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Abstract—With the recent advent on communication and satellite
industry, there is a great need for efficient Reflector antennas systems,
therefore more powerful techniques are requested for analysis and
design of new reflector antennas in a quick and accurate manner.
This work aim first to introduce wavelet-based moment method in 3D,
as a recent and powerful numerical technique, which can be applied
on a large reflector antennas, also the physical optics (PO) analysis
technique is well known among the designers as an asymptotic method
quick and powerful, ideally to predict far field and near field pattern,
may be combined with the wavelet-based moment method therefore
computing time and memory space can be saved, in this issue knowing
the limit of use of this asymptotic technique is worth well.
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1. INTRODUCTION

Great research works are undergoing to develop new schemes for
analysis and design of better reflector antennas more efficiently and
accurately. This paper presents a recent improvement on the classical
moment method, which suffers from computing time and memory
space, especially when dealing with large antennas. By using the
wavelets expansion, wavelets may be used as basis and testing
functions, wavelets are chosen as orthogonal types, in order to enable
sparse the matrix impedance generated by the operation digitalization
of the integral equation of the electric or magnetic field. Many
research work have curried out to apply wavelets on electromagnetic
scattering problems [4], some have been used upon 2D scattering
problems [6, 9, 13]. Few works were using wavelets upon 3D scattering
problems from conducting bodies of revolution [12].

A great Work have been done on the asymptotic Physical
Optics techniques some have upgrade this method by replacing
the surface current integration with the so called numerical grid
integration [3, 8, 10]. Others have combined the (OP) with the moment
method [5, 7]. The work presented by Y. R. Samii [1] some Anomalous
of the Optical Physics have been stated and care must be taken
when using this technique for the far field pattern. In this paper
the Optical Physics is applied on a simple reflector antennas fed by
a short dipole antenna, results are compared with the wavelets-based
moment method and the Grasp software in order to limit the use of
this technique.

The paper is presented as follow, first the theoretical aspect of the
Physical Optics is presented and applied on the reflector antenna in
brief way, second the wavelet-based moment method is given in detail
to study the 3D scattering problem and applied upon the reflector
antenna, at last the radiation pattern of co-polarization and cross-
polarization are given and the numerical results are discussed.

2. FORMULATION

2.1. Optical Physics

The radiation pattern for far field related to the reflector antenna
shown in Figure 1, is given by the integral equation as [2].
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Figure 1. Reflector antenna fed by a dipole antenna.

where the primed quantities are related to the radiation pattern
coordinate and the not primed are related to the reflector coordinate
Figure 1, k is the free space propagation and Zo is the intrinsic
impedance of free space, Ĩ is the unit dyadic and J̄s is the induced
surface current. The surface of the reflector antenna is considered
to be perfectly conductor (PEC), this is illustrated by the following
equation.

JS = n̂×
(

Hi + 
Hr

)
= 2n̂× 
Hi (2)

where n̂ is the unit normal vector to the reflector surface, the electric
field coming from the feed antenna is given in terms of principle plane
pattern as [11].


Einc (
rs) =
[
(CE(θs) sin(ϕs)) θ̂s + (CH(θs) cos(ϕs))ϕ̂s

] e−jk.rs

rs
(3)

The index (s) refers to the source coordinate in case where the
source is displaced for an offset reflector, and CE(θs), CH(θs) define
the E-plane and the H-plane principal patterns respectively, defined
as

CE(θs) = cosqe(θs) (4)

CH(θs) = cosqh(θs) (5)

The constants qe and qh serves to define the principal E and
H planes. The magnetic incident field is deduced by the following
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relation.


Hinc (
rs) =
1
Zo

rs × 
Einc (
rs) (6)

The reflector is considered to be parabolic, the surface is then defined
by following relation

r =
2Fo

1 + cos θ
(7)

where Fo is the focal distance, from Equation (7) the normal vector to
the surface and the unit normal vector can be written respectively as


n = −(1 + cos θ)r̂ + (sin θ)θ̂ (8)

n̂ =

n

|
n|

The radiation pattern for the far field Equation (1), is expressed more
by the following expression as

⇀

Eray(θ′, φ′) = −jkZoe
−jk|�r ′|

|
r ′|
[
F − r̂′(r̂ ′.F )

]
(9)

where F is given by

F =
∫ 2π

0

∫ θo

0
Js.e

jk.�r.r̂′r2 sec(θ/2) sin(θ)dθ.dϕ (10)

where θo is the maximum open angle on the reflector, the induced
surface current is defined by replacing Equation (6) into (2), after
then the electric radiation pattern is obtained from Equation (9). All
the research works curried out on the asymptotic Optical physics are
dealing with the integral part.

2.2. Wavelet-based Moment Method

2.2.1. Integral Equation

Moment Method is based on discritization of the electric integral
equation (EFIE), for the problem geometry of Figure 1, this is defined
as [2].
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where G(r, r′) is the free space green’s function:

G
(
r, r′

)
=
e−jk|r−r′|

4π. |r − r′| (12)

The boundary condition applied on the perfect surface of the reflector
antenna can be expressed as


Einc + 
Er = 0 (13)

The density of current is expressed by two tangential components
on the surface of the reflector as follow.

J(t, ϕ) = Jt(t, ϕ).ût + Jϕ(t, ϕ).ûϕ (14)

Each component is expressed as the sum of N × M series of
functions on the surface of the reflector as [12].

Jt(t, ϕ) =
N∑

n=1

M∑
m=1

It
n,mb

t
n(t, ϕ).ejn.ϕ (15)

And

Jϕ(t, ϕ) =
N∑

n=1

M∑
m=1

Iϕ
n,mb

ϕ
n(t, ϕ).ejn.ϕ (16)

where btn(t, ϕ) and bϕn(t, ϕ) are the basis functions, and It
n,m, Iϕ

n,m

are the unknowns. Using the boundary condition (13) in the integral
Equation (11), the scattered field can be expressed as follow

Escat(t, ϕ) =
∫ 2π

0

∫ Rmax

0
L (Jt, Jϕ) dϕdt (17)

where Rmax is the maximum arclength of the generating curve, and
L(Jt, Jϕ) is a differential operator defined as:

L (Jt, Jϕ) =
j

εoω

(
∂

∂ϕ.∂t
+ k2t̂.ϕ̂

)
J

(
t′, ϕ′

)
.G

(
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)
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For the sake of simplicity and for later use, Equation (17) is written as

T (t, ϕ) =
∫ 2π

0

∫ R max

0
L (Jt, Jϕ)dϕdt (19)
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2.2.2. Wavelets Expansions

The basis and testing functions are presented as a superposition of
wavelets at several scales including the scaling function. A Galerkin
method is then applied, where the set of basis functions used to present
the current function, are used as weighting functions. The wavelets
used here are Haar basis an orthogonal type. Its study is useful from
theoretical point of view, because it offers an intuitive understanding
of many multi-resolution properties. Furthermore, due to its simplicity
Haar wavelets are widely employed. The scaling function is φ(x), and
the mother wavelet function is ψ(x) [4], these are defined as:

φjn(x) = 2j/2φ
(
2jx− n

)
(20)

And

ψmn(x) = 2m/2ψ (2mx− n) (21)

where (m or j) are the resolution level and (n) is the translation factor.
The vector space V j linear span of φjn for j = 0, 1, . . . And n = 0,
1, . . . , 2j − 1. The vector space W j linear span of ψjn for j = 0, 1,
. . . . And n = 0, 1, . . . , 2j − 1. The property of W j ⊆ V j+1 holds the
relation between the vector spaces of different functions by:

V j+1 = V j ⊕W j (22)

The above equation states that the subspaceW j is the orthogonal
complement of V j in a larger subspace V j+1, which means for a
given function f ∈ RN with N samples or N Dimensional vector,
the projection of this function into the orthogonal basis is as fellow:

V k = V 0 ⊕W 0 ⊕W 1 . . .⊕W k−1, k = 0, 1, . . . , N − 1 (23)

And can be expressed in inner product as:

f = 〈f, v0〉 v0 + 〈f, v1〉 v1 + . . .+ 〈f, vN−1〉 vN−1 (24)

The number of wavelets used here are 128 and the matrix
corresponding is of 128×128 = 16384 elements. Some of these wavelets
are represented in Figure 2 and Figure 3.

A function ψ(x) is said to have vanishing moment of N order if:

+∞∫
−∞

xn.ψ(x).dx = 0 ∀n = 0, 1, . . . , (N − 1) (25)
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Figure 2. Haar wavelets φ0,0 and ψ0,0.
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Figure 3. Haar wavelets ψ1,0 and ψ1,1.

The wavelets are applied directly upon the integral equation. The
density of current will be represented as a linear combination of the
set wavelets functions and scaling functions as fellow:

Jt(t, ϕ) =
∑
n=0

at
n.φ

t
j.n(t, ϕ) +

2j−1∑
m=j

∑
n=0

ctm.nψ
t
m.n(t, ϕ) (26)

And

Jϕ(t, ϕ) =
∑
n=0

aϕ
n.φ

ϕ
j.n(t, ϕ) +

2j−1∑
m=j

∑
n=0

cϕm.nψ
ϕ
m.n(t, ϕ) (27)

For the sake of simplicity the current density is expressed only by the
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scaling functions as

Jt =
∑

n

Itφ
t
n (28)

And

Jϕ =
∑

n

Iϕφ
ϕ
n (29)

The fact that the wavelets are orthogonal and the presence of
vanishing moment, this is enabling sparse matrix production. When
applying Equations (28) and (29) into (19), we obtain the set of matrix
equation as follow: [

Zt,t
k,l Zt,ϕ

k,l

Zϕ,t
k,l Zϕ,ϕ

k,l

]
.

[
It
l

Iϕ
l

]
=

[
Et

k

Eϕ
k

]
(30)

where each element of the matrix is double inner product from the
wavelets functions in two coordinate as

Zt,t
k,l = 〈φk, 〈φl, T (t, t).Ω(r, ξ〉〉 (31)

where Ω(r, ξ) is the changing variable operator from r to ξ, here ξ is
the variable related to wavelet in the domain [0, 1]. Equation (31) is
written in explicit manner as [12].

Zt,t
k,l =

∫ 1

0
φk

[∫ 1

0
φl T (t, t) Ω(r, ξ) dξ

]
dξ′ (32)

In the same manner the remaining elements are expressed as follow

Zt,ϕ
k,l = 〈φk, 〈φl, T (t, ϕ).Ω(r, ξ〉〉 (33)

Zϕ,t
k,l = 〈φk, 〈φl, T (ϕ, t).Ω(r, ξ〉〉 (34)

Zϕ,ϕ
k,l = 〈φk, 〈φl, T (ϕ,ϕ).Ω(r, ξ〉〉 (35)

The excitation in the matrix Equation (30) is expressed as an inner
product of testing functions by

Et
k =

〈
φk, E

t
inc

〉
(36)

Eϕ
k = 〈φk, E

ϕ
inc〉 (37)

After then the matrix Equation (30) is solved and the unknowns
([It, Iϕ]) are defined, which enable radiation patterns calculation.
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3. NUMERICAL RESULTS

The wavelets used in this paper are constructed from Haar, an
orthogonal type with vanishing moment N = 7, the lowest resolution
level is chosen 2j = 27 = 128, since 128 wavelets are involved, a system
of matrix (of 128 × 128 elements) is generated.

The radiation patterns of the E-plane and H-plane for co-
polarization are presented respectively in Figure 4 and Figure 5, for
F/D = 0.6, D = 100λ, qe = qh = 4.9, incident angle ϕ = 90◦. The
results show good agreement with Grasp Software, and Physical Optics
gives the main lobe and second one exactly as presented. The results
presented are for co-polarisation only and there is no cross polarisation.

Figure 4. E-plane radiation pattern for parabolic reflector fed by
dipole antenna, F/D = 0.6, D = 100λ, qe = qh = 4.9, ϕ = 90◦.

Butter result are obtained for the physical optics when using high
value of F/D = 0.8, Figure 6 and Figure 7 show the radiation pattern
respectively for E-plane and H-plane, here the cross-polarization is
higher with ϕ = 45◦.

The resolution of the wavelets is set to 27 for threshold of 10−3 a
sparsity of 78% is obtained, going for upper resolution enable accurate
results but the impedance matrix became very heavy, so a compromise
have to be done, the results are in good agreement with the Grasp
software and with literature. The sparsification of the impedance
matrix with respect to the chosen threshold and the wavelet number
is presented in Table 1.

One can notice from the Table 1, that increasing wavelet number
can improve sparsification and lower threshold decrease sparsification.
Although accuracy of the results are obtained for very low threshold a
compromise is necessary.
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Figure 5. H-plane radiation pattern for parabolic reflector fed by
dipole antenna, F/D = 0.6, D = 100λ, qe = qh = 4.9, ϕ = 90◦.

Figure 6. E-plane radiation pattern for parabolic reflector fed by
dipole antenna, F/D = 0.8, D = 20λ, qe = qh = 6.5, ϕ = 45◦.

Table 1. Sparsification with respect to the threshold and the wavelet
number.

Threshold 10-2 10-3 10-4

Wavelet
Number

32 64 128 512 32 64 128 512 32 64 128 512

Sparsity
(%)

79.50 85.11 89.34 91.03 63.41 75.33 78.12 80.56 58.22 68.02 71.23 73.05
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Figure 7. H-plane radiation pattern for parabolic reflector fed by
dipole antenna, F/D = 0.8, D = 20λ, qe = qh = 6.5, ϕ = 45◦.

4. CONCLUSIONS

The Physical Optics asymptotic technique has been presented as well
as the Wavelet-based Moment Method for the study of electromagnetic
scattering related to the reflector antenna fed by a dipole antenna. In
different cases it has show that the wavelet-based Moment Method is
an exact and quick Method, results are similar to those given by Grasp
software, and results of the Physical Optics are exact for main lobe for
low F/D, and gives the second or the third lobe for high F/D, it has
been noticed that excessive computing time is needed for higher value
of D (exp .D = 100λ). For a future work the Physical Optics may
be used in combination with the Wavelet-based Moment Method for
saving time and memory space.
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