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Abstract—In this paper, we consider the resistances and inductances
extraction from finite conducting metals. To remedy the weakness of
volume integral equation, we extend the usage of a surface integral
equation method from analyzing finite conducting rectangular wire
strip to analyzing arbitrarily shaped geometry. Moreover the multi-
level Green function method (MLGFIM) with a complexity of O(N) is
employed to accelerate the matrix-vector multiplications in iterations.
The numerical results shows the efficacy of the proposed method.

1. INTRODUCTION

Conventional surface integral equation (SIE) solver can simulate the
currents flowing on the perfect electric conducting (PEC) metal. When
we extract inductance and resistance of metal, we can view this kind
of problems as low frequency electromagnetic problems [1]. A lot of
methods [2–4] have been developed to solve this kind of problems.
However, for a metal with finite conductivity, because the waves will
penetrate the surface of it, conventional SIE can not be directly used
any more. In [5], a SIE method is developed considering the skin effect.
However, it is restricted for solving rectangular wire strip problems,
because when the upper and lower surfaces of the conductor are not
parallel, the internal E fields can not be simply expressed as (2) of [5],
viz., E = E+e−γz + E−e+γz, where γ is the propagation constant
defined in [5]. Recently, we have developed the volume loop integral
equation (VLIE) method [6]. This method is accurate for calculating
the inductance and resistance of the metal when its size of cross section
is comparable to the skin depth. However, when the metal is relatively
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thick, viz., the size of the metal becomes much greater than the skin
depth, to obtain an accurate resistance using VLIE, the high density
volume mesh to model skin effect at RF frequency correctly make
the solution very computationally expensive, viz., the unknowns will
increase to an unmanageable number for our computer.

There exist several fast algorithms for matrix-vector multiplication
that can be used to enhance the efficiency of the solution, such as
fast multipole method (FMM) [7–9], conjugate gradient fast Fourier
transform (CGFFT) [10, 11], precorrected FFT (PFFT) [12], the sparse
matrix/canonical grid (SMCG) method [13], adaptive integral method
(AIM) [14], and MLGFIM [15, 16] and so on. Among them, FMM
is a fast algorithm with O(N) complexity, CGFFT, PFFT, SMCG,
and AIM are FFT based methods with O(N log N) complexity, while
MLGFIM is based on a hierarchical structure which is similar to
FMM but using the Green’s function matrix interpolation method with
QR [17] factorization technique. This method has a complexity of
O(N) [15].

To remedy these, we extend the usage of (6) in [5] that is restricted
in the particular structure to solve the relatively thick metal problems
with complex geometries. Here we call it the finite conductivity surface
integral equation (FCSIE). Though the FCSIE is derived from the
Volume Integral Equation, it is similar to the Electric Field Integral
Equation Method (EFIE) with Impedance Boundary Condition (IBC)
Approximations that is always used in solving the EM scattering
problems [18, 19]. However, here we use it for quasistatic inductance
extraction problems. For the source voltage excitation and the source
loop basis functions, we use the shortest path algorithm as that in
[20] to find the source path. To accelerate the FCSIE, the recently
developed MLGFIM algorithm is also employed. The numerical results
of spiral inductors and a sphere bump in this paper show the validity
and efficiency of this method.

2. SURFACE INTEGRAL EQUATION FOR
ARBITRARILY SHAPED FINITE CONDUCTING
METAL

For finite conducting metal problems in integrated circuits, the volume
mixed potential electric field equation can be used:

E(r) = iωµ

∫
Ω

dv′
eikR

4πR
Jeq(r′) −∇φ (1)
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where E(r), Jeq(r′), φ, ω, µ and k are the total electric field,
volume equivalent current density, scalar potential, angular frequency,
free space permeability and free space wavenumber, respectively. R
is defined as |r − r′|. This equation is used in [6] for inductance
extractions. However, when the frequency is very high and thus the
skin depth becomes very shallow, the currents are almost restricted in
a very thin shell of the metal. Consequently, the tetrahedron mesh
used in [6] can no longer efficiently model the skin effects.

Figure 1. Plane wave impinges on the conductor.

Suppose a plane wave impinges on the surface of a relatively thick
metal (Figure 1), where d(r′) is the depth from the surface point r′ and
it is greatly larger than the skin depth, Js is the surface currents. Here,
we consider the integration of the volume current density along the
skin depth direction and view it as the approximated surface currents.
Thus, (1) can be rewritten as a surface integral equation:

E(r) ≈ iωµ

∫
s

ds′
eikR

4πR
Js(r′) −∇φ (2)

where

Js(r) =
∫ d(r)

0
Jeq(r)dl =

∫ d(r)

0
σE(r)ei

√
iωµσldl ≈ E(r)

√
iσ

ωµ
(3)

where σ is the conductivity of the metal.
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Substituting (3) into (2) gives
√

ωµ

iσ
Js − iωµ

∫
s

ds′
eikR

4πR
Js(r′) = −∇ϕ. (4)

Though (4) is similar to (6) in [5], it is derived from the volume
integral equation (VIE) without the restriction E = E+e−γz +E−e+γz.
It can be viewed as an extension of (6) in [5] and a complementary of
VIE method, and used to solve the relatively thick metal problems
with complex geometries. It also can be viewed as a special form
of the EFIE with IBC. (The wave impedance in the good conductor
equals η0ηs ≈

√
ωµ
iσ [21]. Thus the EFIE with IBC approximation in

[18, 22] will be degenerated to (4).) However, it is straightforwardly
derived from the volume integral equation, and is used in solving for
the quasistatic inductance extraction problems here.

3. SURFACE LOOP EXPANSION AND MLGFIM
ACCELERATION

Choosing loop basis functions {om(r)}NL
m=1, (where NL is the number of

loop bases) [23–25] and applying the Galerkin method, we can convert
(4) to

¯̄Z ′ · Ī = V̄ (5)

where the (m, n)-th entry of ¯̄Z ′ is

Z ′
m,n =

√
ωµ

iσ

∫
sn

dsom(r)·on(r)− iωµ

∫
sm

ds

∫
sn

ds′om(r) · eikR

4πR
· on(r′) (6)

and
Vn = −

∫
sn

dson(r) · ∇φ. (7)

Because om(r) is the combination of the RWG bases, (6) can also be
rewritten as

Z ′
m,n =

N∑
p=1

N∑
q=1

Pm,pPn,qZp,q (8)

where

Zp,q =
√

ωµ

iσ

∫
sq

dsfp(r) · fq(r) − iωµ

∫
sp

ds

∫
sq

ds′fp(r) ·
eikR

4πR
· fq(r′) (9)
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where fp(r) is the p-th RWG basis [26–28] and N is the number of
RWG bases used to model the problem. Thus (5) can be rewritten as

¯̄P · ¯̄Z · ¯̄P
T · Ī = V̄ (10)

where ¯̄P has the same definition as in [6].

  (a)
 

  (b)

Figure 2. The support of a surface loop basis function.

The surface loop bases are classified into the closed loop bases and
the unclosed loop bases whose supports are shown in Figure 2(a) and
(b), respectively. In triangle q of a loop basis function support, the
loop basis function can be expressed as Iq = tq

2∆q
, where ∆q is the area

of triangle in RWG bases and tq is defined in Figure 2. Similarly as [6],
after some operation in (11), we can obtain that (7) becomes zero if
the support of the loop basis function is closed and otherwise it equals
the unclosed loop voltage.

V = −
U∑

q=1

∫
sq

dsIq(r) · ∇φ

= −
U∑

q=1




∫
Tq

ds∇ · [Iq(r)φ] −
∫
Tq

dsφ∇ · Iq(r)




= −
U∑

q=1

∮
Tq

dl · Iq(r)φ
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= −
U∑

q=1




∫
Lq,1

dl · tq(r)φ/2∆q +
∫

Lq,2

dl · tq(r)φ/2∆q




= −
U−1∑
q=1




∫
Lq+1,1

dl · tq+1(r)φ/2∆q+1 +
∫

Lq,2

dl · tq(r)φ/2∆q

+
∫

L1,1

dl · t1(r)φ/2∆1 +
∫

LU,2

dl · tU (r)φ/2∆U




= −




U−1∑
q=1

[hq,2/2∆q − hq+1,1/2∆q+1]
∫

Lq,2

dlφ

− h1,1/2∆1

∫
L1,1

dlφ + hU,2/2∆U

∫
LU,2

dlφ




= −
(
0 − φ(ξ)|ξ∈L1,1 + φ(ξ)|ξ∈LU,2

)
=

{
0, if the loop is closed
φ(ξ)|ξ∈L1,1 − φ(ξ)|ξ∈LU,2

, other else (11)

where U is the number of triangles in the loop basis function, hq,1 and
hq,2 are the height respectively perpendicular to lengths Lq,1 and Lq,2

that are shown in Figure 2.
When we can find a path of interconnected triangles between the

two ends of this conductor, an unclosed source loop basis function is
found, that can be used for the support of the conductor, viz. impose
the voltage between its two ends.

The major difference between (10) here and (9) in [6] is that
the integrations in Zp,q are on surface now. Hence, we can use
the MLGFIM program developed in [6] by replacing the volume
integrations in [6] with the surface integrations here.

We know that the integral
∫
sq

dsfp(r) · fq(r) isn’t zero when

test function and basis function is overlapped, when we use
MLGFIM [15, 16] for far field computation, the test function and basis
function is not in the same cube, thus, the integral result is zero. So
the far field entries in ¯̄Z can be simplified as

Zp,q = −iωµ

∫
sp

ds

∫
sq

ds′fp(r) · G0(r, r′) · fq(r′) (12)
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where G0(r, r′) = eikR

4πR . The integral
∫
sp

ds
∫
sq

ds′fp(r) · G0(r, r′) · fq(r′) is

decomposed into x, y and z parts, and each part can be written as

h̄pq =
∫
Sp

ds

∫
Sq

ds′τp(r)τq(r′)G0(r, r′) (13)

It has been mentioned before, source point and field point are in
two well-separated cube Gm and Gn, we can obtain G0(r, r′) by
interpolation technique, viz.,

G0(r, r′) =
K∑

i=1

K∑
j=1

ωm,i(r)ωn,j(r′)G0 (rGm,i, rGn,j)

= ω̄T
m(r) · ¯̄Gm,n · ω̄n(r′) (14)

where ωm,i(r), ωn,j(r′), G0(rGm,i, rGn,j) and K have been defined
in [6]. Substituting (14) into (13) gives

h̄pq =
∫
Sp

ds

∫
Sq

ds′[τp(r)τq(r′)]ω̄T
m(r) · ¯̄Gm,n · ω̄n(r′)

=


∫
Sp

dsτp(r)ω̄T
m(r)


 ¯̄Gm,n


∫
Sq

ds′τq(r′)ω̄n(r′)




= v̄T
m,p · ¯̄Gm,n · v̄′n,q (15)

After we obtain the V̄ vector, we will use the MLGFIM, viz.,
Algorithm 1 [16] without calculating the term for scalar potential,
because in the problem of this paper, no scalar potential is needed
for building the MoM matrix.

4. NUMERICAL RESULTS

To validate the accuracy and efficiency of our method, some examples
are given. First, we give an example of three interconnects structure
in integrated circuit to show the accuracy of VLIE [6] in solving thin
structures. Second, we compare the results of thick spiral inductor
problems using VLIE method with those using FCSIE method to
show the advantage of FCSIE in solving thick structures. Moreover,
a bump example is given to show the flexibility of solving complex
structure. Third, we present frequency responses of a spiral inductor
and compare the resistances and inductances with FastHenry [29] to
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0.341   0.0142   0.0337

 0.0143   0.361   0.0143

0.0336   0.0144 0.341

 0.336   0.0139 0.0331

 0.0138   0.360   0.0144

0.0332   0.0139 0.338 

77.8 50.8 39.4

50.8 77.1 50.8

39.5 50.8 77.8

78.3 50.9 39.5

50.8 77.7 50.9

39.4 50.8 78.4

(a) (b) 

Figure 3. (a) A three copper interconnects structure (σ = 5.961×107);
(b) Resistances and inductances matrix results(f = 10 GHz.)

show the accuracy of our method. Finally, the memory used and CPU
time cost show that the complexity of our algorithm is O(N).

The example in Figure 3(a) is a three copper interconnects
structure. We set W and H as 3 microns, and L as 100 microns,
because the characteristic sizes of interconnects range from submicron
to several microns. From the resistances and inductances results in
Figure 3(b), we can see that the differences between the resistances
and inductances of FastHenry and that of VLIE method are negligible.
That means there is no problem for VLIE method in solving thin
structures.

Table 1. The inductances and resistances of the spiral inductors of
2.5 turns and 3.5 turns and the bump in [6]. (f = 10 GHz).

FCSIE-MLGFIM 
VLIE 

[2] 

FastHenry 

[16] Examples 
at 10 GHz R 

(Ohm) 

L 

(nH) 

R 

(Ohm) 

L  

(nH) 

R 

(Ohm) 

L 

(nH) 

2.5 turn spiral 

inductor 
1.223 2.215 1.889 2.229

3.5 turn spiral 

inductor 
2.106 4.4 3.296 4.420

Bump 0.0621  0.0355  0.0339  

1.189 2.248

1.965 4.487

Table 1 shows resistances and inductances of two 2.5 turn and 3.5
turn copper spiral inductors with the size parameters w, t, s, and R
being 20, 15, 20, and 100 microns in Figure 4(a). From Table 1, we see
that our results agree well with that obtained using FastHenry [29],
in contrast, VLIE method can not accurately obtain the resistances
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Figure 4. (a) A 3.5 turns spiral inductor (σ = 5.961 × 107); (b)
Frequency responses of the spiral inductor.

because of the restriction of the mesh density. Our method can
also obtain the resistance and inductance of complex object, e.g., the
bump in [6], while the Volume-Loop method [6] can only provide the
accurate inductance of this bump because the bump is very thick. The
inductance result agree well with that using VLIE method.

Figure 4(b) is the frequency response of the spiral inductor. We
can see the resistances increase with frequency, while the inductances
are unchanged. The inductance results agree well with that obtained
using FastHenry. The maximum difference of the resistance results
between our data and FastHenry data is less than 10%, which is
sufficiently accurate for engineering use.

In Figure 5, we plot the memory requirement and the CPU time
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Figure 5. (a) The memory requirement versus the number of RWG
bases; (b) The CPU time used per matrix-vector multiplication versus
number of RWG bases.
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per matrix-vector multiplication for the bump with different number
of RWG basis functions. The predicted values for MoM method is also
drawn for comparisons. We see that using MLGFIM can significantly
save the memory and time. The complexity of our algorithm is O(N).
When the number of RWG basis functions increases, the memory used
and time cost will significantly decrease.

5. CONCLUSION

In this paper, the surface integral equation [5] for finite conducting
metal is extended to solve for resistances and inductances of metals
with complex geometries. The MLGFIM with O(N) complexity is also
used to further enhance its efficiency. The numerical examples and the
complexity curves show the validity and efficiency of this method.
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