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Abstract—A numerical method is presented for determining the static
charge distribution and capacitance of a round disk capacitor. Based
on equivalent surface charge distributions, an integral equation subject
to the boundary conditions is transformed into an algebraic equation
by using the method of moments. In the proposed scheme to eliminate
the discretizing errors often encountered in other techniques, annular
patch subdomains are introduced, not only to improve the accuracy of
solutions, but also to reduce the matrix size of the resultant equation.
By solving the transformed algebraic equation, the charges per unit
area on the interfaces are numerically determined. With use of the free
charge on plates obtained by using annular patches, the capacitance
is more accurately calculated. The equipotential lines around a round
disk capacitor are also calculated.

In order to show the usefulness of this method, the employed
scheme is applied to a single circular disk with an exact solution, and to
the dielectric filled capacitor partially covered by plates. Those results
are examined and discussions are also made to support the validity of
the presented scheme.

1. INTRODUCTION

Evaluation of a capacitance for a round disk capacitor has been studied
by some authors [1–5] who were willing to take into account the fringing
field effects. In case no rigorous solutions are found, one should resort
to approximate solutions, including numerical methods for capacitors
with unknown solutions. In regards to the numerical formulations,
while one prefers to use the variational technique in terms of field
quantities [6], the other prefers to use integral methods based on
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charge densities residing on the surfaces [7, 8]. Those most frequently
used in integral methods, the surfaces are divided into a triangular
or rectangular patches, depending on the geometry, and the charge
densities are assumed to be uniform on these patches [7, 9]. However,
either of these methods may yield a matrix size which is too big or
poor accuracies if they are applied to a round disk capacitor due to
their discretizing scheme taken. For a close approximation, choosing
a well matched patch shapes suitable to the given geometry makes a
sense because the resultant matrix size or solution accuracy will be
greatly dependent on the patch shapes to be chosen.

In this paper, a capacitance and an equipotential line are
numerically calculated based on the determined surface charge
densities. In regards to the capacitance of a round disk capacitor filled
with a finite dielectric slab, the equivalent surface charges are placed
on the top and bottom plates as free charges and on the dielectric
boundary as bound charges, thereby the integral equation to be solved
can be represented by a free space Green’s function. As prescribed
boundary conditions, two potentials on the top and bottom conducting
plates and the continuity of electric flux density across the dielectric
layer were incorporated into the free space integral equation. In order
to determine the equivalent surface charge densities lying on the two
plates and dielectric layer, this integral equation is solved by the
moment methods, in which the expansion functions should be taken
over the subdomains to expand the unknown charge densities. The
testing functions should also be employed to enforce the prescribed
boundary conditions [10, 11]. Evidently, the accuracy of solutions and
resources of the machine are heavily dependent upon the type of chosen
expansion and testing functions in the method of moments.

In an application of moment methods, the plates are subdivided
into annular patches, and the dielectric layer into rings on which the
charge densities are assumed to be constant. Expansion functions
regarding the charge densities are taken as annular pulses, whereas
testing functions are chosen as tubes with zero thickness width
encircling the center of the divided patches, which eventually reaches
a point matching technique. By introducing these annular patch
subdomains, discretizing errors arising in divided round surfaces could
be completely removed, although other shapes including triangle
or rectangular patches are suffered from these errors. Hence, by
employing the scheme, not only the accuracy of numerical solutions,
but also the matrix size of a resultant algebraic equation is greatly
reduced compared to those of the rectangular or triangular subsections
because the chosen annular patches are perfectly suited to the shape
of a round disk capacitor to be considered.
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Once the equivalent surface charge densities are determined, the
capacitance and the equipotential line can be numerically computed.
By superposing the potential contributions of the annular patch
subsections, the equipotential lines are drawn around a capacitor. The
accuracy of numerical solutions is confirmed by comparing them to
the known exact solution for a single circular disk capacitor and to the
reported solution for a round disk capacitor.

Figure 1. Cross section of a round disk capacitor with a partially
filled dielectric slab.

2. FORMULATION OF THE PROBLEM

Figure 1 exhibits a round disk capacitor filled with a homogeneous
dielectric medium of dielectric constant εr, and the top and bottom
plate maintain the potential difference V1 and V2, respectively. In
this illustration, a denotes a radius of a round disk capacitor, W
represents the dielectric slab width, and h denotes the height between
the top and bottom conductors. The solution procedure is based on the
method by replacing all the conducting plates and dielectric layers with
equivalent layers of unknown charge densities in free space [12]. With
this replacement, the potential and electric flux density of a round disk
capacitor are given by

V (r) =
1

4πε0

∫∫
S

σT (r′)
|r − r′ |dS

′ (1)

D(r) = −ε∇V (r) (2)

where S is the surface of a round disk capacitor, V (r) denotes the
potential by the charges, and D(r) represents the electric flux density
vector. Also, σT (r′ ) represents the total charge density composed
of a free charge density lying on the plates and a bound charge
density on the dielectric to dielectric interface. In here ε and ε0 are
the permittivity of material and vacuum (or free space), respectively.
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Note that Equations (1) and (2) are represented by the free space
Green’s function because the replacement of conductors and dielectrics
by the equivalent surface charges has been made so that subsequent
computations will be performed in a free space.

By applying the potential boundary conditions to the top and
bottom plates, the potential in Equation (1) reduces to Vi for i = 1
and 2.

In order to evaluate Equation (2) along the medium interface, this
equation is to be decomposed into two parts, one with the self term
and the other with the mutual contribution term.

D± · (n) = D±
n (self) +D±

n (PV ) (3a)

where

D±
n (self) =

{
ε+ σT

2ε0
for exterior region

−ε− σT
2ε0

for interior region
(3b)

D±
n (PV ) =

ε±

4πε0
PV

∫∫
S

(r − r′ ) · n̂
|r − r′ |3

σT (r′)dS′ (3c)

In here PV
∫∫

(·)dS′ denotes the principal value of integration. The
superscripts (+) and (−) represent the exterior and interior region
of the medium, respectively. n̂ represents an outward normal vector
directed to the exterior region. When Equation (3) is applied to a zero
thickness conductor, the free charge density σf and the total charge
density σT are related as follows

∆D = (D+ −D−) · n̂

= D+
n (PV ) −D−

n (PV ) +
ε+ + ε−

2ε0
σT

= σf (4)

For a dielectric to dielectric boundary with no conductor present, ∆D
becomes zero since there is no free charge in this case. Once the total
surface charge density σT is determined, the free charge density σf

can be calculated by Equation (4). By specializing Equation (4) to a
dielectric to dielectric interface, the bound charge density σb lying on
that boundary is provided by

σb =
ε− − ε+
ε+

D+ · n̂ (5)

The total surface charge density σT is numerically obtained by
the method of moments. A set of expansion functions {fn(r); n =
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1, 2, · · · ,M} is chosen, and the surface charge density is expanded in
terms of the chosen expansion functions

σT =
M∑

n=1

σTnfn(r) (6)

where fn(r) has a unit height on the nth annular patch subdomains
and is zero otherwise. σTn is the expansion coefficient of the charge
densities to be determined. A number M = Nc + Nd is the total
number of subsections, in which Nc means the number of subdomains
on the conductors, and Nd represents the number on the dielectric to
dielectric interface. The total M equations are required to solve σTn

of which Nc equations are obtained by applying potential boundary
conditions on the plates, and the remaining Nd equations by applying
the continuity of normal components of the electric flux density on
the dielectric interface. By substituting Equation (6) into (1) and (4)
on which the potentials were set to Vi and the free charge density σf

set to zero, and testing of the resulting equation with each thin tube
weighting function led us to obtain[ Φm(fn)

· · ·
∆Dm(fn)

] [
σTn

]
=

[
Vi

· · ·
0

]
(7a)

where

Φm(fn) =
1

4πε0

∫∫
∆Sn

dS

|rm − rn|
(7b)

for m = 1, 2, · · · , Nc and n = 1, 2, · · · ,M as the voltage matrix
element, and

∆Dm(fn) =
(ε+ − ε−)

4πε0
PV

∫∫
∆Sn

(rm − rn) · n̂m

|rm − rn|3
dS +

ε+ + ε−

2ε0
(7c)

form = Nc+1, · · · ,M and n = 1, 2, · · · ,M as the flux matrix element.
The differential surface, ∆Sn, denotes the annular subsection, and the
homogeneous dielectric medium was assumed in the derivation. The
voltage matrix element Φm(fn) in Equation (7b) may be regarded
as a potential at the testing point due to a uniform surface charge
density ∆Sn over the nth annular ring with radii ρn. Once the total
surface charge density by the matrix inversion on Equation (7) was
determined, the free charge densities on either plate can be specified
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by using Equation (4). Hence, based on the total free charge Q and the
potential difference V between the plates, the capacitance of a round
capacitor can be found to be

C =
Q

V
=

∣∣∣∣∣∣
1

V2 − V1

Nt
c∑

n=1

σfn∆Sn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1

V2 − V1

Nc∑
n=Nt+1

c

σfn∆Sn

∣∣∣∣∣∣ (8)

where the superscript t in N t
c denotes the top plate. In Equation (8),

the third term numerator represents the total free charge on the top
plate, whereas the fourth term numerator indicates the total free charge
on the bottom plate due to the range of summation index n.

Figure 2. The coordinates for evaluating the voltage and flux matrix
elements.

3. EVALUATION OF MATRIX ELEMENTS

Figure 2 shows the coordinates for evaluating matrix elements in
Equation (7). By taking into account the symmetry of geometry
a testing point is chosen to lie on the xz plane for computational
convenience purposes. In this circumstance we recognize that the
distance vectors rm and rn are

rm = x̂ρm + ẑhm

rn = x̂ρn cosφ′ + ŷρn sinφ′ + ẑhn
(9a)

where φ′ is an angle between the x axis and radial distance ρn. The
distance |rm − rn| from a testing point rm to source point rn is

|rm − rn| =
√
ρ2m + ρ2n + (hm − hn)2 − 2ρmρn cosφ′ (9b)
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Substituting (9b) into Equation (7b) produces

Φm(fn) =
ρn∆Wn

2πε0

π∫
0

dφ′√
ρ2m + ρ2n + (hm − hn)2 − 2ρmρn cosφ′

=
ρn∆Wn

πε0Amn
K(kmn) (10a)

where

K(x) =

π
2∫

0

dφ√
1 − x2 sin2 φ

(10b)

A2
mn = (ρm + ρn)2 + (hm − hn)2 (10c)

k2
mn =

4ρmρn

A2
mn

< 1 (10d)

where ∆Wn represents the width of each annular patch with a surface
∆Sn as shown in Figure 2. In the derivation of Equation (10), a
new integral variable, φ = (π − φ′)/2, was introduced. K(x) in
Equation (10b) is a complete elliptic integral of the first kind. With
respect to nonoverlapped pulse portions (m �= n), the argument x in
K(x) lies between 0 and 1, as described in Equation (10d). Hence,
Equation (10) can be computed by a numerical integral technique
without encountering difficulties. In regards to the coincident pulse
portion (m = n), the integral is evaluated analytically. For this
to occur, the nth annular subsection is divided into two parts, one
of which includes a singular point and the other not. The integral
contributed by a singular point will be performed over an approximate
square area (∆Wn)2. In other words, by taking the angle θn = ∆Wn/ρn

which yields an approximate square area around a singular point,
the integral along the annular ring is separated into one ranging
from −θn/2 to θn/2 and the other from θn/2 to 2π − θn/2. After
setting ρm = ρn in Equation (9b) and substituting this result into
Equation (7b) shows the following equation

Φm(fn) =
1

4πε0

∆Wn/2∫
−∆Wn/2

∆Wn/2∫
−∆Wn/2

dxdy√
x2+y2

+
∆Wn

4πε0

2π−θn/2∫
θn/2

dφ′√
2
√

1−cosφ′

=
∆Wn

πε0
ln(1 +

√
2) +

∆Wn

2πε0
ln(cot(θn/8)) (11)
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In this equation, the first term is a contribution by a singular point and
the second term by the remaining parts, and ln denotes the natural
logarithm with a base e ∼= 2.718.

Since the voltage matrix has been evaluated, the flux matrix
will be computed in the next turn. The flux matrix ∆Dm(fn) in
Equation (7c) has to be evaluated over the plates and the dielectric
interfaces. The former is denoted by ∆Dm(fn)z and the latter by
∆Dm(fn)x, since the unit testing vector n̂m points toward ±ẑ direction
over the plates and x̂ direction over the dielectric interfaces when the
testing point lies in the xz plane. Both ε+ and ε− will be replaced
by ε0 and ε0εr respectively, and the relation φ = (π − φ′)/2 will be
used for computational purpose. In order to evaluate ∆Dm(fn)z for
the mutual term (m �= n), incorporating (rm − rn) · ẑ = hm − hn and
Equation (9b) into (7c) shows

∆Dm(fn)z =
(1 − εr)ρn(hm − hn)∆Wn

πA3
mn

π/2∫
0

dφ(
1 − k2

mn sin2 φ
)3/2

=
(1 − εr)ρn(hm − hn)∆Wn

πA3
mn

E(kmn)
1 − k2

mn

(12a)

where

E(x) =

π/2∫
0

√
1 − x2 sin2 φdφ (12b)

the function E(x) is a complete elliptic integral of the second kind. For
the self term (m = n), ∆Dm(fn)z becomes

∆Dm(fn)z =
1 + εr

2
(12c)

since the vectors rm − rn and n̂m are orthogonal to each other in
Equation (7c) for this case.

In order to calculate the flux matrix ∆Dm(fn)x for the mutual
term, substituting the relation (rm − rn) · x̂ = ρm − ρn cosφ′ and
Equation (9b) into (7c) yields

∆Dm(fn)x

=
1 − εr

4π

∆Wn/2∫
−∆Wn/2

ρndρ

2π∫
0

ρm−ρn cosφ′

[ρ2m+ρ2n+(hm − hn)2−2ρmρn cosφ′]3/2
dφ′
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=
(1 − εr)ρn(ρm + ρn)∆Wn

πA3
mn

π/2∫
0

dφ

(1 − k2
mn sin2 φ)3/2

−2(1 − εr)ρ2n∆Wn

πA3
mn

π/2∫
0

sin2 φ

(1 − k2
mn sin2 φ)3/2

dφ

=
(1−εr)ρ2n∆Wn

πA3
mn

[(
1+
ρm

ρn
− 2
k2

mn

)
E(kmn)
1 − k2

mn

+
2
k2

mn

K(kmn)
]

(13a)

In here K(x) and E(x) were already defined in Equations (10b)
and (12b) respectively. For the self term, the integral is evaluated
analytically. The subsection is divided into two parts; one including
a singular point and the remaining parts, as done for obtaining
Equation (11). Applying the similar procedure to evaluate ∆Dm(fn)x,
in this case no contribution is made from a singular point since the
distance vector rm − rn is perpendicular to x̂ over this section. Thus,
contributions are only made by sections excluding a singular point.
Hence, the expression on ∆Dm(fn)x for the self term becomes

∆Dm(fn)x =
(1−εr)ρm∆Wn

4π

2π− θn
2∫

θn
2

ρm(1 − cosφ′)
(
√

2ρm
√

1 − cosφ′)3
dφ′ +

1 + εr
2

=
(1 − εr)∆Wn

4πρm
ln(cot(θn/8)) +

1 + εr
2

(13b)

By putting the matrix elements provided by Equations (10), (11),
(12), and (13) into Equation (7), the charge density coefficient σTn

can now be determined. Once the total charge density distributions
by using Equation (7) are determined, the electric potential V (r) at the
field point r can be computed by superposing potential contributions
in terms of segment charges residing on the annular patches, which is
written as

V (r) =
M∑

n=1

φa(r : rn) (14)

where φa(r : rn) is a potential due to the nth annular subsection
with charge density σTn. This potential φa(r : rn) is equal to that
of Equation (1) with replacement of σT by σTn and r′ by rn. It is
noted that the charge density σTn has been determined by the matrix
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inversion on Equation (7). By using Equation (14), the equipotential
lines can be drawn around the round disk capacitor as depicted in
Figure 6.

4. NUMERICAL EXAMPLES

To illustrate the validity and usefulness of our numerical scheme, this
method was applied to a single circular disk with radius a which
was charged to a constant potential V0. The accurate charge density
distribution on this disk is given by [13, 14]

σ(ρ) =
4V0ε0

π
√
a2 − ρ2

(15)

where ρ is the distance from the center of a disk. The capacitance of
this disk is 8ε0a, which is also an exact solution. For a numerical
solution, the disk was divided into M equidistant annular patch
subsections, in which the constant charge density distribution on each
subsection was assumed.

Computation has been conducted for a single circular disk with
radius a = 1 and voltage V0 = 1[V ] by using the number of annular
patch M as 30. Figure 3 illustrates an excellent match between the
exact and computed charge density distribution for the circular disk.

Figure 3. Charge density distribution of a single circular disk (a = 1,
V0 = 1[V ]).

This graph shows singular behavior at the disk edge due to the
denominator in the Equation (15). In Table 1, a numerically calculated
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capacitance of a single circular disk with respect to the number of
employed subsections is presented for comparison between the annular
and triangular subsections [15]. The data in Table 1 represents the
normalized capacitance of C/a, with respect to the disk radius a.
The relative errors are less than 1% for a matrix size of 20 and of
0.5% for 40, respectively. As shown in this table, results by annular
patch subsections show much smaller errors than those of triangular
patches with the same matrix size. The computed solution is becoming
convergent to the exact solution by increasing the number of annular
subsections.

Table 1. Normalized capacitance of a single circular disk [pF/m].

Annular patch Triangular patch [15]

M C/a % error M C/a % error

10 69.57 1.76 18 59.80 15.57

15 70.01 1.16 30 61.10 13.74

20 70.22 0.86 42 61.80 12.75

25 70.35 0.68 54 62.24 12.13

30 70.43 0.56 60 66.03 6.78

40 70.55 0.41 84 66.72 5.72

exact 70.83

The round disk capacitor under consideration was shown in
Figure 1. Figure 4 shows the computed charge distribution of a round
disk capacitor for W = 0 in Figure 1; The protruded dielectric slab
is just fitted in between the upper and lower conducting plates. In
this figure, both radius a and height h were set to be unity, and the
voltages to be V1 = −V2 = 1[V ]. In other words, +1[V ] is applied to
the top plate and −1[V ] to the bottom plate so that 2[V ] is maintained
between the plates. Thus the 0[V ] equipotential line is formed along
the center line. Figure 4 shows a parallel-plate capacitor filled with a
relative dielectric constant of εr = 3.0. The portions between node A
and B are the metals together with the opposite side, and the portions
between node B and D are the dielectric layers.

The parallel-plate capacitor itself is replaced by a surrounding
medium in vacuum. The replacement is based on the well-known
method of replacing all the conducting surfaces by equivalent free
charge densities, and all the dielectric layers by equivalent bound
charge densities. Under this replacement, both free and bound charges
are put along A and B, whereas only a bound charge is placed along
B and D. The total charge on the conductor is the sum of both free
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and bound charges. However, the total charge on the dielectric layer
is just a bound charge in itself. This bound charge density is marked
with a dotted line in Figure 4, together with its sign as determined
by the portions of where it belonged. The sign of a bound charge is
negative on portions A and B, but it becomes positive on portions B
and C since the bound charges are the induced polarization charge in
character. A solid line indicates the total charge density. Its value is
lower than that of a free charge on portions A and B because it is a
sum of positive free charge and negative bound charges. It is noted
that the singular behavior around the corners is observed, as seen in
Figure 3.

The ratio between the amount of the total charge to the free charge
was about 2.2 at the center of the node between A and B, as shown in
Figure 4. Along the node boundary between A and B, the positive free
charge density and negative bound charge density due to the induced
polarization charges appeared as expected, since the potential of the
upper plate is higher than the lower plate. The discontinuity of a bound
charge at the corner of a capacitor, marked B and D in Figure 4, is
due to the singular behavior of the electric field at these locations. The
direction of the electric field lines emanating from the top to bottom
plate over layer B-C-D dictates the sign of the bound charge along
this boundary. Actually, the fringing (or leakage) electric field starts
at B, passes through C′, and ends at D. The point C′ is located at
the right hand side of point C. The bound charges lying along nodes
B-C-D are responsible for the fringing field effect. They cause bending

Figure 4. Charge density distribution of a round disk capacitor.
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of the equipotential lines across the dielectric interfaces. However, for
a small h/a ratio, the ratio of total to free charge is nearly unity and
eventually the fringing field has little significance. In other words, the
distance between point C′ and C becomes smaller as the ratio of h/a
is decreasing, eventually the range of electric field leakage extending
to the outside of the capacitor is diminished.

Figure 5. Normalized capacitance vs parameter h/a.

Figure 5 represents the capacitance of a round disk capacitor as
a function of normalized h/a for εr = 1.0 and 3.0, respectively. In the
light of Equation (16), the normalization is scaled to h/a for abscissa
and Ch/πε0εra2 for ordinate. Under the adopted normalization scale,
Figure 5 illustrates the expected behavior. It is noticed that the
logarithmic scale has been used to both axes.

Figure 6 shows the equipotential lines on the xz plane. The lines
are nearly parallel to each other in the interior region, but somewhat
bent at the corner due to the fringing field effect. At the corner, the
lines for εr = 3.0 are more parallel in comparison to those for εr = 1.0.
This is due to the fact that the fringing field becomes smaller as εr is
increasing. However, the equipotential lines for εr = 3.0 exhibits sharp
bending at the boundary (x = 1) because the normal component of the
electric field over the layer is discontinuous at a dielectric to dielectric
interface due to the existing bound charges. The equipotential lines
as seen in Figure 6 reflect these features. All of the electric field lines,
though not shown, would be perpendicular to the equipotential lines
shown in Figure 6.

The normalized capacitances for a capacitor shown in Figure 1
are calculated by changing the parameter W and h/a. Figure 7 shows
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Figure 6. Equipotential lines of a round disk capacitor.

Figure 7. Normalized capacitance versus parameter h/a for a round
disk capacitor with a partially filled dielectric slab (εr = 3.0).

these values together with results obtained by Shen’s formula [4]

C = εr
ε0πa

2

h

[
1 +

2h
πεra

{
ln

(πa
2h

)
+ 1.7726

}]
(16)

for a capacitance of a round disk with W = 0 in a microwave
integrated circuit. This equation is well suited only for h/a < 1,
since it was obtained under the first order approximation in its
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derivation. In this figure, as the uncovered dielectric slab width
W is increasing with respect to the length of conducting plate, the
corresponding capacitance is slightly increased, thereby the fringing
field effect becomes somewhat more evident. Due to the involvement
of the fringing field, the discrepancies between the numerical solutions
(indicated by a solid line) and Shen’s results (indicated by a broken
line) are proportionally increasing as the amount of ratio h/a is being
increased. The smallest error which occurred was at the h/a = 0.1 in
Figure 7, as expected.

5. CONCLUSION

A solution procedure to analyze a round disk capacitor was introduced
by using annular patch subdomains. Based on this technique, the
discretizing errors on the capacitor surfaces could be completely
removed, which made it possible to achieve more accurate numerical
results together with savings on computation time as well as memory.
These benefits were possible due to the perfect match between the
shape of the round disk and the employed annular patches. For
numerical calculation, pulses on the annular patches were taken as
the expansion functions and zero thickness thin tubes were chosen as
the testing functions, which eventually led to the point matching.

To show the effectiveness on the proposed scheme, this technique
was applied to a single circular disk and to a capacitor filled with a
dielectric slab covered by partial plates. The calculated capacitances
for these structures showed good agreement with known solutions. The
total charge density, free charge density, and bound charge density
along the capacitor boundary were calculated and sketched to provide
understanding on the leakage field. By drawing the equipotential lines
around the capacitor, discussions were also made on the resultant
fringing field effects related to the bound charge densities lying on
the dielectric interfaces.
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