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Abstract—In the application of two-dimension (2D) finite-difference
time-domain (FDTD) to scattering analysis of object embedded in
layered media, the incident electromagnetic wave propagation is much
more complicated, it can not inject the plane wave source by traditional
method. To solve this problem, the Π-shape total-field/scattering-
field (TF-SF) boundary scheme is presented. The side TF-SF
boundaries are governed by the modified 1D Maxwell’s equations,
but the discretization for which to p-wave is more difficult than n-
wave. Then an auxiliary magnetic variable is used, which can develop
the modified 1D-FDTD to p-wave without any approximately. To
truncate the modified 1D-FDTD, the convolutional perfectly matched
layer (CPML) absorbing boundary condition (ABC) is also given.
Examples show the feasibility and applicability of proposed Π-shape
TF/SF boundaries scheme.

1. INTRODUCTION

The analysis of scattering in layered media is the most popular research
area, which includes the detection of a target in the subsurface or
submarine, on the ground or water surface and in the low altitude,
the checking of the biological body, the nondestructive examination
of optical element and so on. The finite-difference time-domain
(FDTD) method [1] is one of the most effective techniques for
analyzing electromagnetic problems for complex target. However,
being the reflection and transmission waves in dispersive layered media,
the incident electromagnetic wave propagation becomes much more
complicated, which causes difficulty in the plane wave source injection
in layered media.
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The three-wave method [2] was used to solve this problem
currently, which needs to work out the reflection and transmission wave
in frequency-domain at each interface, and transform them into time-
domain by Fourier transform, then applied to the total-field/scattering-
field (TF-SF) boundary. Yi et al. [3] presented a scheme of 2D-
FDTD with an obliquely incident angle, which is available to the non-
dispersive media. Based on [3], Winton et al. [4] derived the modified
1D Maxwell’s equations for n-wave (TM-wave) and p-wave (TE-wave)
obliquely incident to layered dispersive media. However the treatment
of 1D-FDTD to p-wave is more difficult than to n-wave. The modified
1D-FDTD to n-wave can be discretised directly. However, the similar
treatment for p-wave has to be restricted to the modulated pulse of
narrow band, because the transmission angle is frequency dependent
in dispersive media. The other method proposed by Capoglu et al. [5]
using a magnetic auxiliary variable, but it is still restricted to the non-
dispersion problem.

In this paper, the computation scheme suitable for layered
dispersive and lossy media is presented in Section 2. In Section 3,
the modified 1D Maxwell’s equation to p-wave is developed in layered
dispersive and lossy media. The convolutional perfectly matched layer
(CPML) absorbing boundary condition (ABC) to modified 1D-FDTD
is also given. And then the treatment of incident wave along upper and
lower TF-SF boundaries is discussed. Three examples are presented in
Section 4, which show the effectiveness of proposed method applicable
to the obliquely incident plane wave in layered dispersive and lossy
media. In Section 5, we conclude the study.
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Figure 1. Geometry of Π-shape TF-SF boundary for layered
dispersive and lossy media scattering problem.
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2. CALCULATION SCHEME

The configuration of layered dispersive and lossy media is shown in
Figure 1. The calculation scheme for the scattering problem is as
follows: (1) A traditional 1D-FDTD is used to generate an obliquely
incident wave in free space along ki direction, where S represents the
point source in free space. (2) We use the modified 1D-FDTD to
simulate the incident wave along side TF-SF boundary [4], viz. AD and
BC, where S1 and S2 represent the point source in modified 1D-FDTD
on AD and BC, respectively. Their projections onto ki direction are S′

1
and S′

2, respectively. The incidence wave on S1 and S2 for modified 1D-
FDTD can then be derived by linear interpolation to traditional 1D-
FDTD [6–8]. This ensures the synchronization of incidence wave along
the side TF-SF boundary AD and BC. (3) The upper TF-SF boundary
AB is located in free space. The incident wave is in fact a duplication
of the waveform at the corner A or B of TF-SF boundary with a
proper time delay. (4) The lower TF-SF boundary can be treated by
the same way as the upper TF-SF, if the lowest layer medium is non-
dispersive and lossless. If the lowest layer medium is dispersive and
lossy medium, we extend the side TF-SF downwards into CPML, as
indicated by ellipse in Figure 1. It makes sure that the downward
traveling wave is absorbed at lower media by CPML. This is an open
TF-SF scheme with Π-shape that is not necessary to determine the
incidence wave along the lower TF-SF as it does in the closed TF-SF
scheme [6].

3. THEORY AND ANALYSIS

In the phasor domain, the relative permittivity of a single-pole Debye
dispersive and lossy medium [6] is given by

εr(ω) = ε∞ +
∆ε

1 + jωτ
+

σ

jωε0
(1)

where εs is the static relative permittivity, ε∞ is the infinite-frequency
limit for the relative permittivity, they satisfy ∆ε = εs − ε∞, τ is the
single pole relaxation time, and σ is the conductivity.

The 2D-FDTD update equations to p-wave for electric and
magnetic field with the grid spacing of ∆x and ∆y and the temporal
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step of ∆t are written as
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(4)

where Jd are the polarization current in time domain due to the Debye
single pole. The subscripts i and j are the grid point along x and y
direction, the superscript n is the number of time step. The coefficients
in expressions (2)–(4) are listed as

Ca(m) =
2ε0ε∞ + βd − σ∆t
2ε0ε∞ + βd + σ∆t

;
2∆t

2ε0ε∞ + βd + σ∆t
; kd

2τ − ∆t
2τ + ∆t

;

βd =
2ε0∆εt
2τ + ∆t

; CP (m) =
2µ0 − σm∆t
2µ0 + σm∆t

; CQ(m) =
2∆t

2µ0 + σm∆t

3.1. Treatment for Modified 1D Maxwell’s Equation to
p-wave

In Debye medium, the modified 1D Maxwell’s equation to p-wave [4]
in frequency domain can be expressed as

∂Hz1D

∂y
= jωε0εr(y, ω)Ex1D

k2

k2
y

∂Ex1D

∂y
= jωµ0Hz1D

(5)
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We consider the phase matching condition that the tangential
component of the wave vector kx is constant in each layer media.
Where k = ω

√
µ0ε0εr, k1x = ω

√
µ0ε0ε1r sin θ and k2

y = k2 − k2
x =

k2 − k2
1x, the Equation (5) can be rewritten as

∂Hz1D

∂y
= jωε0εr(y, ω)Ex1D

εr(y, ω)
∂Ex1D

∂y
= jωµ0

[
εr(y, ω) − ε1rsin

2θ
]
Hz1D

(6)

Note that εr(ω) is written as εr(y, ω) in Equation (6) to indicate
the permittivity varies along y direction. In reference [4], an auxiliary
variable E′

x1D = εr(y, ω)Ex1D is introduced to treat Equation (6).
However, the left-hand of the second expression in (6) can not be
substituted by partial derivative of E′

x1D with respect to y, because the
relative permittivity of εr(y, ω) is the function of variable y. Winton
may recognize this problem, he give an alternate TE1D equations.
But the alternate algorithm used the transmission angle at the center
frequency of narrowband modulated pulse to instead the transmission
angle to wideband. In dispersive media, this alternate algorithm is
approximation; it can’t be excited by the Gaussian’s pulse with very
wide band. To overcome this difficulty, we introduce a new auxiliary
variable H ′

z1D defined by

H ′
z1D =

[
εr(y, ω) − ε1r sin2 θ

]
εr(y, ω)

Hz1D (7)

Equation (6) is then transformed into time domain and written as

∂Hz1D

∂y
= ε0ε∞

∂Ex1D

∂t
+ σEx1D + Jx1D

Jx1D + τ
∂Jx1D

∂t
= ε0∆ε

∂Ex1D

∂t
∂Ex1D

∂y
= µ0

∂H ′
z1D

∂t

(8)

where Jx1D is the polarization current in time domain due to the Debye
single pole.

To determine the relation of auxiliary variable H ′
z1D with Hz1D in

Equation (7), we let

ε′(y) = ε∞(y) − ε1r sin2 θ (9)
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and substitute Equation (1) into Equation (7), then obtain
(
ε∞ +

∆ε
1 + jωτ

+
σ

jωε0

)
H ′

z1D =
(
ε′ +

∆ε
1 + jωτ

+
σ

jωε0

)
Hz1D

(10)

Hereinafter, the subscription “z1D” is dropped for expression
simplicity. The relationship between H ′ and H is then obtained from
Equation (10). We multiply both sides of Equation (10) by jω+(jω)2 τ ,
and implement the transformation (jω)n ↔ ∂n/∂tn between frequency
and time domain. This gives

σ

ε0
H +

(
ε′ + ∆ε+

στ

ε0

)
∂H

∂t
+ ε′τ

∂2H

∂t2

=
σ

ε0
H ′ +

(
ε∞ + ∆ε+

στ

ε0

)
∂H ′

∂t
+ ε∞τ

∂2H ′

∂t2
(11)

The discretization of Equation (11) in FDTD is of the following form:

Hn+ 1
2 = R0 ·H

′n+ 1
2 +R1 ·H

′n− 1
2 +R2 ·H

′n− 3
2 − L1 ·Hn− 1

2 −L2 ·Hn− 3
2

(12)

where

R0 =
2β2 + ∆t · β1

2α2 + ∆t · α1
, R1 =

−4β2 + (∆t)2 · 2β0

2α2 + ∆t · α1
, R2 =

2β2 − ∆t · β1

2α2 + ∆t · α1
,

L1 =
−4α2 + (∆t)2 · 2α0

2α2 + ∆t · α1
, L2 =

2α2 − ∆t · α1

2α2 + ∆t · α1
, α0 = β0 =

σ

ε0
,

α1 = ε′ + ∆ε+
τσ

ε0
, α2 = ε′τ, β1 = ε∞ + ∆ε+

τσ

ε0
, β2 = ε∞τ

The modified 1D Maxwell’s equation top-wave in Debye dispersive
layered media can be numerically computed by Equation (12) and the
discretization form of (8) as commonly used in FDTD algorithm. It is
worth pointing out that there is not any approximation, such as narrow
band restriction, because of the θ in(9) being the incident angle other
than the transmission angle in [4], required while the auxiliary variable
H ′

z1D in Equation (7) is implemented.
In 2D-FDTD, the simulation of plane wave along side TF-SF

boundary at i = ir should especially treat the field component of
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Hz(ir, j) and Ey(ir + 1/2, j) in expressions (2) and(4), they need the
incident wave component of Ey(ir + 1/2, j) and Hz(ir, j) respectively,
but the expressions (8) and (10) only contain Hz and Ex, there is no
Ey. Fortunately, we note that (4) is the update equation about Ey,
However which should work out the Hz along i = ir and i = ir + 1.
Then we should simulate twice by the expressions (8) and (10), the
right TF-SF boundary is treated completely. The treatment to left
boundary near i = il is similarly.

3.2. CPML ABC for Modified 1D-FDTD

The modified 1D Maxwell’s equation is used as the governing equation
for incident wave in layered media along the side TF-SF, as discussed
above. The Mur’s ABC can be used to truncate the side TF-SF, AD
or BC, as shown in Figure 1, providing the lowest layer medium is
non-dispersive and lossless. While the dispersive and lossy media is of
interest as considered in this paper, we implement the CPML ABC to
truncate side TF-SF boundary.

Following the first and third equation of (8) and [6, 9], the
Ampere’s law in the CPML region is then expressed as

ε0ε∞
∂Ex1D

∂t
+ σEx1D + Jx1D =

1
κy

∂Hz1D

∂y
+ ζy ∗

∂Hz1D

∂y

µ0
∂H ′

z1D

∂t
=

1
κy

∂Ex1D

∂y
+ ζy ∗

∂Ex1D

∂y

(13)

The expression of κy and ζy in Equation (13) can be found in [6, 9].
The RC technique can be implemented to manipulate the convolution
in (13) in FDTD computation, as reported by Luebbers [6, 10].

For simplicity in programming, the side TF-SF is extended till to
the bottom of 2D-FDTD computation region, as shown in Figure 1.
The thickness and parameters of CPML chosen in 1D and 2D FDTD
are identical to each other.

3.3. Treatment of upper TF-SF Boundary in Free Space

Suppose A′(i, ju) is an arbitrary grid point on the upper TF-SF AB,
as shown in Figure 2. Considering that the upper TF-SF boundary
AB is parallel to the interface and located in free space, the incident
waveform at point A′ is the duplication of the waveform at corner A
of upper TF-SF with a proper time delay ∆TAA′ ,

∆TAA′ =
∣∣AA′′∣∣/c0 = (ir − i) · ∆x · sin θ/c0 (14)
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Figure 2. Incident wave along the upper TF-SF boundary.

whereθ is the angle of incidence, c0 the wave velocity in free space. If
∆TAA′ is not an integer multiple of ∆t, say ∆TAA′ = (l + w) ∆t, where
lis integer number and 0 < w < 1, the linear interpolation scheme can
be used as follows:

Hn
z,inc (i, ju) = (1 − w)H l

inc (ir, ju) + wH l+1
inc (ir, ju) (15)

in which (ir, ju) stands for the grid point at corner A.

3.4. Treatment of Lower TF-SF Boundary

Due to the incident wave on the lower TF-SF boundary is in fact the
transmitted wave that is propagating outwards to the total field region,
the incident waveform at a point on the lower TF-SF is also identical
to the waveform at corner of lower TF-SF with a proper time delay,
as discussed for the upper TF-SF, providing the lowest layer medium
is non-dispersive and lossless. The time delay may be calculated by
Equation (14) as well, except for θ representing the refracted angle and
the wave velocity in lowest layer medium.

In the case of lowest layer medium being dispersive and lossy, we
may extend the lower TF-SF boundary CD downwards into CPML,
as shown in Figure 1. With this arrangement, it is not necessary to
calculate the components of incident wave along the lower TF-SF any
more.

4. EXAMPLES

4.1. Half-space Model

The galactophore tissue [11] is a simple half-space model. The lower
layer medium is non-magnetism, dispersive and lossy, and upper is
free space, their interface is located at y = 0. Debye medium in this
example is characterized by a single pole, as shown in Equation (1)
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where ε∞ = 7.0, εs = 10.0, σ = 0.15 S/m and τ = 7.0 × 10−12 s. In
FDTD computation we take δ = 1.25×10−4 m and ∆t = 2.1×10−13 s.
The FDTD domain is [−50: 50, −50: 50], outermost shell is 10 layers
CPML, and TF region is [−45: 45, −60: 45]. The impinging Gaussian
pulse [6] wave source is shown as

Hi(t) = exp
[
−4π(t− t0)2/T 2

]
(16)

where ∆t = δ/2c0, the width of pulse is T = 60∆t, t0 = 0.8T , and the
incident angle θ = 30◦.

The reflection waveform in time-domain at the node (45, 30)
computed by modified 1D-FDTD is shown in Figure 3 by solid line.
The result calculated by Fourier transform and analytical reflection
coefficient [12, 13] is also displayed by dash line for comparison. They
are in good agreement that validates our proposed scheme.

Figure 4 illustrates the distribution of magnetic field at different
time steps along the side TF-SF AD as shown in Figure 1, which is
computed by the modified 1D-FDTD. The Gaussian pulse is incident
to the interface y = 0 from free space y > 0. The wave front
arrives at and across the interface y = 0 at t = 120∆t and 170∆t,
respectively, as shown in Figure 4. The reflected and transmitted waves
are then propagating in different direction and apart from each other
at t = 220∆t, as shown in Figure 4. It can also be seen from the
waveform at 500∆t that the absorption boundary CPML works well
for modified 1D-FDTD.
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Figure 3. Waveform in time-domain at node (45, 30).

4.2. Multi-layer Model

A four layer model consists of free space, dry soil, water and wet soil
from top to bottom. The thickness and constitutive parameters in
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Figure 4. Distribution of magnetic field along side TF-SF AD at
different time steps.

computation are given in Table 1. In the 2D-FDTD simulation we
take δ = 0.2 cm, and FDTD region is within [−200: 200, −500: 500],
surrounded by 10 layer CPML. The TF region is [−195: 195, −510:
495], in which the interface between dry soil and water is located
at y = 0. The Gaussian pulse as in Equation (16) of ∆t = δ/2c0,
T = 220∆t and t0 = 0.8T is impinging from free space with the incident
angle of θ = 20◦.

Table 1. Parameters for four layer media.

Media εs ε∞ σ (S/m) τ (s) Thickness (m)
Free space 1.0 1.0 0.0 - - - - - - - - - - - -
Dry soil 7.73 7.73 0.0 - - - - - - 0.6
Water 1.8 81.0 43.43 9.4 × 10−12 0.4

Wet soil 7.73 7.73 0.273 - - - - - - - - - - - -

The waveform of magnetic field Hz at observation point (0.39 m,
0.9 m) calculated by modified 1D-FDTD is plotted in Figure 5. It can
be observed that the first wave crest (A) is the incident Gaussian pulse,
followed by the wave (B) reflected from the upper interface between
free space and dry soil. The crest (C) in figure comes from the reflection
from the lower interface between dry and water.

Note that the time interval between successive crests after (C) is
about 11.1 ns. This can be explained as follows: the wave speed in dry
soil is c = c0/

√
7.73 , where c0 = 3.0 × 108 m/s and the vertical speed
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Figure 5. Hz waveform simulated by modified 1D-FDTD at the point
(0.39 m, 0.9 m).

is c′ = c/cos θ′′d . The refraction angle in dry soil θ′′d can be derived by
sin θ′′d = sin θ/

√
7.73. Therefore the round-trip time in dry soil layer

is tround = 2 × 0.6/c′ ≈ 11.0 ns. Furthermore, the electromagnetic
wave propagating in water layer is almost dissipated for the high-loss
of water. Thus the affect of water and wet soil layers to waveform in
Figure 5 can hardly be observed.

Figure 6 gives the snapshot at different time steps, where wave
crests are mainly located (a) near the interface between free space
and dry soil at 700∆t; (b) within the dry soil layer at 2000∆t; (c)
and (d) near the interface between dry soil and water at 2300∆t and
3000∆t, respectively. The dash lines in the figure indicate the interfaces
between different media. It is observed that the refraction angle in
dry soil is θ′′d ≈ 7.07◦ that is in good agreement with the theoretical
calculation, and the width of pulse in dry soil becomes much narrower
than that in free space, because of the slower wave velocity in dry soil.

It can also be seen from (c) and (d) in Figure 6, the
electromagnetic wave at the interface between dry soil and water
is reflected strongly because water is high-lossy medium. On the
other hand, the refracted wave in water decays rapidly. The relative
refractive index of water with respect to dry soil is approximate equal
to 3.24 for low frequency; the refraction angle is θ′′w = sin 20◦/

√
81.0 =

sin θ′′d/3.24 ≈ 2.2◦ in water layer that is approximately equal to 0◦.
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Figure 6. Snapshot to four layers model at different time. (a) ∼ (d)
are the component of magnetic field Hz at 700, 2000, 2300 and 3000
time step, respectively.

4.3. Scattering Problem

The analysis of EM scattering problem using FDTD is an interesting
research area [14–22]. Suppose the galactophore tissue is of thickness
0.01 m, in which there is cancerization [11] at depth of 0.25 cm with
radius 0.075 cm. Assume the top and bottom layers are both free space.
Constitutive parameters of the galactophore tissue are the same as in
Section 4.1, and that of the carcinosarcoma are ε∞ = 3.99, εs = 54.0,
σ = 0.7 S/m and τ = 7.0×10−12 s. We take δ = 2.5×10−4 m in FDTD
and ∆t = 4.17× 10−13 s. The FDTD region and the incident wave are
also the same as in Section 4.1 except for T = 60∆t.

Figure 7 gives the snapshot at different time. The interfaces
between the free space and the galactophore tissue are located at
y = 20δ and −20δ; the dash lines and circles in the figure show the
interfaces between media and the carcinosarcoma, respectively. The
scattered fields at node (0, 47) by the layered galactophore tissue with
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Figure 7. Snapshot to the galactophore tissue with carcinosarcoma.
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and without carcinosarcoma are depicted in Figure 8, respectively,
which may help the analysis of this phenomenon.

5. CONCLUSION

The analysis of scattering problem in dispersive and lossy layered
medium half-space by FDTD is considered in this paper. To impose the
obliquely incident plane wave into the total field region we implement
a non-closed TF-SF scheme, in which a new modified 1D-FDTD to
p-wave is proposed. The lower TF-SF is set down to the CPML
so that the TF-SF boundary is, in fact, of Π-shape and not closed.
Computation examples are compared with the analytical solution and
Fourier transform result, which validate the feasibility of proposed
scheme.
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