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Abstract—The noise effect is very challenging in radar target
recognition. It usually degrades the accuracy of target recognition
and then makes the recognition unreliable. In this study, we present
a noise-reduction technique to improve the accuracy of radar target
recognition. Our noise-reduction technique is based on the SVD
(singular value decomposition). The PCA (principal components
analysis) based radar recognition algorithm is utilized to verify our
noise-reduction scheme. In our treatment, the received signals are
arranged into a Hankel-form matrix. This Hankel-form matrix is
decomposed into two subspaces, i.e., the noise-related subspace and
clean-signal subspace. The noise reduction is obtained by suppressing
the noise-related subspace and retaining the clean-signal space only.
Simulation results show that the accuracy of target recognition is
greatly improved as the received signals are first processed by the SVD
noise-reduction technique. With the use of proposed noise-reduction
scheme, the radar target recognition can tolerate more noises and then
becomes more reliable. The noise-reduction technique in this study
can also be applied to many other problems in radar engineering.

1. INTRODUCTION

Radar target recognition [1–3] means to identify targets or achieve
the fundamental information of targets by received electromagnetic
signals. In practical measurement, the received signals contain a lot
of random noises in addition to the clean signals. These random
noises may destroy the recognition and then make the recognition
unreliable. In other words, the noise effects are very challenging in
radar target recognition. This then motivates us to develop an efficient
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and powerful noise-reduction scheme to improve the accuracy of radar
target recognition.

In this paper, we present a noise-reduction scheme to improve the
accuracy of radar target recognition. Our noise-reduction technique is
based on the SVD (singular value decomposition) [4]. In our treatment,
the received signals are arranged into a Hankel-form matrix. This
Hankel-form matrix is decomposed into two subspaces, i.e., the noise-
related subspace and clean-signal subspace. The noise reduction is
obtained by suppressing the noise-related subspace and retaining the
clean-signal space only.

After the received electromagnetic signals have been processed by
the above noise-reduction technique, the resulting signals are nearly
clean. These nearly clean signals are then utilized for radar target
recognition. In this study, the PCA (principal components analysis) [5]
and angular-diversity based radar target recognition algorithm [6] is
utilized to verify our SVD noise-reduction scheme. Simulation results
show that the accuracy of target recognition is greatly improved as the
received signals are first processed by our noise-reduction scheme. The
SVD based concept has been utilized in speech [7, 8] and imaging [9]
signal processing. However, there is still no research that applies
such a noise-reduction technique to radar target recognition. To our
knowledge, this is the first study that applies SVD noise-reduction
technique to such a problem. With the use of proposed noise-reduction
scheme, the radar target recognition can tolerate more noises and then
becomes more reliable.

In Section 2, the theoretical formulations are given. Numerical
simulation results are given in Section 3. Finally, the conclusion is
given in Section 4.

2. FORMULATIONS

Without loss of generality, we consider a ship on the sea level (X-Y
plane) located at the origin of coordinate for simplicity, as shown in
Figure 1. Note that this study has no limitation in types of targets. In
Figure 1, the front end of ship is in the +x̂ direction and the broadside
of ship is in the ±ŷ direction. The spherical coordinate system is
defined as (R, θ, φ) where R is the distance from observation position
to origin, θ is the elevation angle and φ is the azimuth angle. The
ship is illuminated by a plane wave Ei = e+jk0xẑ where k0 is the
wavenumber. The bistatic RCS (radar cross section) in the direction
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Figure 1. Schematic diagram of a ship illuminated by an incident
plane wave.

of (θ, φ) is defined as [10]

σ(θ, φ) = lim
R→∞

4πR2

∣∣Es(θ, φ)
∣∣2∣∣Ei

∣∣2 . (1)

where Es(θ, φ) is the scattered electric field. The bistatic RCS of a
ship at a fixed elevation angle θ and different N azimuth angles of φ
are collected to constitute an RCS vector u = [ u1 u2 · · · uN ]T ,
where “T” denotes the transpose.

In practical measurement, the collected RCS u contains a lot
of noises. In this study, the measured u is processed by the SVD
technique [4] to reduce the noise. In general, the noisy u consists
of the clean signal v = [ v1 v2 · · · vN ]T and the addition noise
n = [ n1 n2 · · · nN ]T , i.e.,

u = v + n. (2)

In (2), v is deterministic and n is random. The goal is to extract the
clean v from the noisy u. To achieve this goal, the subspace concept is
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utilized for noise reduction and a Hankel-form matrix is defined as

Hu =



u1 u2 · · · uJ

u2 u3 · · · uJ+1
...

...
...

uI uI+1 · · · uI+J−1




I×J

. (3)

The dimension of Hu is I × J , where I + J = N + 1 and I ≥ J .
From (2)–(3), the noisy Hu can be represented as the summation of
two Hankel-form matrices as

Hu = Hv +Hn, (4)

where Hv and Hn represents the contributions from clean signals and
random noises, respectively. The structures of Hv and Hn are similar
to (3) except that ui (i = 1, 2, . . . , I + J − 1) is replaced by vi and ni,
respectively. The clean signal v can be successfully extracted as Hv is
obtained. By using the SVD technique, we can decompose the matrix
Hu into

Hu = LΣR
T
. (5)

In (5), the columns of L (dimension I × I) and R (dimension
J × J) are called left and right singular vectors, respectively. All of
these column vectors are orthogonal. The matrix Σ is diagonal with
dimension I×J and is defined as Σ = diag{s1, s2, · · · , sMin(I,J)}, where
si (i = 1, 2, . . . , Min(I, J)) is the singular value and s1 ≥ s2 . . . ≥
sMin(I,J) ≥ 0. Physically, the largest singular value contributes almost
only clean signal information, whereas the smallest singular value
contributes almost only noise information. To extract the clean signal,
the largest K singular values are viewed as the clean components.
The remaining Min(I, J) −K singular values are viewed as the noise
components and are discarded. Therefore, the noise reduction can be
obtained by adjusting the singular values as

Σ’ =




s1 0 · · · 0 0 · · ·
0 s2

...
... 0 · · ·

...
...

. . . 0 0 · · ·
0 · · · 0 sK 0 · · ·
0 · · · 0 0 0 · · ·
0 · · · · · · · · · · · · . . .




I×J

. (6)



Progress In Electromagnetics Research, PIER 81, 2008 451

A new matrix Hv′ is then constructed as

Hv′ = LΣ′R
T

(7)

to approximate the clean contribution. Note thatHv′ in (7) is no longer
Hankel-form. In our treatment, the anti-diagonal components of Hv′

are averaged to generate the modified Hv′ and the resulting matrix
will be Hankel-form. The estimation of the clean signal v is denoted
as v′ and will be reconstructed from the modified Hv′ . In other words,
v′ is the approximation for the clean signal v. Conventional radar
recognition utilized the noisy signal u for target identification, whereas
we utilized the nearly clean signal v′ for target identification.

In this study, the PCA and angular-diversity based radar target
recognition algorithm [6] is utilized to verify our SVD noise-reduction
scheme. The recognition procedures are given in [6] and the results are
given in the following section.

3. NUMERICAL SIMULATION RESULTS

In this section, numerical examples are given to verify our noise-
reduction scheme in radar target recognition. Note that our noise-
reduction scheme has no limitation in types of targets. To easily obtain
the RCS data by simulation, simplified ship models are utilized instead
of real ships. Assume there are three types of known ships (P = 3)
including type I (to model the container vessel), type II (to model the
naval ship) and type III (to model the fishing boat). The geometrical
models for the three types of known ships are shown in Figure 2. The
ship length l is chosen to be k0l = 9.4 for the ship of type I, k0l = 6.3
for the ship of type II, and k0l = 3.1 for the ship of type III. All ships
are on rough sea surface (X-Y plane). The characteristic for surface
roughness of sea water is assumed to be

z(x, y) =
4
75
l · sin

(
15π
4
x

)
sin

(
15π
4
y

)
+

8
75
l. (8)

The sea water has dielectric constant 81 and conductivity 4 S/m.
In the simulation of RCS, the commercial software Ansoft HFSS is
exploited. This software was proved to be accurate by many researchers
in this field. As the arrangement in Figure 1, the bistatic RCS from
each type of known ship at a fixed elevation angle θ and 181 (i.e.,
N = 181) azimuth angles of φ = 0◦, 1◦, . . . , 180◦ are calculated by
Ansoft HFSS software. To model the practical measurement including
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Figure 2. Geometrical models for three known classes of ships: (a)
type I, (b) type II and (c) type III.

random noises, we add to each RCS a quantity of independent random
noise having a Gaussian distribution with zero mean. The standard
derivation of noise is 4×10−1 normalized with respect to the root-mean
square value of the RCS. This noisy RCS vector ui is first processed
by the SVD noise-reduction scheme and the result is v′i (nearly clean).
In the SVD, the dimension of the Hankel-form matrix is I = 91 and
J = 91. The number of reserved singular values in (6) is chosen as
K = 15, i.e., the remaining 76 singular values are discarded. This
implies that the largest 15 singular values are viewed as contribution
of clean signals and the remaining 76 singular values are viewed as
contribution of noises. The choice for the number of reserved singular
values depends on experiences. By sampling the elevation angles at
θ = 61◦, 63◦, . . . , 89◦, we have M1 = M2 = M3 = 15 and M = 45.
The number of principal components in the PCA recognition is chosen
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to be M ′ = 2.
Initially, the projected features of training RCS data in Step-1

are given. Figure 3 shows the projected features on the 2-dimensional
PCA space for the training RCS data of the three known ships. In
Figure 3(a), the noisy RCS data are not processed by any noise-
reduction scheme. From Figure 3(a), it shows that projected features
of type I and type II distribute close together. As the noisy RCS data
are first processed by our SVD noise-reduction scheme, the projected
features of all the three classes are well separated and are shown in
Figure 3(b). This example convinces us that the SVD based noise-
reduction scheme can really improve the target recognition. From
Figure 3, it shows there may be confusion in identifying the targets
of type I and type II. Therefore, we give further testing for these two
types of targets.

In the first testing, we assumed that the unknown target is just the
target of type I. The testing is implemented 15 times at θ = 62◦, 64◦,
. . . , 90◦, respectively. It should be noted that these testing elevation
angles are different from those for collecting the training data in Step-
1. Figure 4 shows the distance to feature centers (i.e., class error)
for the three known classes of ship RCS under 15 testing elevation
angles at θ = 62◦, 64◦, . . . , 90◦, respectively. According to [6], the
magnitude of distance (class error) is in inverse proportion to the degree
of similarity. The smallest distance (class error) means that the target
ship has the highest degree of similarity with the corresponding type
of ship. Therefore, the lowest plot line represents the prediction for the
unknown target (should be type I in this example), because this plot
line has the shortest distance (to the unknown target) among the three
known targets. In Figure 4(a), the noisy RCS data are not processed
by any noise-reduction scheme. From Figure 4(a), it shows that the
lowest two plots (for type I and type II) distribute close together. One
may be confused in identifying the two targets. As the noisy RCS data
are first processed by our SVD noise-reduction scheme, the distance
(i.e., class error) is shown in Figure 4(b). From Figure 4(b), it shows
that the lowest two plots (for type I and type II) are well separated.

In the second testing, we assumed that the tested target is just the
target of type II. The remaining procedures are the same as those of the
previous example. Figure 5 shows the distance to feature centers (i.e.,
class error) for the three known classes of ship RCS under 15 testing
elevation angles respectively. The lowest plot line is expected to be type
II in this example. In Figure 5(a), the noisy RCS data are not processed
by any noise-reduction scheme. From Figure 5(a), it shows that the
lowest two plots (for type I and type II) distribute close together. One
may be confused in identifying the two targets. As the noisy RCS data
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Figure 3. The projected features on the 2-dimensional PCA space for
the training RCS data of the three known ships: (a) without any noise-
reduction processing, and (b) with SVD noise-reduction processing.
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Figure 4. The distance (i.e., class error) to feature centers for the
three known classes of ship RCS at different elevation angles θ by using
ship of type I as the testing target: (a) without any noise-reduction
processing, and (b) with SVD noise-reduction processing.
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Figure 5. The distance (i.e., class error) to feature centers for the
three known classes of ship RCS at different elevation angles θ by using
ship of type II as the testing target: (a) without any noise-reduction
processing, and (b) with SVD noise-reduction processing.
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are first processed by our SVD noise-reduction scheme, the distance
(i.e., class error) is shown in Figure 5(b). From Figure 5(b), it shows
that the lowest two plots (for type I and type II) are well separated.
The results of the above two examples convince us that the SVD noise-
reduction scheme can improve the target recognition.

The above results of RCS data are calculated on a personal
computer with Pentium-3.0 CPU. The signal-processing programs are
coded using the Matlab-7 software.

4. CONCLUSIONS

The random noises of measured electromagnetic signals are challenging
problems in radar target recognition. In this paper, a noise-reduction
scheme based on SVD is proposed to treat the PCA radar target
recognition. In noise-reduction procedures, the subspace concepts
are utilized, i.e., suppressing the noise-related subspace and reserving
only the clean-signal subspace. Simulation results show that the
recognition accuracy is greatly improved as the RCS data are fist
processed by the SVD noise-reduction scheme. With the use of our
noise-reduction scheme, the target recognition can tolerate random
noises and then its results become more reliable. The models of
targets in this study are somewhat simple. However, this is not
important because our main purpose is to illustrate that the SVD-
based noise-reduction scheme can reduce the noise effects in target
recognition. From physical points of view, only the clean signal can
give information of the target. Therefore, noise-reduction processing
on collected data becomes necessary. This study can be applied to
many other applications in radar target recognition [11–21].
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