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Abstract—A semi-analytic method, based on scattering approach is
applied to analyze the finite size photonic crystal cavities surrounded
by cylindrical dielectric rods. The resonant frequency and the quality
factor (Q) are determined by this method. Also, with a source at
the center of the cavity, field and energy distribution can be obtained
at different frequencies. The algorithm is simple to simulate on PCs.
There is no need for absorbing boundary conditions which are required
in most numerical methods. Using the symmetry of the structure the
computational cost is reduced to 1/8 and 1/12 those of the square and
hexagonal lattices respectively. Since the computational time is very
low (in the order of one minute) the variation in size and dielectric
constant of the rods can be examined easily. It is shown as an example
that by varying the radius of the rods according to their distance
from the center of the cavity, the Q factor is increased considerably
in comparison with that of uniform structures.

1. INTRODUCTION

In recent years, photonic crystals have gained much attention for their
many fascinating properties. Among them, the more interesting ones
are localizing the light in resonant cavities [1], ability to guide light
beam even through a sharp bend [2], etc. Most of the properties
are based on the ability of photonic crystals in exhibiting a complete
photonic band gap, where light within that band gap cannot propagate
through the crystal in any direction [3]. Generally, resonant cavities
are formed by introducing point defects in the periodic lattice. These
structures exhibit localized modes in the bandgap region with a very
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narrow spectra and high Q factor in a small area, becoming a good
candidate for laser fabrication [4].

Different numerical methods have been used to study the localized
modes in photonic crystal cavities. The well known methods
are; plane-wave-expansion method (PWM) [4], finite-difference-time-
domain analysis (FDTD) [5, 6], finite-element method (FEM) [7–
9], scattering matrix method (SMM) [10–12] and Wannier equation
method [13]. In PWM and Wannier equation methods, a super-cell
with the periodic defects is considered. On the other hand, in numerical
methods such as FEM, one cell is considered to be analyzed and the
absorbing boundary conditions must be considered around the cell
for justifying the boundary conditions. The method presented in this
paper is a semi-analytical method based on multi- scattering approach
in cylindrical coordinates.

The SMM is applied to 2D photonic crystals consisting of the
cylindrical dielectric rods. The theory is based on the fact that: the
total field around each cylindrical dielectric rod in photonic crystals
contains two main components, i) the total incident field and ii) the
field scattered by that cylinder itself.

The total incident field in turn consists of two parts a) the field due
to the external source and b) the field due to the total scattering from
all the other rods that are incident to the cylinder under consideration.
The analytical expressions for determining the field at any point within
the photonic crystal can be obtained by relating the field scattered
from each dielectric cylinder to the field incident to it. For numerical
analysis, we assume that the incident field of part (b), around each
cylinder, is in the form of a Fourier-Bessel series with finite number of
terms and unknown coefficients. Therefore, the scattered field from
the rods can be determined analytically in terms of the unknown
coefficients. Now, the incident field at any point near each rod must
be equal to the sum of the entire scattered fields from the other rods
plus the fields from the external source at that point. By applying this
scheme at a sufficient number of points around the rods, the unknown
coefficients of the Fourier-Bessel series and hence the total field inside
the structure can be determined.

The algorithm for this method is simple and efficient as far as
CPU capacity and computational time are concerned. Application
of symmetry reduces the volume of computation significantly, e.g., in
square lattices, 1/8 of the structure and for hexagonal lattices only
1/12 of the structure is enough to be calculated. Thus, we can simply
compare the properties of the cavity for different parameters such as
the radius of rods, the lattice constant and the dielectric constant.
Also, the field and energy distribution can be obtained at different
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wavelengths of the incident light without spending too much time.

2. THEORY

As mentioned before when a number of dielectric cylinders are
illuminated by an external light source, it is possible to define, in the
vicinity of the surface of each cylinder, two complementary parts of
the field: i) the total incident field and, ii) the field scattered by that
cylinder. Meanwhile, the total incident field in turn consists of two
components: The field due to the external source denoted by Eex and
the field due to the scattering from other cylinders denoted by Ei.
Therefore, at any point in the vicinity around the rod number m we
can write:

Ei
m =

N∑
k=1,k �=m

Es
k, m = 1, 2, . . . , N (1)

where N is the total number of rods, Ei
m is the field incident to the

rod number m due to the scattering from all other rods and Es
k is

the scattered field coming from the rod number k. The mechanism is
shown in Fig. 1 for three cylindrical obstacles. From the figure it is
clear that the total incident field to each rod is equal to the sum of the
fields scattered by the other two rods plus the incident field originating
from the external source.
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Figure 1. Demonstration of multiple scattering between three
obstacles illuminated by an external source.

On the other hand, the scattered field from rod number k is in
turn a function of the total incident field to this rod. That is:

Es
k = F

[
Eex + Ei

k

]
(2)
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where Eex and Ei
k are the fields incident to the rod number k from

the external source and multi-scattering respectively. In the case of a
cylindrical wave incident to a dielectric cylindrical rod, the function F
in (2) is an analytic function and is derived later as expressed in (9)
and (10). Substituting (2) in (1) gives:

Ei
m =

N∑
k=1,k �=m

F
[
Eex + Ei

k

]
, m = 1, 2, . . . , N (3)

This is a system of equations that relates the unknown incident
fields to the known source field and is used as the basis of the system
of equations for determining the field distribution within the photonic
crystal. To solve (3), the following technique is used:

The source is assumed to be a 2-D cylindrical source, with angular
frequency ω and amplitude I, located at the center of the cavity. Thus,
the radiated electric field is in the form of Hankel function of the second
kind. In other words, the incident field due to the external source, at an
arbitrary point n(rn, ϕn) around the rod number k, can be expressed
as follows [14]:

Eex(rn, ϕn) = az
−µ0I

4
ωH

(2)
0 (β0rn) (4)

where (rn, ϕn) denotes the polar coordinate of a point n when the
origin of the coordinates is located at the center of the cavity. The
scattered field by each dielectric rod, due to the above incident field,
can be determined analytically. First, by the Graf’s addition theorem,
we transform the Hankel function given in (4) to the center of the rod
under consideration. Thus, referring to Fig. 2 for rod k and point n,
we can write:

H
(2)
0 (β0rn)=

∞∑
p=−∞

H(2)
p (β0rok)Jp(β0rnk) exp(−jpθnk), rnk<rok (5)

where θnk = π − (ϕnk − ϕok), (rnk, ϕnk) is the coordinate of point n
with respect to the center of the rod k(denoted by Ok), and (rok, ϕok)
the coordinate of Ok with respect to the center of the cavity. Similar
notations may be assigned to other points and rods. For example,
(rm, ϕm) represents the coordinate of the point m with respect to the
center of the cavity and (rmq, ϕmq) shows the coordinate of the point
m with respect to the center of the rod no. q. Also Oq(roq, ϕoq) shows
the center of the rod no. q with respect to the center of the cavity.

Using (4) and (5), the incident field due to the external source, in
the vicinity of the rod no. k, may be expressed as follows:
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Figure 2. Illustration of two polar systems located at the center of
the cavity and the center of rod k. The coordinates of a point n in
both systems are shown.

Eex(rnk, ϕnk)

=
∞∑

p=−∞

[−µ0I

4
ω exp(−jp(π+ϕok))H(2)

p (β0rok)
]
Jp(β0rnk)exp(jpϕnk)

=
∞∑

p=−∞
Aex

pkJp(β0rnk) exp(jpϕnk) (6)

where the term in bracket denoted by Aex
pk is a constant depending

on the position of rod no. k. Since the field is assumed to be TM
to z in the structure, the electric field is in the z direction at all the
points. Thus, Equation (6) and the following equations are expressed
in scalar form and E in these equations, represents the z component of
the electric field. The field due to the external source incident to the
other rods can also be represented as a summation of Bessel functions
similar to those in (4). The scattered fields, due to these incident
fields, are in the form of Hankel functions [14]. As a result, the field
incident to rod no. k due to scattering from the other rods is in the
form of Bessel functions with respect to the center of that rod and can
be written as follows:

Ei
k(rnk, ϕnk) =

∞∑
p=−∞

Ai
pkJp(β0rnk) exp(jpϕnk) (7)
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where Ai
pk

′s are unknown coefficients that must be determined. The
total field incident to rod no. k, at an arbitrary point n(rn, ϕn), is:

Eex(rn, ϕn)+Ei
k(rn, ϕn) =

∞∑
p=−∞

[
Aex

pk +Ai
pk

]
Jp(β0rnk) exp(jpϕnk) (8)

and the total scattered field from rod no. k is:

Es
k(rn, ϕn) =

∞∑
p=−∞

ap

[
Aex

pk +Ai
pk

]
H(2)

p (β0rnk) exp(jpϕnk) (9)

where [14]:

ap = j−p J ′
p(β0b)Jp(β1b) −

√
εrJp(β0b)J ′

p(β1b)
√
εrJ ′

p(β1b)H
(2)
p (β0b) − Jp(β1b)H

(2)′
p (β0b)

(10)

where b is the radius, εr the dielectric constant and β1 the wave
constant in the rods respectively.

Substituting (7) and (9) in (3), the following expression is resulted:

Es
m(rn, ϕn) =

∞∑
p=−∞

Ai
pmJp(β0rnm) exp(jpϕnm)

=
N∑

k=1,k �=m


 ∞∑

p=−∞
ap(Aex

pk+Ai
pk)H

(2)
p (β0rnk)exp(jpϕnk)


 (11)

where N is the total number of rods in the structure, as defined in
(1). To solve (11), we truncate the second summation to P . Then
the number of unknowns Ai

pk will be N(2P + 1). Thus (11) must be
written at N(2P + 1) points in the structure around all the rods, i.e.,
(2P+1) points around each rod. Rearranging (11), we obtain a system
of linear equations as follows:

P∑
p=−P

N∑
k=1

Bpk(β0rnk) exp(jpϕnk)Ai
pk =

N∑
k=1,k �=m


 P∑

p=−P

apA
ex
pkH

(2)
p (β0rnk) exp(jpϕnk)


 (12)

where Bpm = Jp for k = m; Bpk = −apH
(2)
p for k �= m; n =

1, 2, . . . , N(2P +1). In matrix form, Equation (12) can be represented
as:

MAi = NAex (13)
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where Ai is the unknown column vector with N(2P +1)elements, Aex

is a vector defined in (6) and M and N are square matrices with
dimension N(2P + 1) × N(2P + 1); their elements are described in
(12).

Due to symmetry in real structures (photonic crystals), the fields
around the similar rods are alike and in most of the practical cases,
the number of unknowns in (12) is quite less than N(2P + 1).

Obtaining the coefficients Ai, field distribution in the structure
can be determined. The field outside each dielectric rod is given by
(9) and (10). Also, the diffracted field (field inside the rods) can be
obtained from the total incident field to each rod, and the result is:

Ed
k(n) =

∞∑
p=−∞

cp
[
Aex

pk +Ai
pk

]
Jp(β1rnk) exp(jpϕnk) (14)

where point n(rn, ϕn) is assumed to be inside the dielectric rod no. k,
and cp is given by [14]:

cp = j−p Jp(β0b)H
(2)′
p (β0b) − J ′

p(β0b)H
(2)
p (β0b)

Jp(β1b)H
(2)′
p (β0b) −

√
εrJ ′

p(β1b)H2
p (β0b)

(15)

where b, εr and β1 are as defined in (10).

3. NUMERICAL RESULTS

The method is used to analyze the square and hexagonal lattices of
cylindrical rods with cavities at the center. The results are focused
on the field distribution and quality factor and are compared with the
results of other methods. Each of these cavities is formed by removing
the central rod from the center of the lattice as shown in Fig. 3. The
specifications of the structures are chosen similar to those in [9] for the
purpose of comparison.

3.1. Square Cavity

This cavity consists of an n × n array of dielectric rods with lattice
constant a, embedded in air, where the central rod is removed. The
dielectric constant of rods εr is equal to 11.56 and their radius r is
equal to 0.2a. For resonance to occur at λ = 1.55 microns, the lattice
constant a is chosen as 0.58652 microns.

The number of terms in series (7) is taken equal to 15. Increasing
this number does not affect the solutions noticeably. By symmetry,
only 1/8 of the domain of square lattice leads to a complete solution.
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Figure 3. Structure of 2-D photonic crystal cavities with (a) square
lattice and (b) hexagonal lattice.

y x

Figure 4. Field distribution in a 5 by 5 square cavity at resonance.

Thus, for a 5 × 5 square cavity, which contains 24 rods, the total
number of unknown coefficients is 47. This is equal to 93 for a 7 × 7
structure and equal to 154 for a 9×9 cavity. As a result, the number of
equations in (13) is very low and the computation time is less than one
minute on a common PC. The electric field distribution in a typical
5 × 5 square cavity at resonant frequency is calculated and plotted
in Fig. 4. This is similar to the results obtained using finite-element
method [9]. The Q factors of three different sizes of the structure; 5×5,
7 × 7 and 9 × 9 are determined by monitoring the field amplitude at
different frequencies. The results are shown in Table 1, and compared
with the results of finite element (FE) [9]. The variation of the energy
within a 5 × 5 square cavity versus frequency is shown in Fig. 5. It is
noticeable that increasing the size of the crystal increases the quality
factor significantly and does not tend to a limit. The reason for such a
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Figure 5. Energy spectra in the square cavity versus the normalized
frequency.

nonphysical unlimited Q factor is in fact, infinite length of the rods. In
[15, 16], it is shown that the use of a photonic double hetero-structure
can prevent reduction of Q-factor due to the limited height.

Table 1. Values of Q factor for square cavity.

size
Scattering
Method

FE

5 × 5 178 178
7 × 7 1390 1414
9 × 9 9930 10276

Modification of the structure can easily be studied. For example,
by adjusting the radius of the rods according to their distance from the
center of the cavity, the Q factor can be changed. For the structure
shown in Fig. 6, the angle looking at the rods are constant and in
addition, the average area of the rods cross sections is π(0.2a)2. The
calculated Q factor is increased to 605 which is more than three times
greater compared to Q of the same structure with identical rods of
radius 0.2a.
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Figure 6. Structure of inhomogeneous 2-D square cavity. The angles
looking the rods are the same.

Figure 7. Field distribution in a 4-ring hexagonal cavity at resonance.

3.2. Hexagonal Cavity

Four-ring, five-ring and six-ring hexagonal lattices of cylindrical rods
with the cavities at the centers are analyzed by this method. The
dielectric constant of the rods εr is equal to 9 and the radius r is equal
to 0.378a. The lattice constant a is chosen as 0.7254 microns to obtain
resonance frequency at λ of 1.55 microns.

Applying the symmetry of the structure and choosing 15 unknown
coefficients for the incident wave to each rod, the total number of
unknowns is 78 for four-ring, 116 for five-ring and 162 for six-ring
hexagonal cavity. Field distribution for four-ring cavity is shown in
Fig. 7 and the Q factors of three different structures are given in
Table 2. The results are in correlation with the results obtained by
finite-element analysis [9].

Again modification of the radii may increase the Q factor; e.g.,
reducing the radius of the rods around the center of the cavity to half,
increases the Q factor of the four-ring cavity to 2650.
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Table 2. Values of Q factor for hexagonal cavity.

size
Scattering
Method

FE

4 rings 1771 1745
5 rings 18150 18081
6 rings 182030 - - -

4. CONCLUSION

The semi-analytic method presented in this paper is efficient and
accurate, while the computational efforts and consuming time are
very low. It is applicable to 2-D structures having cylindrical rods.
The number of unknowns (i.e., the number of terms in Fourier-Bessel
series) which must be chosen for an accurate analysis may be quite
low. There is no error due to the numerical techniques such as mesh
generation and absorbing boundary condition. The method is applied
to the 2-D cavities with cylindrical dielectric rods with different sizes
and structures. In spite of low computational effort and time, the
results of this approach are in very good correlations with the results
of other numerical methods.

Because of the low computational time (order of one minute),
modified cylindrical structures can also be analyzed simply. The effect
of variation in the radius of each group of cylinders on the Q factor is
demonstrated.
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