIs detected are shown in Fig. 8. This plot points out that the support
of the third object is not revealed. On the contrary, the morphological
processing integrated in the iterative multi-scaling approach allows the
correct detection of the actual RoIs and the retrieval of the support of
the weak scatterer (Fig. 6) although it is located far from the stronger
ones.

On the other hand, the behavior of the Φ(s) (Fig. 9) highlights
the importance from a computational point of view of an accurate
estimation of the areas where the scatterers are located. As a matter
of fact, the cost function of the IMSA suddenly increases at the
second step when the support of the third object is not detected
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Figure 9. Three homogeneous scatterers. Behavior of the multi-step
cost function minimization for the IMSA and the M-IMSA approaches.

and the minimization algorithm cannot retrieve a configuration of the
unknowns providing a good fitting with inversion data.

Successively, a second numerical experiment has been carried
out in order to assess the dependence of the M-IMSA accuracy on
the distance among the objects under test. Moreover, since the
morphological processing is expected to fail in distinguishing different
RoIs when they are too close, the other aim of such an analysis is that
of evaluating the spatial resolution capability of the M-IMSA and its
reliability in comparison with that of the single-region IMSA (S-IMSA)
in [15]. By referring to the scattering configuration shown in Fig. 4,
the distance δ between the centers of the strong scatterers and that
of the weak one has been varied in the range 0.335λ0 ≤ δ ≤ 0.808λ0

and the reconstructions have been carried out by means of both the
M-IMSA and the S-IMSA.

From the set of representative reconstructions shown in Fig. 10,
one can observe that in the case of δ = 0.335λ0, the S-IMSA [Fig. 10(a)]
performs better than the M-IMSA [Fig. 10(b)], since the latter is not
able to detect accurately the RoI related to the weak contrast, being it
in close proximity to the other scatterers. Such an inaccuracy worsens
the reconstructed distribution [see Fig. 10(b) versus Fig. 10(a)] as
confirmed by the estimated values of the total reconstruction error
reported in Table 1 (ξM−IMSA

tot ≈ 1.5ξS−IMSA
tot ) and more significantly

of the internal reconstruction error (i.e., computed only on the support
of the scatterers) being ξM−IMSA

int = 27.46 versus ξS−IMSA
int = 19.30.

However, it should be pointed out that such a drawback of the M-IMSA
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can be straightforwardly overcome by merging in an unsupervised way
the RoIs when their distance is lower than 0.5λ0.

Table 1. Three homogeneous scatterers. Values of the error figures
for different scatters locations.

δ/λ0

0.335 0.541 0.808
ξS−IMSA
tot 1.79 1.82 2.86

ξM−IMSA
tot 2.66 1.07 1.61
ξS−IMSA
int 19.30 29.12 28.50

ξM−IMSA
int 27.46 25.10 12.14
ξS−IMSA
ext 1.25 0.90 2.19

ξM−IMSA
ext 1.90 0.30 1.30

When the distance δ is increased to 0.541λ0, the effectiveness of
the two strategies is quite similar even though the M-IMSA turns
out to be slightly better as pictorially shown comparing Fig. 10(c)
and Fig. 10(d) and quantitatively confirmed by the values of the
error figures in Table 1. Further increasing the distance between
the scatterers to δ = 0.808λ0 the advantages of splitting the RoIs
and increasing the resolution where needed are clearly pointed out
in Fig. 10(e) (S-IMSA) and Fig. 10(f) (M-IMSA). While the S-IMSA
strategy fails in reconstructing the weak scatterer, the morphological
transformations exploited by the M-IMSA allow to correctly identify
three non-connected RoIs inside the domain under test. In such a
configuration, the reconstruction errors clearly highlight the efficacy
of the M-IMSA in providing a reliable retrieval of the actual profiles
(ξS−IMSA

tot ≈ 2.35ξS−IMSA
tot ).

The last set of experiments is aimed at evaluating the dependence
of the M-IMSA performance on the dielectric characteristics of the
objects under test. Referring to the original distribution of the contrast
function shown in Fig. 3(a), the numerical analysis has been carried
out by varying the value of the contrast of the second scatterer in the
range 0.6 ≤ τ2 ≤ 1.2, setting τ1 = 1.2.

Figure 11 shows the behavior of the total reconstruction error
versus ∆τ = τ1 − τ2. As expected, the M-IMSA is more accurate
than the S-IMSA and the gap is more and more evident as log as ∆τ
increases. Such results are due to the intrinsic limitation of the S-IMSA
that unavoidably focuses mainly on the stronger scatterer.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Three homogeneous scatterers. Reconstructed profile by
means of (a) (c) (e) the IMSA and (b) (d) (f) the M-IMSA when (a)
(b) δ = 0.335λ0, (c) (d)δ = 0.541λ0 and (e) (f) δ = 0.808λ0.

For completeness, some representative reconstructions concerned
with such a study are then shown in Fig. 12. When ∆τ = 0.0,
the reconstruction yielded with the S-IMSA [Fig. 12(a)] and that by
means of the M-IMSA [Fig. 12(b)] are comparable even though the
latter is slightly more accurate (see also Fig. 10). On the contrary,
when ∆τ = 0.4, the dielectric distributions of the contrasts are more
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Figure 11. Two homogeneous scatterers. Behavior of the total
reconstruction error versus the parameter ∆τ = τ1 − τ2 (SNR =
20 dB).

(c) (d)

(a) (b)

Figure 12. Two homogeneous scatterers. Reconstructed profile
(SNR = 20 dB) by means of (a) (c) the IMSA and (b) (d) the M-
IMSA when (a) (b) ∆τ = 0.0 and (c) (d) ∆τ = 0.4.
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faithfully retrieved by the M-IMSA [Fig. 12(d)] than that through the
S-IMSA [Fig. 12(c)].

4. CONCLUSIONS

In this paper, a numerical assessment of the multiscale iterative inver-
sion procedure that exploits a set of morphological transformations has
been presented. Such an analysis has pointed out that the M-IMSA is
a more robust and accurate technique for the identification of the RoIs
than the standard IMSA implementation. Moreover, some indications
on the robustness and current limitations of the M-IMSA versus the
scatterers distances and the dielectric values of the scatterers have been
drawn.

Further studies will be dedicated to analyze the class of Coordinate
Logic filters [29] since they could provide a non-negligible improvement
of the morphological operators. Finally, the proposed approach
is expected to be less efficient when there are variations in the
background as in the case of subsurface imaging problems and a
suitable customization will be necessary. Such a scenario of application
is currently under study.
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