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Abstract—A technique for natural frequency extraction without a
prior knowledge of the number of natural frequencies is proposed. The
proposed scheme is based on the GPOF method with the overestimated
number of natural frequencies, and it has been shown from simulation
result that the proposed method is superior to the GPOF method.
The method is applied to the extraction of the natural frequencies
of the thin wires whose exact natural frequencies are known. While
the absence of the true natural frequency has much effect on the
transient response reconstruction, the absence of the spurious natural
frequency has little effect on the transient response reconstruction.
Using the above property, true natural frequencies and spurious natural
frequencies can be discriminated.

1. INTRODUCTION

Many radar target discrimination techniques utilizing late time
transient response of radar target have been published [1–5]. According
to the singularity expansion method (SEM) [6], the late time
electromagnetic field scattered from a finite sized conducting body is
represented as a sum of damped sinusoids. Thus, identification of
radar targets based on their late time natural resonance requires a
method of finding the natural frequencies using the transient response
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of scatterer. Any algorithm for the natural frequency extraction
should be as noise insensitive and accurate as possible. To obtain the
natural frequencies from a transient response of a target, a generalized
pencil-of-function (GPOF) method is proposed by Hua et al. [7–9].
The GPOF method requires a prior knowledge of the number of
natural frequencies contained in the transient data. Theoretically,
the number of natural frequencies can be determined with transient
data [10–13]. But in low signal-to-noise ratio (SNR) environment, it
is difficult to determine it correctly. In this study, natural frequency
extraction method using the GPOF method without a prior knowledge
of the number natural frequencies is considered. The number of
natural frequencies is overestimated and the resulting spurious natural
frequencies are discriminated from the true natural frequencies.

2. GENERALIZED PENCIL OF FUNCTION METHOD

In this section, the GPOF method is described briefly [7]. Late time
transient response sampled with time interval δt can be expressed by

yk =
M∑

i=1

bi exp(si δt k) k = 0, . . . , N − 1 (1)

where si are the natural frequencies, bi are the residues, M is the
number of natural frequencies.

For brevity, let us define

zi = exp(siδt). (2)

The natural frequencies can be extracted from target measurement
data yk using the GPOF method. We define the matrices Y1 and Y2 as

Y1 = [y0, y1, . . . , yL−1] (3)
Y2 = [y1, y2, . . . , yL] (4)

where matrix element vector yi is given by

yi = [yi, yi+1, . . . , yi+N−L−1]T . (5)

Then {zi}M
i=1 are the eigenvalues of Z.

Z = D−1UHY2V (6)

where D, U and V are given by the singular value decomposition of
Y1.

Y1 =
M∑

i=1

σiuivH
i = UDV H (7)
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Y +
1 = V D−1UH (8)

The superscript H denotes the conjugate transpose of a matrix. {si}M
i=1

can be obtained from {zi}M
i=1 with (2).

3. PROCEDURE FOR EXTRACTING THE TRUE
NATURAL FREQUENCIES

Let M0 be the number of the true natural frequencies which should
be known a priori in the GPOF method. It is known that natural
frequencies occur in complex conjugate pairs for real valued transient
response. Thus, the true natural frequencies can be represented by
{si}M0/2

i=1 and {si
∗}M0/2

i=1 where M0 is the number of the true natural
frequencies. In the first place, M1 and M2 which are sufficiently larger
than the expected M0 are chosen. Note that it is not necessary to know
M0 exactly to determine M1 and M2. The GPOF method is applied
with M = M1 > M0, M = M2 > M0 and the extracted natural
frequencies are denoted by sa

i (i = 1, · · · ,M1), sb
i (i = 1, · · · ,M2),

respectively. In {sa
i }M1

i=1 and {sb
i}M2

i=1, there exist spurious natural
frequencies because more natural frequencies than actually exist is
assumed in the GPOF method. The objective is to select M0 true
natural frequencies out of {sa

i }M1
i=1 and {sb

i}M2
i=1. As previously stated,

natural frequencies occur in complex conjugate pairs. In addition
to it, the real part of the natural frequencies must be negative for
the physical constraint of power balance. From {sa

i }M1
i=1, the natural

frequencies which do not satisfy the above requirement are excluded.
The remaining natural frequencies are denoted by {sA

i , sA
i
∗}MA/2

i=1 ,
and the corresponding natural frequencies for {sb

i}M2
i=1 are denoted

by {sB
i , sB

i
∗}MB/2

i=1 where MA and MB are the number of the
natural frequencies satisfying the above requirement for {sa

i }, {sb
i},

respectively. Here MA and MB are less than or equal to M1 and M2,
respectively. Let {sc

i , s
c
i
∗}M3/2

1 denote the common natural frequencies
of {sA

i , sA
i
∗}MA/2

i=1 and {sB
i , sB

i
∗}MB/2

i=1 , where M3 is the number of
common natural frequencies.

For sufficiently large M1 and M2, the true natural frequencies will
be extracted for both M1 and M2. But spurious natural frequencies
extracted for M1 may not be extracted for M2. Thus, all of the
true natural frequencies will belong to {sc

i , sc
i
∗}M3/2

i=1 . But the
spurious natural frequencies may or may not belong to {sc

i , s
c
i
∗}M3/2

i=1 .
Consequently, {sc

i , sc
i
∗}M3/2

i=1 contains at least all of the true natural
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frequencies. There are M3 − M0 spurious natural frequencies in
{sc

i , sc
i
∗}M3/2

i=1 . How to determine M0 and how to choose M0 true
natural frequencies out of M3 natural frequencies will be explained in
Section 4–Section 6.

Using the method in Section 4, it can be determined whether
{sc

i , sc
i
∗}M3/2

i=1 contains all of the true natural frequencies. If it
does not include all of the true natural frequencies, this is because
M1 and M2 used for the GPOF method are too small to include
all of the true natural frequencies. So we must stop and increase
M1 and M2. If it does include at least all of the true natural
frequencies, the method in Section 5 is used with p = 0, m =
M3, {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 = {sc
i , sc

i
∗}M3/2

i=1 to check if there are
spurious natural frequencies where {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 denotes the
undetermined m natural frequencies. If there are no spurious natural
frequencies, M0 = m and the true natural frequencies {si, si

∗}M0/2
i=1 are

given by the remaining natural frequencies of {ŝi(m/2), ŝ∗i (m/2)}m/2
i=1 .

When there are spurious natural frequencies, the method in Section 6
is used. One natural frequency pair is excluded and m decreases by
two. If a condition for the true natural frequencies which will be
stated later is satisfied, the natural frequencies are selected as the true
natural frequencies and excluded. Each time natural frequency pair is
excluded, m decreases by two. Whenever the true natural frequency
pair is excluded, p increases by two. Initial value for p is zero. Thus,
p denotes the number of the selected true natural frequencies. The
p selected true natural frequencies when there are m undetermined
natural frequencies are denoted by {si(m/2), si

∗(m/2)}p/2
i=1. Another

natural frequency pair is excluded in the same manner until there are
no spurious natural frequencies. The true natural frequencies are given
by the p selected natural frequencies and finally remaining natural
frequencies {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 .

4. TRANSIENT RESPONSE RECONSTRUCTION

Whether the specific natural frequencies {s̄i, s̄
∗
i }

m/2
i=1 contains at least

all of the true natural frequencies {si, s∗i }
M0/2
i=1 , can be determined

using transient response reconstruction. The transient response of a
scatterer with natural frequencies of {si, s∗i }

M0/2
i=1 can be represented

as

yk =
M0/2∑

i=1

bi exp[siδtk] +
M0/2∑

i=1

bi
∗ exp[si

∗δtk] k = 0, . . . , N − 1 (9)
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Given {yk}N−1
0 and {s̄i, s̄∗i }

m/2
i=1 , {b̄i, b̄∗i }

m/2
i=1 is the least squares

solution of (10).

yk =
m/2∑

i=1

b̄i exp[s̄iδtk] +
m/2∑

i=1

b̄∗i exp[s̄∗i δtk] k = 0, . . . , N − 1 (10)

Usually the number of transient late time data N is greater
than the number of natural frequencies m in (10). So (10) is an
overdetermined system. Because {b̄i, b̄∗i }

m/2
i=1 is the least squares

solution, it does not exactly satisfy equations in (10).
Using the obtained {b̄i, b̄∗i }

m/2
i=1 , the transient response is

reconstructed [5].

y(recon)k ≡
m/2∑

i=1

b̄i exp[s̄iδtk]+
m/2∑

i=1

b̄∗i exp[s̄∗i δtk] k = 0, . . . , N − 1 (11)

The following factor is defined with yk and y(recon)k ;

ρ = 1 −
∑N−1

k=0 [yk − y(recon)k]2
∑N−1

k=0 [yk]2
(12)

Comparing (10) and (11), if there is no error in the least squares
solution {b̄i, b̄∗i }

m/2
i=1 , y(recon)k and yk will coincide exactly and ρ is

equal to unity. But because (10) is an overdetermined system, there
is an inevitable error in the least squares solution {b̄i, b̄∗i }

m/2
i=1 , y(recon)k

and yk will not coincide exactly, which means ρ can not be unity. If
{s̄i, s̄∗i }

m/2
i=1 includes {si, si

∗}M0/2
i=1 , there will be little error and ρ is

nearly unity. But if {s̄i, s̄
∗
i }

m/2
i=1 does not include {si, si

∗}M0/2
i=1 , there

will be much error in the least squares solution and ρ will be much less
than 1. A threshold value of ρthreshold is chosen. If ρ > ρthreshold,
it is assumed that {s̄i, s̄∗i }

m/2
i=1 includes {si, si

∗}M0/2
i=1 , Similarly if

ρ < ρthreshold, it is assumed that {s̄i, s̄
∗
i }

m/2
i=1 does not include all of the

true natural frequencies.

5. HOW TO CHECK THE EXISTENCE OF SPURIOUS
NATURAL FREQUENCIES

Given the response of a target {yk}N−1
k=0 , m undetermined natural fre-

quencies {ŝi(m/2), ŝi
∗(m/2)}m/2

i=1 , and previously selected true natural
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frequencies {si(m/2), si
∗(m/2)}p/2

i=1, it can be determined whether all
of the undetermined natural frequencies {ŝi(m/2), ŝi

∗(m/2)}m/2
i=1 are

the true natural frequencies.
Let {b̂i(m/2), b̂i

∗
(m/2)}m/2

i=1 , {bi(m/2), bi
∗(m/2)}p/2

i=1 denote the
least squares solution of (13).

yk =
m/2∑

i=1

b̂i(m/2) exp[ŝi(m/2) δt k]

+
m/2∑

i=1

b̂i
∗
(m/2) exp[ŝi

∗(m/2) δt k]

+
p/2∑

i=1

bi(m/2) exp[si(m/2) δt k]

+
p/2∑

i=1

bi
∗(m/2) exp[si

∗(m/2) δt k] k = 0, . . . , N − 1 (13)

Similarly, {b̂i(m/2, j), b̂i
∗
(m/2, j)}m/2

i=1 , {bi(m/2, j), bi∗(m/2, j)}p/2
i=1

is the least squares solution of (14)

yk =
m/2∑

i=1, i�=j

b̂i(m/2, j) exp[ŝi(m/2) δt k]

+
m/2∑

i=1, i�=j

b̂i
∗
(m/2, j) exp[ŝi

∗(m/2) δt k]

+
p/2∑

i=1

bi(m/2, j) exp[si(m/2) δt k]

+
p/2∑

i=1

bi
∗(m/2, j) exp[si

∗(m/2) δt k] k = 0, . . . , N − 1 (14)

As in Section 4, the reconstructed responses are defined.

y(recon)k(m/2) ≡
m/2∑

i=1

b̂i(m/2) exp[ŝi(m/2) δt k]

+
m/2∑

i=1

b̂i
∗
(m/2) exp[ŝi

∗(m/2) δt k]
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+
p/2∑

i=1

bi(m/2) exp[si(m/2) δt k]

+
p/2∑

i=1

bi
∗(m/2)exp[si

∗(m/2)δt k] k = 0, . . . , N−1 (15)

y(recon)k(m/2, j) is defined by the following equations for each
j = 1, . . . ,m/2.

y(recon)k(m/2, j) ≡
m/2∑

i=1, i�=j

b̂i(m/2, j) exp[ŝi(m/2) δt k]

+
m/2∑

i=1, i�=j

b̂i
∗
(m/2, j) exp[ŝi

∗(m/2) δt k]

+
p/2∑

i=1

bi(m/2, j) exp[si(m/2) δt k]

+
p/2∑

i=1

bi
∗(m/2, j)exp[si

∗(m/2)δtk] k = 0, . . . , N−1(16)

To discriminate the correlation factors of y(recon)k(m/2) and
y(recon)k(m/2, j), ρ(m/2) and ρ(m/2, j) are defined.

ρ(m/2) = 1 −

N−1∑

k=0

[yk − y(recon)k(m/2)]2

N−1∑

k=0

[yk]2
(17)

ρ(m/2, j) = 1 −

N−1∑

k=0

[yk−y(recon)k(m/2, j)]2

N−1∑

k=0

[yk]2
j = 1, . . . ,m/2. (18)

Note that {si(m/2), si
∗(m/2)}p/2

i=1 denotes the selected true natu-
ral frequencies when there are m undetermined natural frequencies.
Thus, if {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 are the true natural frequencies,
{si(m/2), si

∗(m/2)}p/2
i=1 and {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 includes all of the
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true natural frequencies. According to Section 4, ρ(m/2) is larger than
ρthreshold because {si(m/2), si

∗(m/2)}p/2
i=1, {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1
contains all of the true natural frequencies. But ρ(m/2, j) which is
calculated without {ŝj(m/2), ŝ∗j (m/2)} will be less than ρthreshold

because {si(m/2), si
∗(m/2)}p/2

i=1, {ŝi(m/2), ŝ∗i (m/2)}m/2
i=1 without

{ŝj(m/2), ŝ∗j (m/2)} does not include all of the true natural frequen-
cies.

On the contrary, suppose there are spurious natural frequencies as
well as the true natural frequencies in {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 . Even
though there are spurious natural frequencies in {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 ,
ρ(m/2) is greater than ρthreshold because there are all of the true natu-
ral frequencies in {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 and {si(m/2), si
∗(m/2)}p/2

i=1.
The number of the spurious natural frequencies is m + p − M0. If
{ŝj(m/2), ŝ∗j (m/2)} is the true natural frequency, {si, si

∗}p/2
i=1 and

{ŝi(m/2), ŝi
∗(m/2)}m/2

i=1 without {ŝj(m/2), ŝ∗j (m/2)} does not include

{si, si
∗}M0/2

i=1 . But if ŝj is not the true natural frequency, {si, si
∗}p/2

i=1

and {ŝi(m/2), ŝi
∗(m/2)}m/2

i=1 without {ŝj(m/2), ŝ∗j (m/2)} does include

{si, si
∗}M0/2

i=1 . Because of the spurious natural frequencies, there will
be some j whose ρ(m/2, j) is larger than ρthreshold since transient re-
sponse can be reconstructed without one spurious natural frequency
pair.

6. HOW TO EXCLUDE SPURIOUS NATURAL
FREQUENCY PAIR AND TRUE NATURAL
FREQUENCY PAIR

As previously stated, if ρ(m/2, j) > ρthreshold for certain j, there
are spurious natural frequencies in {ŝi(m/2), ŝ∗i (m/2)}m/2

i=1 . To select
true natural frequency pair and spurious natural frequency pair, the
following equation is defined using b̂i(m/2), b̂i(m/2, j), bi(m/2) and
bi(m/2, j) of (13) and (14).

d(m/2, j) =
m/2∑

i=1,i�=j

∣∣∣∣∣
b̂i(m/2) − b̂i(m/2, j)

b̂i(m/2)

∣∣∣∣∣

+
p/2∑

i=1

∣∣∣∣
bi(m/2) − bi(m/2, j)

bi(m/2)

∣∣∣∣ j = 1, . . . ,m/2 (19)
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d(m/2, j) represent the sum of the difference of the obtained least
squares solution with and without ŝj(m/2) and ŝ∗j (m/2).

Thus, large d(m/2, j) means {ŝj(m/2), ŝ∗j (m/2)} has much
effect on the least squares solution. Let jmin and jmax denote
j whose d(m/2, j) is the minimum and the maximum of all
{d(m/2, j)}m/2

i=1 respectively. {ŝjmin(m/2), ŝ∗jmin
(m/2)} has the least

effect on least squares solution and {ŝjmax(m/2), ŝ∗jmax
(m/2)} has

the greatest effect on least squares solution. It is assumed that
{ŝjmin(m/2), ŝ∗jmin

(m/2)} is spurious natural frequency pair and is

excluded from {ŝi(m/2), ŝi
∗(m/2)}m/2

i=1 . If d(m/2, jmax) is much larger
than d(m/2, jmin), {ŝjmax(m/2), ŝ∗jmax

(m/2)} is considered to be the
true natural frequency pair. As a rule of thumb, whether d(m/2, jmax)
is larger than ten times d(m/2, jmin) or not is used as a criterion. The
flowchart for extraction of the natural frequencies is given in Fig. 1.

7. NUMERICAL RESULTS

To justify the proposed scheme for natural frequency extraction,
computer simulation was performed. Scattering data were generated
using a frequency-domain method-of-moments solution. A piecewise-
sinusoidal basis function is employed and thin-wire approximation was
used. The backscattering complex field values were calculated at 64
and 128 equally spaced frequencies. The frequency step is 7.8 MHz. An
inverse Fourier transform was subsequently applied to these results to
obtain the simulated transient response. The Gaussian random noise
is added to the transient response for noise simulation. Each point of
the thin wire transient response is perturbed with a Gaussian noise.
The signal to noise ratio is defined as follows.

S/N (dB) = 10 log
1
σ2

γ−1∑

i=0

|yi|2
γ

(20)

where σ2 is the variance of Gaussian noise and {yi}γ−1
i=0 are the late time

transient data and γ is the number of data considered. The angular
frequency range covered with 64 frequency responses and 128 frequency
responses are

7.8 × 106 × 63 × 2π = 3.088 × 109 (rad) (21)
7.8 × 106 × 127 × 2π = 6.224 × 109 (rad) (22)



74 Lee and Kim

{ } 1

1

1

GPOF method with 
Ma

i i

M M

s
=

=

{ } 2

2

1

GPOF method with 
Mb

i i

M M

s
=

=

Exclude improper natural frequencies to obtain Exclude improper natural frequencies to obtain

3

Choose common natural frequencies

Number of common natural frequencies M

( ) threshold2m <

0p =

( ) threshold2 ,

for all 1, , 2

m j

j m

<

=

2 1m =

min maxSelect  and j j

( ) ( )max min2, 2 ,d m j d m j

Stop

no

yes

yes

yes

no

no

yes

no

ρ ρ

ρ ρ

Figure 1. Flowchart for extraction of the natural frequencies.
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Table 1. First ten natural frequencies pairs of thin wire(L/a = 200).

normalized unnormalized (L=1m) (×109)

1 -0.0828 +j 0.9251 -0.07803 +j 0.8719

-0.0828 -j 0.9251 -0.07803 -j 0.8719

2 -0.1212 +j 1.912 -0.1142 +j 1.802

-0.1212 -j 1.912 -0.1142 -j 1.802

3 -0.1491 +j 2.884 -0.1405 +j 2.718

-0.1491 -j 2.884 -0.1405 -j 2.718

4 -0.1713 +j 3.874 -0.1614 +j 3.651

-0.1713 -j 3.874 -0.1614 -j 3.651

5 -0.1909 +j 4.854 -0.1799 +j 4.574

-0.1909 -j 4.854 -0.1799 -j 4.574

6 -0.2080 +j 5.845 -0.1960 +j 5.509

-0.2080 -j 5.845 -0.1960 -j 5.509

7 -0.2240 +j 6.829 -0.2111 +j 6.436

-0.2240 -j 6.829 -0.2111 -j 6.436

8 -0.2383 +j 7.821 -0.2245 +j 7.371

-0.2383 -j 7.821 -0.2245 -j 7.371

9 -0.2522 +j 8.807 -0.2376 +j 8.301

-0.2522 -j 8.807 -0.2376 -j 8.301

10 -0.2648 +j 9.800 -0.2495 +j 9.237

-0.2648 -j 9.800 -0.2495 -j 9.237

Table 1 shows the first ten natural frequencies pairs of thin wire
with length/radius= 200 [1]. In Table 1, it can be seen that the
imaginary part of the first three natural frequencies pairs are below
3.088 × 109 (rad) and the imaginary part of the first six natural
frequencies pairs are below 6.224 × 109 (rad). Thus, the first three
natural frequencies pairs are contained in the simulated transient
response when using 64 frequency responses, and the first six natural
frequencies pairs are contained in the simulated transient response
when using 128 frequency responses. From sampling theorem, the
sampling interval must be not more than π/ωm apart where ωm is
the highest angular frequency component contained in the signal.
Thus, from (21) and (22), sampling interval must be shorter than
10.17 × 10−10 for the extraction of the first three natural frequencies
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pairs and 5.048 × 10−10 for the extraction of the first six natural
frequencies pairs.

Using the transient response of SNR of 20 dB obtained from
the 64 frequency-responses, the first three natural frequencies pairs
can be extracted. In these examples, ρthreshold of 0.9 is used and
sampling interval is 4 × 10−10 which is in the range of 11.5 × 10−11.
Here we choose M1 of 20 and M2 of 18. The GPOF method is
applied with L = 20, M1 = 20, N = 40 and L = 20, M2 = 18,
N = 40. In this case, MA, MB, and M3 happen to be 20, 16 and 14,
respectively. Fourteen common natural frequencies and the subsequent
discrimination procedure is illustrated in Table 2. In Table 2, only the
natural frequencies whose imaginary part is positive are shown. With
m = M3 = 14, ρ(7) is larger than ρthreshold and {ρ(7, i)}7

i=1 are not
less than ρthreshold for all i = 1, . . . , 7. Thus, according to Section 5,
it is assumed that there are spurious natural frequencies. To exclude
natural frequency pairs, {d(7, i)}7

i=1 are calculated and the minimum
and the maximum of all {d(7, i)}7

i=1 are chosen. From Table 2, it
is observed that d(7, 3) is the minimum and d(7, 1) is the maximum.
ŝ3(7) and ŝ∗3(7) are excluded and m decreases by 2 from 14 to 12.
Since d(7, 1) is larger than ten times d(7, 3), {ŝ1(7), ŝ∗1(7)} is selected
as {s1, s1

∗} and excluded. p increases by two from zero to two and
m decreases by two. With the remaining ten natural frequencies of
{ŝi(5), ŝi

∗(5)}5
i=1, {d(5, i)}5

i=1 are calculated. Also ρ(5) is larger than
ρthreshold and {ρ(5, i)}5

i=1 are not less than ρthreshold for all i = 1, . . . , 5,
implying the existence of spurious natural frequencies. The minimum
and the maximum of {d(5, i)}5

i=1 are chosen. The minimum is d(5, 4)
and the fourth natural frequency pair is excluded and m decreases
from ten to eight. Condition for true natural frequency is satisfied
and {ŝ1(5), ŝ∗1(5)} is selected as {s2, s2

∗} and excluded. p increases
from two to four and m decreases from eight to six. It is repeated
until {d(m/2, i)}m/2

i=1 are less than ρthreshold for all i = 1, · · · ,m/2. In
this example, {ρ(1, i)}1

i=1 is less than ρthreshold. Thus, {ŝ1(1), ŝ∗1(1)} is
the true natural frequency pair. Fig. 2 illustrates the exact natural
frequencies, natural frequencies extracted using the GPOF method
with L = 20, M0 = 6, N = 40 and natural frequencies extracted
using our method. It is shown that the natural frequencies extracted
by our method is more accurate. With the same L, M1, M2, M0 and
N , the corresponding results for SNR of 30 dB are presented in Table 3
and Fig. 3.

If more frequency responses which are obtained by method-of-
moments solution are used, the number of the extracted natural
frequencies increases. As previously stated, using the transient
response obtained from the 128 frequencies responses, the first six
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Table 2. Selecting true natural frequencies (SNR = 20 dB, three
natural frequencies pairs).

ρ(7) 0.994938 state

i ŝi(7) ρ(7, i) d(7, i)

1 -0.0906607 +j 0.911136 0.891326 26.1098 true (s1)

2 -0.133584 +j 1.88521 0.982303 10.22956 undetermined

3 -0.0923101 +j 5.85415 0.994347 1.17856 spurious

4 -0.161559 +j 4.74416 0.993366 2.40442 undetermined

5 -0.137720 +j 3.76205 0.989987 4.58826 undetermined

6 -0.0489817 +j 3.28859 0.986676 1.19432 undetermined

7 -0.154516 +j 2.89268 0.987316 4.70505 undetermined

ρ(5) 0.994347 state

i ŝi(5) ρ(5, i) d(5, i)

1 -0.133584 +j 1.88521 0.982046 10.00019 true (s2)

2 -0.161559 +j 4.74416 0.993227 1.30021 undetermined

3 -0.137720 +j 3.76205 0.989625 4.17326 undetermined

4 -0.0489817 +j 3.28859 0.986168 0.891189 spurious

5 -0.154516 +j 2.89268 0.986575 4.66208 undetermined

ρ(3) 0.986168 state

i ŝi(3) ρ(3, i) d(3, i)

1 -0.161559 +j 4.74416 0.984985 1.04358 spurious

2 -0.137720 +j 3.76205 0.977552 2.88703 undetermined

3 -0.154516 +j 2.89268 0.973224 4.40101 undetermined

ρ(2) 0.984985 state

i ŝi(2) ρ(2, i) d(2, i)

1 -0.137720 +j 3.76205 0.975040 1.80875 spurious

2 -0.154516 +j 2.89268 0.968638 2.39563 undetermined

ρ(1) 0.975040 state

i ŝi(1) ρ(1, i) d(1, i)

1 -0.154516 +j 2.89268 0.456913 1.41963 true (s3)

natural frequencies pairs can be extracted. The results for SNR of
20 dB with M1 = 20, M2 = 18 are shown in Table 4 and Fig. 4. The
GPOF methods with L = 20, M1 = 20, N = 40 and L = 20, M2 = 18,
N = 40 are used. The procedure for true natural frequency selection
is shown in Table 4. The conventional GPOF method is applied with
L = 20, M0 = 12, N = 40 and the result is compared with the natural
frequencies extracted using our method in Fig. 4. The corresponding
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Figure 2. Extracted natural frequencies (SNR = 20 dB, three true
natural frequencies pairs).
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Figure 3. Extracted natural frequencies (SNR = 30 dB, three true
natural frequencies pairs).
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Table 3. Selecting true natural frequencies (SNR = 30 dB, three true
natural frequencies pairs).

ρ(5) 0.989796 state

i ŝi(5) ρ(5, i) d(5, i)

1 -0.0857292+j 0.912428 0.581495 73.9304 true (s1)

2 -0.122845 +j 1.88618 0.989253 3.86233 undetermined

3 -0.122662+j 4.77972 0.989695 1.74639 spurious

4 -0.143351+j 4.08567 0.989334 1.86280 undetermined

5 -0.146231 +j 2.87137 0.844520 66.1954 undetermined

ρ(3) 0.989695 state

i ŝi(3) ρ(3, i) d(3, i)

1 -0.122845 +j 1.88618 0.989253 21.3006 undetermined

2 -0.143351 +j 4.08567 0.989216 1.03916E-01 spurious

3 -0.146231 +j 2.87137 0.819969 32.0684 true (s2)

ρ(1) 0.989216 state

i ŝi(1) ρ(1, i) d(1, i)

1 -0.122845 +j 1.88618 0.503264 1.19583 true (s3)

-0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0. 1 -0.08

1

2

3

4

5

6

Re[Normalized natural frequencies]

Im
[N

or
m

al
iz

ed
 n

at
ur

al
 fr

eq
ue

nc
ie

s]

exact
GPOF method
Proposed method

Figure 4. Extracted natural frequencies (SNR = 20 dB, six true
natural frequencies pairs).
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Table 4. Selecting true natural frequencies (SNR = 20 dB, six true
natural frequencies pairs).

ρ(8) 0.995117 state

i ŝi(8) ρ(8, i) d(8, i)

1 -0.0864837 +j 0.899732 0.780497 6.67516 undetermined

2 -0.123205 +j 1.89848 0.710686 13.9417 undetermined

3 -0.140275 +j 2.87221 0.744482 17.4737 undetermined

4 -0.160085 +j 3.85850 0.789838 20.2802 true(s1)

5 -0.182086 +j 4.84443 0.856405 14.4648 undetermined

6 -0.165811 +j 5.81579 0.989899 6.90813 undetermined

7 -0.0314307 +j 6.64646 0.965921 5.57765 undetermined

8 -0.144739 +j 7.56264 0.993917 1.30921 spurious

ρ(6) 0.993917 state

i ŝi(6) ρ(6, i) d(6, i)

1 -0.0864837 +j 0.899732 0.780482 3.67084 undetermined

2 -0.123205 +j 1.89848 0.709198 7.78125 undetermined

3 -0.140275 +j 2.87221 0.739141 9.56850 undetermined

4 -0.182086 +j 4.84443 0.846527 10.08546 true (s2)

5 -0.165811 +j 5.81579 0.891441 2.78013 undetermined

6 -0.0314307 +j 6.64646 0.960090 0.647117 spurious

ρ(4) 0.960090 state

i ŝi(4) ρ(4, i) d(4, i)

1 -0.0864837 +j 0.899732 0.742198 0.978050 true (s3)

2 -0.123205 +j 1.89848 0.663337 2.15259 true (s4)

3 -0.140275 +j 2.87221 0.686860 2.38625 true (s5)

4 -0.165811 +j 5.81579 0.838084 1.62200 true (s6)

results for SNR of 30 dB are shown in Table 5 and Fig. 5.
Here it is shown that in the GPOF method, the true M0 natural

frequencies can be extracted more accurately with M = M̄ > M0

than M = M0. It is assumed that M0 true natural frequencies can
be selected from M̄ natural frequencies when M = M̄ > M0 is used.
Thus, the accuracy of M0 natural frequencies selected from M̄ natural
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Table 5. Selecting true natural frequencies (SNR = 30 dB, six true
natural frequencies pairs).

ρ(8) 0.999701 state

i ŝi(8) ρ(8, i) d(8, i)

1 -0.0787733 +j 0.910284 0.773537 15.8967 undetermined

2 -0.119753 +j 1.88676 0.698721 35.6887 undetermined

3 -0.147986 +j 2.86483 0.742614 45.4355 true (s1)

4 -0.169511 +j 3.84825 0.810425 44.8951 undetermined

5 -0.190466 +j 4.83495 0.874322 31.0695 undetermined

6 -0.197847 +j 5.81651 0.997197 15.3090 undetermined

7 -0.0185108 +j 6.64673 0.968546 18.8467 undetermined

8 -0.211369 +j 7.57315 0.999638 0.359863 spurious

ρ(6) 0.999638 state

i ŝi(6) ρ(6, i) d(6, i)

1 -0.0787733 +j 0.910284 0.772598 4.0551 undetermined

2 -0.119753 +j 1.88676 0.692282 9.01392 undetermined

3 -0.169511 +j 3.84825 0.794539 12.0660 undetermined

4 -0.190466 +j 4.83495 0.861544 10.21415 true (s2)

5 -0.197847 +j 5.81651 0.904400 3.72376 undetermined

6 -0.0185108 +j 6.64673 0.963971 0.662052 spurious

ρ(4) 0.963971 state

i ŝi(4) ρ(4, i) d(4, i)

1 -0.0787733 +j 0.910284 0.732482 0.969457 true (s3)

2 -0.119753 +j 1.88676 0.643776 2.29281 true (s4)

3 -0.169511 +j 3.84825 0.736562 2.51375 true (s5)

4 -0.197847 +j 5.81651 0.849300 1.72013 true (s6)

frequencies obtained using the GPOF method with M = M̄ and the
accuracy of the M0 natural frequencies obtained using the GPOF
method with M = M0 are compared.
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Figure 5. Extracted natural frequencies (SNR = 30 dB, six true
natural frequencies pairs).

8. CONCLUSION

A scheme for natural frequency extraction is proposed in this paper. In
the proposed scheme, the exact number of the true natural frequencies
need not be known a priori because a GPOF method is applied
with the overestimated number of natural frequencies. A GPOF
method is applied twice with the overestimated number of natural
frequencies to obtain two natural frequencies sets. Natural frequencies
satisfying complex conjugate constraint with negative real part are
selected to obtain two new natural frequencies sets. The common
natural frequencies of two new natural frequencies sets are selected.
From the common natural frequencies, spurious natural frequency pair
and true natural frequency pair are excluded one after another using
the suggested method until all the spurious natural frequencies are
removed. The true natural frequencies are given by the excluded true
natural frequencies and finally remaining natural frequencies. The
spurious natural frequencies can be discriminated since the absence
of the spurious natural frequencies has little effect on the transient
response reconstruction. In the proposed scheme, the transient
response reconstruction with all natural frequencies and without one
specific natural frequency pair is used.
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