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Abstract—This paper deals with Approximate Analytical Solutions
to nonlinear oscillations of a conservative, non-natural, single-degree-
of-freedom system with odd nonlinearity. By extending the Variational
approach proposed by He, we established approximate analytical
formulas for the period and periodic solution.

To illustrate the applicability and accuracy of the method, two
examples are presented: (i) the motion of a rigid rod rocking back and
forth on the circular surface without slipping, and (ii) Cubic-Quintic
Duffing Oscillators. Comparison of the result which is obtained by this
method with the obtained result by the Exact solution reveals that the
He’s Variational approach is very effective and convenient and can be
easily extended to other nonlinear systems and can therefore be found
widely applicable in engineering and other sciences.

1. INTRODUCTION

Recently, considerable attention has been directed towards analytical
solutions for nonlinear equations without small parameters. Many
new techniques have appeared in the literature, such as perturbation
techniques [1–13], harmonic balance method [14–23], energy balance
method [24–28], He’s variational iteration method [29–32], and
variational approach [33–36]. In this paper, we apply the variational
approach to the Nonlinear Oscillators.



24 Ganji et al.

2. DESCRIPTION OF HE’S VARIATIONAL METHOD

In 2007, He [35] suggested a variational approach which is different
from the known variational methods in open literature. Hereby we
give a brief introduction of the method:

u′′ + f(u) = 0 (1)

Its variational principle can be established using the semi-inverse
method [38]:

J(u) =
∫ T/4

0

(
−1

2
u′2 + F (u)

)
dt (2)

where T is period of the nonlinear oscillator, ∂F/∂u = f .
Assume that its solution can be expressed as:

u(t) = A cos(ωt), (3)

where A and ω are the amplitude and frequency of the oscillator,
respectively. Substituting (3) into (2) results in:

J(A, ω) =
∫ T/4

0

(
−1

2
A2ω2 sin2 ωt + F (A cos ωt)

)
dt

=
1
ω

∫ π/2

0

(
−1

2
A2ω2 sin2 t + F (A cos t)

)
dt

= −1
2
A2ω

∫ π/2

0
sin2 t dt +

1
ω

∫ π/2

0
F (A cos ωt)dt (4)

Applying the Ritz method, we require:

∂J

∂A
= 0 (5)

∂J

∂ω
= 0 (6)

But with a careful inspection, for most cases we find that:

∂J

∂ω
= −1

2
A2

∫ π/2

0
sin2 t dt − 1

ω2

∫ π/2

0
F (A cos t) dt < 0 (7)

Thus, we modify conditions (5) and (6) into a simpler form:

dJ

dω
= 0 (8)

from which the relationship between the amplitude and frequency of
the oscillator can be obtained.
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3. THE MOTION OF A RIGID ROD ROCKING BACK

In this section, we present the motion example of a rigid rod rocking
back and forth on the circular surface without slipping. To illustrate
the applicability, accuracy and effectiveness of the proposed approach,
the governing equation of motion can be expressed as [39, 40]:(

1
12

+
1
16

u2

)
d2u

dt
+

1
16

u

(
du

dt

)2

+
g

4l
u cos u = 0,

u(0) = β,
du

dt
(0) = 0, (9)

where g > 0 and l > 0 are known positive constants.
For its variational form reads:

J(u) =
∫ T/4

0

(
−1

2
u′2 − 3

8
u2u′2 +

3g (cos u + u sinu)
l

)
dt. (10)

Substituting u(t) = β cos ωt into (10), we obtain:

J(β) =
∫ T/4

0

1
8l

(
4β2ω2l sin2 ωt + 3β4ω2l

(
cos4 ωt − cos2 ωt

)
+ 24g (cos (β cos ωt) + β cos ωt sin (β cos ωt)
− cos(β) − β sin(β))) dt. (11)

The stationary condition with respect to β reads:

dJ

dβ
=

∫ T/4

0

1
2l

β
(
−2ω2l sin2 ωt + 3β4ω2l

(
cos4 ωt − cos2 ωt

)
+ 6g

(
cos2 ωt cos (β cos ωt) − cos(β)

))
dt = 0,

=
∫ π/2

0

1
2l

β
(
−2ω2l sin2 t + 3β4ω2l

(
cos4 t − cos2 t

)
+ 6g

(
cos2 t cos (β cos t) − cos(β)

))
dt = 0. (12)

Solving (12), we have:

ω =

√
6g (1/4ABesselJ(0, β) − 1/4BesselJ(1, β))

βl (1/4 + 3/32β2)
. (13)

T = 2π

√
βl (1/4 + 3/32β2)

6g (1/4βBesselJ(0, β) − 1/4BesselJ(1, β))
. (14)
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4. CUBIC-QUINTIC DUFFING EQUATIONS

Now, we consider the nonlinear cubic–quintic Duffing equations, which
read [41]:

x′′ + f(x) = 0, f(x) = αx + βx3 + γx5 (15)

With the boundary conditions of:

x(0) = A x′(0) = 0 (16)

Its variational formulation is:

J(u) =
∫ T/4

0

(
−1

2
x′2 +

1
2
αx2 +

1
4
βx4 +

1
6
γx6

)
dt. (17)

Proceeding in a similar way as before, we have:

J(A) =
∫ T/4

0
− 1

12
A2

((
6ω2 sin2 ωt

)
+ 6α cos2 ωt

+3βA2 cos4 ωt + 3γA4 cos6 ωt
)
dt. (18)

and

dJ

dA
=
∫ T/4

0
−1

6
A2

((
6ω2 sin2 t

)
+ 6α cos2 t + 3βA2 cos4 t + 3γA4 cos6 t

)
+

1
12

A2
(
6βA cos4 t + 8γA3 cos6 t

)
dt.

=
∫ π/2

0
−1

6
A2

((
6ω2sin2ωt

)
+6αcos2ωt+3βA2cos4ωt+3γA4cos6ωt

)
+

1
12

A2
(
6βA cos4 ωt + 8γA3 cos6 ωt

)
dt = 0. (19)

From (17), we obtain the following approximate frequency:

ω =
√

α + 3/4A2β + 5/8γA4. (20)

T =
2π√

α + 3/4A2β + 5/8γA4
. (21)

5. DISCUSSION

In order to compare, we write the exact solutions for previous examples
governed by Eqs. (9) and (15) that can be derived as shown in Eqs. (22)
and (23), respectively [40, 42].
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The Exact period Tex for (9) is:

Tex = 4
(

l

3g

)1/2 ∫ π/2

0

·
( (

4 + 3β2 sin2 ϕ
)
β2 cos2 ϕ

8 [βsinβ+cosβ−βsinϕ sin(βsinϕ)−cos(β sinϕ)]

)1/2

dϕ. (22)

The Exact frequency ωex for the Cubic-Quintic Duffing oscillator is:

ωe(A) =
πk1

2
∫ π/2
0

(
1 + k2 sin2 t + k3 sin4 t

)−1/2
dt

,

k1 =

√
α +

βA2

2
+

γA4

3
,

k2 =
3βA2 + 2γA4

6α + 3βA2 + 2γA4
,

k3 =
2γA4

6α + 3βA2 + 2γA4
.

(23)

The above results are in good agreement with the results obtained
by the Exact solution in [40] as illustrated in Figs. 1 and 2. Comparison
between analytical Variational approach and the Exact solutions for
previous nonlinear oscillators are given in Tables 1 and 2, respectively.

Table 1. Comparison between analytical variational approach and
exact solutions for the motion equation (15), when g = l = 1.
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(a) g=l=1, A=0.05π (b) g=l=1, A=0.20π

(c) g=l=1, A=0.35π

Figure 1. Comparison of the approximate solution with the Exact
solution of The motion of a rigid rod rocking back (9).

Table 2. Comparison between analytical variational approach and
exact solutions for the Cubic-Quintic Duffing oscillator.

A
ex  [42] percentage ex  [42] percentage 

0.1 1.00377 1.00377 0.0  1.03983 1.03970 0.01250 
0.5 1.10750 1.10654 0.06757  2.60408 2.52469 3.14468 
1 1.54110 1.52359 1.14926  8.42615 8.01005 5.19472 
5 20.2577 19.1815 5.61061  198.119 187.199 5.83318 

10 79.5361 75.1774 5.79795  791.044 747.323 5.85038 
50 1976.90 1867.57 5.85413  19764.71 18671.34 5.85587 

100 7906.17 7468.83 5.85553  79057.42 74683.91 5.85602 
500 197642.83 186709.04 5.85606  1976424.01 1867085.99 5.85608 
1000 790569.89 746834.69 5.85608  7905694.62 7468342.49 5.85608 

α = β = γ = 1 α = 1,  β = 10,  γ = 100
Error Errorω ω ω ω
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(a) α=1, β=1, γ=1 (b) α=0.1, β=10, γ=100

Figure 2. Comparison of the approximate solution with the Exact
solution of the Cubic-Quintic Duffing oscillator.

6. CONCLUSION

In this paper, we applied He’s Variational approach to the Motion
of a Rigid Rod Rocking Back and Cubic–Quintic Duffing Oscillators.
We conclude from the results obtained that Variational approach
is extremely simple in its principle, easy to apply, and gives good
accuracy even with the first-order approximation and the simplest trial
functions. Comparison made with the Exact solutions shows that the
method provides a powerful mathematical tool to the determination of
more complex nonlinear systems.
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