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Abstract—A three dimensional plano-convex lens which is placed at
a certain distance from a plane uniaxial interface has been considered.
High frequency fields refracted by the geometry are derived. The
treatment is based on Maslov’s method. The method combines the
simplicity of asymptotic ray theory and generality of the transform
method to remedy the problem of geometrical optics around the caustic
point of a focusing system. Field patterns are obtained which includes
the observation points around the caustic region. The results are found
in good agreement with obtained using Huygens-Kirchhoff Principle.

1. INTRODUCTION

Study of focusing of electromagnetic waves into dielectric media is a
subject of considerable current interest due to its various important
and useful applications, e.g., hyperthermia, microscopy, and optical
data storage. Investigations of field in focal space of different focusing
systems have been carried out [1–9]. We have analyzed geometry of a
focusing system by employing the Maslov’s method [10]. According
to Maslov’s method, the field expression near the caustic can be
constructed by using the information in geometrical optics field. These
information are used to find unknowns in the assumed spectrum
representation of the field. This means that Maslov’s method utilizes
both simplicity of asymptotic ray theory and generality of transform
method. That is singularity in one domain does not overlap in
transform domain. Maslov’s method has been reviewed with a view to
applications by Ziolkowski and Deschamps [11] and Kravtsov [12]. This
method has been successfully applied to predict the field in the focal
region of parabolic reflector, phase transformer, cylindrical reflector,
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spherical reflector antenna, dielectric spherical lens, spherical dielectric
interface, plano-convex antenna, Cassegrain system, Gregorian system,
Wood lens, inhomogeneous slab, cylindrical reflector placed in chiral
medium, cylindrical reflector coated with chiral layer, a PEMC
reflector and a hyperbolic lens by different researchers who worked
with Hongo and/or Naqvi [13–30]. Study fields in uniaxial, anisotropic
and bi-anisotropic material has been discussed by various authors [31–
41].

Though the Huygens-Kirchhoff Principle and Maslov’s method are
of comparable accuracy, Maslov’s method has some distinct advantages
for specific problems. When Kirchhoff’s integral is applied to the
these problem, we must perform a double integration even though the
geometry has cylindrical symmetry because we cannot use the Fresnel
approximation for the kernel. Maslov’s method has advantage over
Huygens-Kirchhoff Principle when we deal with the field in focal region
in the special case of axially symmetrical configurations like has been
treated in the present problem. It is faster to compute the data from
final field expression than other methods.

In present discussion, we have extended our previous work [23] to
three dimensional case. Here the field refracted by a focusing geometry
which contains a three dimensional plano-convex lens at a certain
distance from plane uniaxial interface has been considered. For the
special case in which the incident field is a transverse magnetic (TM)
plane wave polarized in the xz plane, which is the plane of incidence,
considerable simplifications occur, especially if we also let the optical
axis in the crystal to be in the plane of incidence. In this case the
ordinary and extraordinary waves inside anisotropic medium are TE
and TM waves, respectively. We have studied the special case of
focusing of extraordinary plane waves into uniaxial crystal.

2. DERIVATION OF THE FIELD IN A PLANO CONVEX
LENS

Consider the geometry as shown in Figure 1. It contains a 3d-plano
convex lens placed apart from a uniaxial crystal interface. Front face
of the lens is located at z = d while rare face is located at z = d0

and uniaxial crystal interface is at z = ζ1. Uniaxial crystal occupies
half space z ≥ ζ1. Electromagnetic plane wave polarized in x-direction
and propagating in z-direction, is incident on a plano convex lens.
After passing through the plano convex lens, ray is refracted through
plane interface of uniaxial crystal. It is assumed that uniaxial crystal
occupying the half space z ≥ ζ1 has principle permittivities (εo, εe)
and permeability µ2. Half space z < ζ1 has constitutive parameters
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Figure 1. Geometry for focusing of 3D electromagnetic waves into
uniaxial crystal.

(ε1, µ1). The equation describing the surface of the plano convex lens
is given by

ζ = g(ρ) =
n

n + 1
f − 1√

n2 − 1

√
ρ2 +

n− 1
n + 1

f2, ρ =
√

ξ2 + η2 (1)

where (ξ, η, ζ) are the Cartesian coordinates of the point on the plano
convex lens. n is the refractive index of plano-convex lens and f is the
focal length.

Incident wave is given by

Ei
x = exp(−jkz) (2)

where k = ω
c

√
ε1µ1. Our interest is to determine the transmitted field

into the uniaxial crystal. First we obtain the field transmitted through
the lens into isotropic medium. The Cartesian coordinates (x, y, z)
of the ray after passing through the lens may be described using the
solutions of Hamilton’s equations. That is

x = ξ + qxt, y = η + qyt, z = ζ + qzt

where (qx, qy, qz) are ray vector components and t is the parameter
along the ray. Solutions of Hamilton’s equations develop relation
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between Cartesian coordinates (x, y, z) and ray coordinates (ξ, η, t).
The Cartesian coordinates of the ray at front surface of the uniaxial
crystal are given by

ξ1 = ξ + qxt1, η1 = η + qyt1, ζ1 = ζ + qzt1 (3)

where t1 = ζ1−ζ
qz

is distance between the point P (ξ, η, ζ) on curved
surface of convex lens and the point Q(ξ1, η1, ζ1) on front face of
uniaxial crystal. (ξ, η, ζ) are rectangular coordinates of initial point
on the refracted ray or point on the curved surface of the lens. The
Cartesian coordinates of the ray refracted into the uniaxial crystal are
given by

x = ξ1 + qu
xt = ξ + qxt1 + qu

xt,

y = η1 + qu
y t = η + qyt1 + qu

y t,

z = ζ1 + qu
z t = ζ + qzt1 + qu

z t (4)

where t is the parameter along the ray traveling in the uniaxial crystal.
(ξ1, η1, ζ1) are rectangular coordinates of initial point on the refracted
ray or point on the front face of uniaxial crystal. It may be noted
that (qx, qy, qz) are components of ray before uniaxial crystal while
(qu

x , q
u
y , q

u
z ) are components of ray in uniaxial crystal.

To find components of ray vector in region between lens and
uniaxial crystal, we need expression for the normal to the curved face
of the lens. Unit normal N of the curved surface is given by

N = sinα cosβix + sinα sinβiy + cosαiz (5)

where (α, β) are angular polar coordinates of the point (ξ, η, ζ) defined
by

ξ = ρ cosβ
η = ρ sinβ

ζ = g(ρ)

ρ =
(n− 1)f tanα√

1 − (n2 − 1) tan2 α

sinα = − g′(ρ)√
1 + (g′(ρ))2

cosα =
1√

1 + (g′(ρ))2

tanβ =
η

ξ
(6)
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In above equations prime represents derivative. The ray vector of the
refracted ray by plano convex lens may be obtained using the relation
q = npi +

√
1 − n2 + n2(p · N)2N− n(p ·N)N, which is derived from

Snell’s law with n is the refractive indexes of the lens. The ray vector
of the ray refracted by the plano convex lens is given by

q = K(α) sinα cosβix + K(α) sinα sinβiy + (n + K(α) cosα)iz
= qxix + qyiy + qziz (7)

where
K(α) =

√
1 − n2 sin2 α− n cosα

Ray refracted by the lens hits uniaxial crystal interface. The
electromagnetic field that is incident on the plane interface is TM field.
Due to this incidence, TE as ordinary wave and TM as extraordinary
wave are excited inside uniaxial crystal half space. It is assumed that
there is no coupling between TE and TM waves. Ray vector of the
refracted ray into uniaxial crystal may be obtained as [5–7]

qet = qxix + qyiy + qe
ziz (8)

In above equation (8), superscript et means extra-ordinary transmit-
ted. x and y components are same as in the medium before uniaxial
interface while z component may be written as

qe
z = A +

√
B

A = −χK(α) sinα sin θ cos θ
1 + χ cos2 θ

B =
(qe)2 − (K(α) sinα)2

1 + χ cos2 θ
− A2

χ cos2 θ

where χ is measure of anisotropy in the uniaxial crystal and is given
by

χ =
(qe)2

(qo)2
− 1, qe =

ω

c

√
εeµ2, qo =

ω

c

√
εoµ2

where θ is angle of optical axis with z-axis.
Geometrical-optics solution are derived as

Er(x, y, z) = ET (ξ, η) [J(t)]−
1
2 exp

[
−jk

(
S0(ξ, η) + t

)]
(9)

where J(t) is the Jacobian of coordinate transformation from ray
coordinates (ξ, η, t) to rectangular coordinates (x, y, z) and has been
derived in the appendix

J(t) =
D(t)
D(0)

=
1

D(0)
∂(x, y, z)
∂(ξ1, η1, t)

=
(
−P

U0

E
t + 1

) (
Qt(α)

ρ
t + 1

)
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where

P =

(√
n2 − 1

)
n−1
n+1f

2

[n2ξ2 + (n2 − 1)2f2][ξ2 + n2−1
n+1 f2]

1
2

ρ =
(n− 1)f tanα√

1 − (n2 − 1) tan2 α

U0 = Qt
∂qe

z(α)
∂α

− qe
z

∂Qt(α)
∂α

)
E = qe

z + Qt tanα
Qt = K(α) sinα

∂qe
z

∂α
= G

(
1 − 1√

B

K(α) sinα

1 + χ cos2 θ
+

A√
Bχ cos2 θ

)

G = −χK(α) sin θ cos θ
1 + χ cos2 θ

(
−n2 sinα sin 2α

2
√

1−n2 sin2 α
+n2 sin2 α+K(α) cosα

)

∂Qt(α)
∂α

= Dt =
(1 − 2n2 sin2 α) cosα√

1 − n2 sin2 α
− n cos 2α

ET is the amplitude of the refracted ray at the refraction point. Initial
phase S0 on the surface of the lens and t are defined as

S0 = nζ + t1, t =
√

(x− ξ1)2 + (y − η1)2 + (z − ζ1)2 (10)

It is readily seen that the GO expression of the refracted ray becomes
infinity at the point F as is expected.

3. DERIVATION OF THE EXPRESSION VALID IN
CAUSTIC

According to Maslov’s method, the three-dimensional expression for
the field that is valid near the caustic is given by [10–12]

Er(r)

√
k

j2π

∫ ∞

−∞
ET (ξ, η)

[
D(t)
D(0)

∂(qx, qy)
∂(x, y)

]− 1
2

exp
{
−jk

[
S0 + t− x(qx, qy, z)qx − y(qx, qy, z)qy + qxx + qyy

]}
dqxdqy

(11)

Equation (11) is derived by applying the stationary phase method
to the conventional Fourier-transform representation for Er(r) and
comparing it with the geometrical optics field given in Eq. (9). Thus
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the integrand of the inverse Fourier transform of the wave function is
derived through the information of the GO solution. In (11), x(qx, z)
means that the coordinate x should be expressed in terms of mixed
coordinates (qx, z) by using (6). The same is true for t and it is given

by t = z−ζ
qe
z

. The value of
[
J(t)∂(qx,qy)

∂(x,y)

]− 1
2 is given by

[
J(t)

∂(qx, qy)
∂(x, y)

]− 1
2

=
[

1
D(0)

(
∂(qx)
∂ξ

∂(qy)
∂η

− ∂(qy)
∂ξ

∂(qx)
∂η

)
∂z

∂t

]− 1
2

=
[−PDtQtq

e
z

ρE

]− 1
2

(12)

The phase function is given by

S = S0 + t + t1 − x(qx, qy, z)qx − y(qx, qy, z)qy + qxx + qyy
= S0 + t1 + qx(x− ξ1) + qy(y − η1) + qe

z(z − ζ1)
= S0 + t1 + qx(x− ξ − qxt1) + qy(y − η − qyt1) + qe

z(z − ζ1)
= S0 + (ζ1 − ζ)qz + qx(x− ξ) + qy(y − η) + qe

z(z − ζ1)
= S0 + (ζ1 − ζ)qz − ρK(α) sinα + Kr sinα sin θ0 cos(φ0 − β)

+(z − ζ1)qe
z (13)

where

x = r sin θ0 cosφ0

y = r sin θ0 sinφ0

z = r cos θ0.

Transforming the integration variables (qx, qy) into (α, β) that is,

d(qx)d(qy) =

[
(1 − 2n2 sin2 α) cosα√

1 − n2 sin2 α
− n cos 2α

]
Qtdαdβ (14)

Substituting (13) and (14) into (10), following is obtained

Er(x, z) =
k

2π

∫ T

0

∫ 2π

0
ET (ξ, η)

[
EρDtQt

Pqe
z

] 1
2

× exp
[
−jk

(
Kr sinα sin θ0 cos(φ0 − β)

)]
× exp

[
−jk

(
S0+(ζ1−ζ)qz−ρK(α) sinα+(z−ζ1)qe

z

)]
dαdβ

(15)

Subtended angle T of lens is given by

T = arctan

(
1√

n− 1
a√

(n + 1)a2 + (n− 1)f2

)
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The initial value A0(ξ, η) in (15) may be obtained by using GO theory.
The transmitted field by plano convex into uniaxial crystal is given by
[34]

ET = T ee
α

(
T⊥ sin2 β+[T⊥+(n sin2 α+cosα

√
1−n2 sin2 α)T‖ cos2 β

)
ix

+T ee
α

(
− sinβ cosβ + (n sin2 α + cosα

√
1 − n2 sin2 α)

)
T‖]iy

+T ee
α

(
T‖(n cosα−

√
1 − n2 sin2 α)

)
sinα cosβ]iz

where

T‖ =
2n cosα

cosα + n
√

1 − n2 sin2 α
, T⊥ =

2n cosα

n cosα +
√

1 − n2 sin2 α

T‖ denotes transmission coefficients of plano convex lens, T ee
α denotes

transmission coefficients.
The direction of the optical axis in in the uniaxial crystal along

the unit vector ŝ given by.

ŝ = sin θ cosφix + sin θ sinφiy + cos θiz
The transmission coefficients may be obtained [5–8] by

T ee
α =

2µq2qxqz

µ1(qo)2qzAet − µq2Bet

where

Aet = cos θQt − sin(θ + φ)qe
z

Bet = sin(θ + φ)(qo)2 − sin(θ + φ)Q2
t − qe

zQt cos θ

Finally the expression which is valid around the caustic is

Er(x, z) =
k

2π

∫ T

0

∫ 2π

0
ET

[
EρDtQt

Pqe
z

]1
2

exp[−jk(Kr sinα sin θ0 cos(φ0−β))]

× exp
[
−jk

(
S0 + (ζ1−ζ)qz−ρK(α) sinα+(z−ζ1)qe

z

)]
dαdβ

(16)

The integration with respect to β can be performed by using the
integral representation of Bessel function. The results are expressed
as

Ex =
k

2

[
P1(r, θ) −Q1(r, θ) cos 2φ0

]
(17)

Ey =
k

2
Q1(r, θ) sin 2φ0 (18)

Ez = jkR1(r, θ cosφ0 (19)
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where

P1(r, θ) =
∫ T

0
J0(kK(α)r sin θ cosα)

[
EρDtQt

Pqe
z

] 1
2

×[T⊥ + (n sin2 α + cosα
√

1 − n2 sin2 α)T‖]

× exp
[
−jk

(
S0 + (ζ1 − ζ)qz − ρK(α) sinα + (z − ζ1)qe

z)
)

+j
π

2
sign(p)

]
dα

Q1(r, θ) =
∫ T

0
J1(kK(α)r sin θ cosα)

[
EρDtQt

Pqe
z

] 1
2

×
[(

T‖(n cosα−
√

1 − n2 sin2 α)
)

sinα

]

× exp
[
−jk

(
S0 + (ζ1 − ζ)qz − ρK(α) sinα + (z − ζ1)qe

z)
)

× + j
π

2
sign(p)

]
dα

R1(r, θ) =
∫ T

0
J2(kK(α)r sin θ cosα)

[
EρDtQt

Pqe
z

] 1
2

×
[(
−T⊥ + (n sin2 α + cosα

√
1 − n2 sin2 α)T‖

)
× exp

[
−jk

(
S0 + (ζ1 − ζ)qz − ρK(α) sinα + (z − ζ1)qe

z)
)

× + j
π

2
sign(p)

]
dα

where sign(p) = 1 for EρDQt

Pqe
z

> 0 and sign(p) = −1 for EρDQt

Pqe
z

< 0

4. COMPARISON TO THE HUYGENS-KIRCHHOFF
PRINCIPLE

The expression based on the Huygens-Kirchhoff Principle is given by

E(x, y, z) = − jk

2π

∫ ∫
C
A0(ξ, η)

exp(−jkr)
r

[
−jk

(
S0

)]
dξdη (20)

where

r =
√

(x− ξ1)2 + (y − η1)2 + f2, S0 = nζ + t1, A0(ξ, η) =
1√
J(t)
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5. RESULTS AND DISCUSSION

Field pattern around the caustic of a plano-convex lens into uniaxial
crystal are determined by performing the integration, in equations (17)
and (20), numerically by using Mathcad software. Figure 2 provides
comparison between Maslov’s method and Kirchhoff’s approximation.
The solid line shows the results obtained using Maslov’s method while
dashed line is for result obtained using Kirchhoff’s approximation
which are in good agreement. This agreement proof the validity
of Maslov’s method. It is difficult to determine which method
provides more precise solution, but each method give a similar order
of accuracy. Figure 3 show comparison between two situations, one
deals with isotropic medium (solid line) and other deals with uniaxial
crystal(dashed line) with optical axis making angles at θ = 0◦. The
results are displayed in Figure 3 show that the maximum intensities
are indeed the same, as expected, but the focus in the crystal is
shifted towards the interface compared to the focus in the isotropic
medium. The crystal can be replaced by an isotropic medium by
putting ne = no = 1.

Figure 4 shows comparison of field distribution at different
orientation of optical axis that is at θ = 0◦, θ = 30◦, θ = 45◦
and θ = 60◦. Figure 5 also show comparison of field distribution at
different orientation of optical axis that is at θ = 0◦, θ = 45◦, θ = 75◦
and θ = 90◦. It is shown that the focal area for a negative uniaxial
crystal is displaced in the x and z directions as the angle θ is increased

Figure 2. Comparison of normalized field distribution around focal
point by Maslov’s method (solid line) and Kirchhoff’s principle (dashed
line).
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Figure 3. Comparison of field distribution around the focal point
between isotropic media (solid line) and uniaxial crystal (dashed line).

Figure 4. Comparison of field distribution around focal region at
different orientations of optical axis i.e., at theta = 0 (solid line), theta
= 30 (dot line), theta = 45 (dashed line) and theta = 60 (dashdot
line).

from θ = 0◦. If we continue to increase the angle θ, we will obtain a
maximum displacement of the focal area when θ = 45◦. If the angle θis
monotonically increased above θ = 45◦, then the displacement of the
focal area will be monotonically reduced until θ approaches θ = 90◦.

Throughout the discussion, for uniaxial crystal case, we have
used LiNbO3, which has ordinary refractive index of no = 2.208 and
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Figure 5. Comparison of field distribution around focal region at
different orientations of optical axis i.e., at theta = 0 (solid line), theta
= 45 (dashed line) and theta = 75 (dashdot line) and theta = 90 (dot
line).

Figure 6. Field intensity variation at different orientations of optical
axis i.e., at theta = 0 (dot line), theta = 15 (dashdot line), theta = 30
(dashed line) and theta = 45 (solid line).
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Figure 7. Field intensity variation at different orientations of optical
axis i.e., at theta = 50 (dot line), theta = 60 (dashdot line), theta =
75 (dashed line) and theta = 90 (solid line).

extraordinary refractive index of ne = 2.300. The distance between
the rear face of the lens and front face of uniaxial crystal kd1 = 5 from
the plane uniaxial interface. It may be noted that, focal point in the
absence of the crystal would be at a distance of kf = 15, refractive
index of plano lens is n = 3.84 and radius is ka = 15. Figure 6 and
Figure 7 show variation of field intensities at different orientation of
optical axis that is at θ = 0◦, θ = 15◦, θ = 30◦, θ = 45◦, θ = 50◦, θ =
60◦, θ = 75◦ and θ = 90◦ respectively.

APPENDIX A. EVALUATION OF THE J(t)

D(t) =
∂(x, y, z)
∂(ξ1, η1, t)

=

∣∣∣∣∣∣∣∣∣∣∣

1 +
∂qx

∂ξ1
t

∂qy

∂ξ1
t

∂ζ1

∂ξ1
+

∂qe
z

∂ξ1
t

∂qx

∂η1
t 1 +

∂qy

∂η1
t

∂ζ1

∂η1
+

∂qe
z

∂η1
t

qx (qy) qe
z

∣∣∣∣∣∣∣∣∣∣∣
= Ut2 + V t + W (A1)

where U, V , W are

U =
(
∂(qy)
∂ξ1

∂qe
z

∂η1
− ∂(qe

z)
∂ξ1

∂(qy)
∂η1

)
(qx)
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+
(
∂(qx)
∂η1

∂(qe
z)

∂ξ1
− ∂(qe

z)
∂η1

∂(qx)
∂ξ1

)
(qy)

+
(
∂(qx)
∂ξ1

∂(qy)
∂η1

− ∂(qy)
∂ξ1

∂(qx)
∂η1

)
(qe

z)

V =
(
∂(qy)
∂ξ1

∂ζ1

∂η1
− ∂ζ1

∂ξ1

∂(qy)
∂η1

− ∂(qe
z)

∂ξ1

)
(qx)

+
(
∂(qx)
∂η1

∂ζ1

∂ξ1
− ∂ζ1

∂η1

∂(qx)
∂ξ1

− ∂(qe
z)

∂η1

)
(qy)

+
(
∂(qy)
∂η1

+
∂(qx)
∂ξ1

)
(qe

z)

W =
(
∂ζ1

∂ξ1
(qx) +

∂ζ1

∂η1
(qy)

)
+ (qe

z) (A2)

We may rewrite the values of U , V and W by using the following
relations

∂(qx)
∂ξ1

=
∂Qt(α)

∂α

∂α

∂ξ1
cosβ −Qt(α)

∂β

∂ξ1
sinβ

= −PD cos2 β +
Qt

ρ
sin2 β

∂(qy)
∂ξ1

=
∂Qt(α)

∂α

∂α

∂ξ1
sinβ −Qt(α)

∂β

∂ξ1
cosβ

= −
(
PD +

Qt(α)
ρ

)
cosβ sinβ

∂(qx)
∂η1

=
∂Qt(α)

∂α

∂α

∂η1
cosβ −Qt(α)

∂β

∂η1
sinβ

= −
(
PD +

Qt(α)
ρ

)
cosβ sinβ

∂(qy)
∂η1

=
∂Qt(α)

∂α

∂α

∂η1
sinβ −Qt(α)

∂β

∂η1
cosβ

= −PD sin2 β +
Qt

ρ
cos2 β

∂qe
z

∂ξ1
=

∂qe
z

∂α

∂α

∂ξ1
= −P

∂qe
z

∂α
cosβ

∂qe
z

∂η1
=

∂qe
z

∂α

∂α

∂η1
= −P

∂qe
z

∂α
sinβ

where

tanα = −g′(ρ), tanβ =
η1

ξ1
,

∂α

∂ξ1
= P cosβ,

∂α

∂ξ1
= P sinβ
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∂β

∂ξ1
= −sinβ

ρ
,

∂β

∂η1
=

cosβ
ρ

,
∂ζ1

∂ξ1
= g′(ρ)cosβ,

∂ζ1

∂η1
= g′(ρ)sinβ

The new expressions for U , V and W are given by

U = P
Qt(α)

ρ
(Qt(α)D1 − qe

zD)

V =
Qt(α)

ρ
(qe

z + Qt tanα) + P (Qt(α)D1 − qe
zD)

W = qe
z + Qt tanα

D1 =
∂qe

z

∂α
= G

(
1 − 1√

B

K(α) sinα

1 + χ cos2 θ
+

A√
Bχ cos2 θ

)

G = −χK(α) sin θ cos θ
1 + χ cos2 θ

(
−n2 sinα sin 2α

2
√

2 − n2 sin2 α
+ n2 sin2 α + K(α) cosα

)

where Hence we have

D(t) = Ut2 + V t + W = (P
U0

E
t + 1)(

Qt(α)
ρ

t + 1)

where

P =
(
√
n2 − 1) · n−1

n+1f
2

[n2ξ2 + (n2 − 1)2f2][ξ2 + n2−1
n+1 f2]

1
2

ρ =
(n− 1)f tanα√

1 − (n2 − 1) tan2 α

U0 = Qt
∂qe

z(α)
∂α

− qe
z

∂Qt(α)
∂α

)
E = qe

z + Qt tanα
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