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Abstract—Geometrical analyses of basic equations of electromagnet-
ics waves propagation in anisotropic dielectric materials with mag-
netic isotropy are presented in two complementary papers (Part I and
Part II). In the present one, analysis arises from quadrics associated
with relative dielectric tensor (ε̃) compatible with conical surfaces that
represent the general plane wave equation (relation of dispersion). This
study systematizes rays propagation in left-handed materials (LHMs)
exhibiting dielectric anisotropy and magnetic isotropy.

In particular, indefinite dielectric media where dielectric permit-
tivities are not all the same sign, have been investigated. Graphical
alternative procedures for ray tracing in these media are presented.

1. INTRODUCTION

Forty years ago, the concept of left-handed metamaterials was studied
in detail by Veselago [1]. Left-handed metamaterials (LHMs) are
media with dielectric permittivity ε < 0 and magnetic permeability
µ < 0, exhibiting unique electromagnetic properties, such as negative
refraction.

Over the last ten years, LHMs-related research has deserved a
great deal of attention since the works of Pendry [2] and Smith et
al. [3], who developed the first experimental LHM structure with
split-ring resonators in the range of microwaves. Since then, a large
amount of papers have dealt with this subject [4, 6–17]. Reflection and
transmission in these materials with different dispersion relations have
been well studied in [18, 19].

Anisotropic character of LHMs is frequently expected. Isotropic
LHMs are difficult to prepare for experiments and they are actually
anisotropic in nature. For this reason, alternative reinterpretations
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(that we consider original) of basic equations of wave propagation in
anisotropic dielectric materials with magnetic isotropy are presented.
The methodology is valid for both positive and negative values of
dielectric permittivities (as well in uniaxial as in biaxial media) and
magnetic permeability and allows the study of propagation of locally
plane electromagnetic waves in LHMs [21].

Reinterpretation of basic equations is made in Section 2, where
some features of quadrics associated to the dielectric tensor of these
media are outlined. In Section 3, geometrical methodology is applied
to ray tracing in RHMs and LHMs with dielectric anisotropy and
magnetic isotropy. In particular, the so called indefinite media are
considered [4, 5]. This term refers to a material for which the
eigenvalues of the permittivity and permeability tensor are not all the
same sign.

In the complementary part of this paper [21], another kind
of geometrical analysis of light propagation in RH and LH media,
involving local properties of dielectric permittivity tensor and Möhr’s
plane graphical construction has been carried out.

2. GEOMETRICAL INTERPRETATION OF PLANE
WAVE EQUATION

Let us consider linear media, with dielectric anisotropy and magnetic
isotropy. An orthonormal cartesian frame (u1, u2 and u3) along the
main directions of relative dielectric permittivity tensor ε̃ is used. It is
assumed that ε1 > ε2 > ε3 are the eigenvalues of the relative dielectric
tensor, ε̃, that can be positive or negative.

In dealing with non-conducting media free of currents and charges
(j = 0; � = 0), the relation of dispersion or general plane wave equation
can also be written as [22]:

ν − (n · ν)n = a εν (1)

where unit vector ν is defined as ν = E/|E|, bound vector εν =
ε̃ν = D/(ε0 |E|). Unit vector n is defined as n = k/k, where k is
the wave vector whose length is equal to ω/vp. Parameters ω and vp

are the angular frequency and the phase velocity, respectively. Finally,
parameter a is defined as: a = µr v

2
p/c

2.
Then we have easily shown that when angle θ between

extraordinary ray direction and wave-vector is greater than π/2,
negative refraction occurs and relative magnetic permeability must
be negative (µr = −1, LHM). If θ �= π, the phenomenon is known as
imperfect backward-wave and is a consequence of anisotropy.
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Equation (1) is our starting point as the basic plane wave equation
for these media. Since we restrict our study to monochromatic waves,
dispersion can be disregarded and eigenvalues εi are then constants
depending only on the material.

When dealing with uniaxial media, one of the plane waves exhibits
isotropic behaviour. Obviously, the subject of our study is the
other eigen mode. In what follows, we are only concerned with
the extraordinary mode: Poynting vector does not coincide with the
direction of the wave vector k.

From the dot product of Eq. (1) and vector εν , two important
relations are obtained:

σν = a |εν |2; cos θ = a |εν | (2)

where θ is the angle between E and D and σν = εν · ν.
On the other hand, in [22] the authors propose an alternative

expression of Fresnel’s equation of wave normals in terms of intrinsic
components (τn, σn) of bound vector εn. This equation reads:

τ2
n + σ2

n − σn

(
I − 1

a

)
+ a∆ = 0 (3)

where I and ∆ are the trace and the determinant of tensor ε̃,
respectively. Eq. (3) describes the locus of the end of εn in
the plane cartesian coordinate system (σ, τ). This locus is a
circumference centered at point ((I − 1/a)/2, 0) of radius R given by

R =
√

((I − 1/a)/2)2 − a∆.
If t is an unit vector in the same direction as Poynting vector S,

the dot product of t and n gives the angle between the wave vector k
and the ray direction that, as expected, is also θ:

t · n = a |εν | =
µr v

2
p

c2
|εν | (4)

Then, values of θ > π/2 occur with µr < 0. Similarly, if θ is greater
than π/2, the normal component σν of vector εν is also negative and
one can see from (2), that this only occurs for µr < 0.

Let us give a new geometrical interpretation of Fresnel’s equation
of wave normals, given by Eq. (3). Let n(α1, α2, α3) be an unit
vector along any direction of propagation given by n = k/k. Intrinsic
components of vector εn bound to n verify the following three
equations [22]:

τ2
n + σ2

n = ε21 α
2
1 + ε22 α

2
2 + ε23 α

2
3 (5)

σn = ε1 α
2
1 + ε2 α

2
2 + ε3 α

2
3 (6)

1 = α2
1 + α2

2 + α2
3 (7)



106 Bellver-Cebreros and Rodriguez-Danta

If Eq. (5) is multiplied by the unit, Eq. (6) by 1
a − I, and Eq. (7)

by a∆ and if addition is made, Eq. (3) is reobtained, because this sum
vanishes.

Thus, the sum of the three right-hand sides of Eqs. (5), (6) and
(7) gives:(

ε21 + ε1

(
1
a
− I

)
+ a∆

)
α2

1 +
(
ε22 + ε2

(
1
a
− I

)
+ a∆

)
α2

2

+
(
ε23 + ε3

(
1
a
− I

)
+ a∆

)
α2

3 = 0 =⇒ (8)

=⇒ λ1 α
2
1 + λ2 α

2
2 + λ3 α

2
3 = 0 (9)

with λi = ε2i + εi

(
1
a − I

)
+ a∆.

Property 1. Coefficients λi from Eq. (9) are equal to the power
of point (εi, 0) belonging to σ axis with respect to the circumference
given by (3).

Proof: It is well known that the power P ( , ) of any point
with respect to a circumference is obtained by substituting the point
coordinates into the equation of the circumference. Substitution of
coordinates (εi, 0) into (3) gives:

P (εi, 0) = ε2i − εi

(
I − 1

a

)
+ a∆ = λi

that coincides, in fact, with λi.

Property 2. The locus described by the Eq. (9):

λ1 α
2
1 + λ2 α

2
2 + λ3 α

2
3 = 0

describes a cone in the space of wave vector directions.
Proof: Power of a point with respect to a circumference C1 is

positive when the point lies outside C1 and negative when the point
lies inside. The power vanishes when the point belongs to C1.

In the present case, when dealing with Eq. (9), one of the (εi, 0)
(i = 1, 2, 3) points lies in a different region than the others (see Fig. 1);
if one of the points lies outside the circumference given by (3), the
other two points lie inside. Then two of the λi coefficients in Eq. (9)
are the same sign and the sign of the other coefficient is opposite to
them, consequently the locus described by Fresnel’s equation of wave
normals in the space of wave vector directions is a cone. In what
follows, we refer to this cone as Fresnel’s cone.

Property 3: The locus described by the first equation in (2):

σν = µr

v2
p

c2
|εν |2 (10)
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Figure 1. Power of points εi with respect to the Fresnel’s
circumference (locus of the ends of bound vector εn). Power of point
ε1 with respect to the circumference is positive, whereas powers of ε2
and ε3 are negative.

is also a cone in the space of wave vector directions.
Proof: If ν(α1, α2, α3) is an unit vector along the direction of

vector E, intrinsic components of vector εν (parallel to D) verify the
following equations:

τ2
ν + σ2

ν = ε21 α
2
1 + ε22 α

2
2 + ε23 α

2
3 (11)

σν = ε1 α
2
1 + ε2 α

2
2 + ε3 α

2
3 (12)

Multiplying Eq. (11) by the unit, Eq. (12) by − 1
a and adding them,

Eq. (10) is reobtained, because the sum vanishes. Therefore

τ2
ν + σ2

ν − 1
a
σν = 0 =⇒

ε1

(
ε1 −

1
a

)
α2

1 + ε2

(
ε2 −

1
a

)
α2

2 + ε3

(
ε3 −

1
a

)
α2

3 = 0 (13)

It is immediately seen that Eq. (13) also describes a cone. We call
this cone, vector D cone.

A further analysis involving Möhr’s plane construction and other
geometrical analysis of Eqs. (2) and (3) is carried out in Part II of this
work.

Finally, let us assume an unit vector ν (α1, α2, α3), along any
direction in space R3 (that can be the direction of propagation,
direction of electric field E, and so on), the dot product of ν and
the bound vector εν to this direction is given by:

σν = εν ·ν = ε1 α
2
1+ε2 α

2
2+ε3 α

2
3 =⇒ ±1 = ε1X

2
1+ε2X2

2+ε3X2
3 (14)
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where Xi = αi√
σν

. Last equation represents Cauchy’s quadric (See
Fig. 2). An important property of Cauchy’s quadric [24] is that its
normal at every point is collinear with bound vector εν . This property
will be used next.
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Figure 2. Cauchy’s quadric for a medium with dielectric anisotropy,
where ν is an unit vector referred to space R3. In this case, eigenvalues
of ε̃ are all the same sign.

If the eigenvalues εi are not all the same sign, we have hyperboloids
(one-sheeted and two-sheeted) depending on the sign of σν . In fact,
the asymptotic cone (ε1X2

1 +ε2X
2
2 +ε3X

2
3 = 0), divides the space into

two regions, one for σν > 0 (one-sheeted hyperboloid) and the other
one for σν < 0 (two-sheeted hyperboloid) (see Fig. 3).

It must be pointed out that the directions of vector ν that lie
inside the asymptotic cone provide angles between ν and εν less than
π/2. The directions of ν outside the cone give angles greater than π/2.

In order to state the correspondence between the proposed
methods and those used by other authors, uniaxial media are
considered. If methodology proposed in [23–26] is applied, one has that
the section of wave vector surface for the extraordinary propagation
for ε1 = ε2 > 0, ε3 < 0 and µr = −1 is given by:

−X2
1

|ε3|
+
X2

3

|ε1|
= −1 (15)

where Xi = (ki c)/ω. If φ and ψ are the angles that n and t form with
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Figure 3. Cauchy’s quadric for an indefinite dielectric media, where
eigenvalues of ε̃ are not all the same sign. The quadric consists of a
two-sheeted hyperboloid and an one-sheeted one. Asymptotic cone,
that divides the space into two regions, is also shown.

u1 axis, respectively, it is easily shown that:

tan ψ = −|ε3|
ε1

tan φ (16)

Our proposed alternative method attains the same result (16), by
using Cauchy’s quadric section given by:

ε1 x
2
1 − |ε3|x2

3 = −1

3. RAY TRACING IN RHM AND LHM INDEFINITE
MEDIA WITH DIELECTRIC ANISOTROPY

In [22], it was shown that in uniaxial right-handed media, vector εn is
collinear with the extraordinary ray direction.

In uniaxial left-handed media, εn also lies in the same plane that
ν, εν and n. Since the angle between E and D is the same as the angle
between t and n and Cauchy’s theorem [22] states that εn · ν (= n · εν)
also vanishes, vector εn is collinear with t, but may be antiparallel.

Our method is applied to four media with dielectric anisotropy
and magnetic isotropy [4] with the following material parameters:

This kind of media are named indefinite because the eigenvalues
of their permittivity tensors are not all the same sign.

Figure 3 shows the plot of the two shells (double-sheeted and one-
sheeted hyperboloids) of Cauchy’s quadric for dielectric parameters of
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Medium Class ε1 ε2 ε3 µr

“1” RHM 1 1 −2 1
“2” LHM 2 −1 −1 −1
“3” RHM 2 −1 −1 1
“4” LHM 1 1 −2 −1

media “1” and “4”. The asymptotic cone that divides the space into
two regions is also shown.

Let us consider three cases that deserve attention in the study of
propagation of plane waves in these media.

3.1. Direction of Electric Field Is Known

This means that unit vector ν is given. Then, allowed directions of ν
can only intercept the positive (or negative) shell of Cauchy’s quadric,
depending on the sign of µr. Asymptotic cone can be regarded as the
boundary of allowed directions of ν for RH and LH media. In this case,
the graphical procedure is as follows:

1. Positive shell (if µr > 0), or negative one (if µr < 0) of Cauchy’s
quadric and unit vector ν are drawn.

2. Let P be the intersection point of ν direction with Cauchy’s
quadric. The gradient of Cauchy’s quadric at P gives the direction
of εν . The angle between ν and εν is θ.

3. To obtain phase velocity vp or parameter a, it suffices to substitute
coordinates of P into the equation of vector D cone.

Figure 4 shows the intersection between the one-sheeted surface
of Cauchy’s quadric and the vector D cone for a RH medium (medium
“1”) and for v2

p = c2/2.
Because of the symmetry of uniaxial media, a two dimensional

representation can also be used. Without loss of generality, medium
“4” is considered. Meridian sections of the negative shell of Cauchy’s
quadric and direction of given vector ν are depicted in Fig. 5.

3.2. Direction of Propagation (n) Is Known

Let us outline the procedure in a 2-D plot.

1. Meridian sections of positive and negative shells of Cauchy’s
quadric are drawn.
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2. Let Q be the intersection point of n direction with Cauchy’s
quadric. The gradient of Cauchy’s quadric at Q gives the direction
of εn. Vector t is along εn or −εn, depending on the sign of µr, as
Eq. (2) states.

Figure 4. Intersection between the one-sheeted surface of Cauchy’s
quadric and the vector D cone for a RH medium (medium “1”) and
for v2

p = c2/2.

v

vε

θ

Cauchy's quadric
(two sheets)

Meridian section of

x

x

3

1

Figure 5. Plane graphical determination of angle θ between ν
(parallel to E) and εν (parallel to D), or between direction of
propagation, n and extraordinary ray direction t, for a left-handed
indefinite dielectric medium (uniaxial medium “4”), when ν is given.
Meridian section of Cauchy’s quadric (two-sheeted) is shown.
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Figure 6 shows the construction for medium “4” and a given
direction of n.

Q

n
t

�θ

Meridian section of
Cauchy's quadric

(one sheet)x

x

3

1

Figure 6. Plane graphical determination of angle θ from the
knowledge of the unit wave-vector, n, for a left-handed indefinite
dielectric medium (uniaxial medium “4”). Meridian section of
Cauchy’s quadric (one-sheeted) is shown. The normal line to Cauchy’s
quadric at Q gives the direction of εn. Unit vector t is along the
extraordinary ray.

3.3. Inverse Problem: Phase Velocity Is Known

If vp is known, parameter a is given. There are two procedures to find
the angle between t and n.

First procedure

1. Let us trace the Fresnel’s cone for this value of a (in this case
symmetry of revolution allows to work in the meridian plane and,
in this plane, the cone becomes a straight line).

2. Let A be the intersection of the Fresnel’s cone with the Cauchy’s
quadric. The straight line OA is the direction of vector n.

3. The gradient to the Cauchy’s quadric at point A is collinear with
εn. Sign of a determines which sense of εn corresponds to energy
flow (ray direction).

Figure 7 describes the procedure for medium “1” and for a = 1/3.
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Figure 7. First graphical determination of angle θ from the knowledge
of phase velocity, vp, for a RH uniaxial indefinite medium (medium
“1” with v2

p = c2/3). Meridian sections of Fresnel’s cone and Cauchy’s
quadric (two sheets) are shown.

Second procedure

1. Let us trace the vector D cone for the given value of a (As above,
symmetry of revolution allows to work in the meridian plane and,
in this plane, the cone becomes a straight line).

2. Let B be the intersection of the straight line with the shell of
Cauchy’s quadric corresponding to the sign of a. The straight line
OB is the direction of vector ν.

3. The gradient to the Cauchy’s quadric at point B is collinear with
εν . The angle between ν and εν is θ.

The description of the procedure for the same medium (“1”) and
for the same value of a (a = 1/3) is shown in Fig. 8.

3.4. “Opposite” Media

One can observe that parameters of medium “2” and “3” are the
opposite of those corresponding to “1” and “4”. Thus an interesting
property raises:

Property 4: For media with reversed values of εi and µr, values
of θ (angle between t and n) become a pair of supplementary angles
for the same direction of propagation.

Proof: Because of the symmetry of uniaxial media, direction
of propagation can be measured from the angle β that n forms with
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x

x

1

3

O

B

v

vε

Meridian

Meridian section of
vector D cone

section of
Cauchy's quadric

(one sheet)

θ

Figure 8. Second graphical procedure to find angle θ from the
knowledge of phase velocity, vp for a RH uniaxial indefinite medium
(medium “1” with v2

p = c2/3). Meridian sections of vector D cone and
Cauchy’s quadric (one sheet) are shown.

the optic axis. The optic axis is along the principal direction, which
corresponds to the different eigenvalue.

Let us consider an indefinite material with these parameters:
ε1 = ε2 > 0, ε3 < 0, and µr = −1. Then, the optic axis is along
u3, and n can be written as n = sin β u1 + cos β u3. Cauchy’s quadric
for this medium is the surface:

ε1 x
2
1 − |ε3|x2

3 = −1 (17)

An unit vector normal to the Cauchy’s quadric can be expressed as:

uG =
2x1 ε1 u1 − 2x3 |ε3|u3√

4 ε21 x
2
1 + 4 |ε3|2 x2

3

At the intersection point with the direction of propagation, uG can be
written as:

uG =
2 sin β ε1 u1 − 2 cos β |ε3|u3√

4 ε21 sin2 β + 4 |ε3|2 cos2 β

and the dot product of n and uG is equal to:

n · uG =
2 sin2 β ε1 − 2 cos2 β |ε3|√
4 ε21 sin2 β + 4 |ε3|2 cos2 β
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On the other hand, for the “opposite” medium, new ε′1 = |ε3|,
ε′2 = ε′3 = −ε1. But, in this case, the new optic axis is along u1,
and direction of propagation is expressed as n′ = cos β u1 + sin β u3.
Cauchy’s quadric may be expressed in the form:

ε′1 x
2
1 − |ε′3|x2

3 = 1 (18)

and an unit vector normal to this Cauchy’s quadric at the intersection
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-1

-0.5

0.5

1

-1 -0.5 0.5

-1

-0.5

0.5

1

(a)

(b)

x

x

x

x

1

1

3

3

O

O

n

n

t

t

n

n

ε

ε

θ

.θ'
'

= π-θ�

Figure 9. Ray tracing in “opposite media”. “Opposite” media are
media with opposite values of their dielectric and magnetic parameters
(eigenvalues εi of ε̃ and µr). For a given n = k/k, the angle θ
between n and the extraordinary ray in medium “1”, and the angle
θ′ between n and the extraordinary ray in medium “2” become a pair
of supplementary angles (θ′ = π − θ).
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point becomes:

u′
G =

2 cos β |ε3|u1 − 2 sin β |ε1|u3√
4 ε23 cos2 β + 4 ε21 sin2 β

The dot product of n · uG is then equal to −n′ · u′G, and the
corresponding angles become a pair of supplementary angles. Then,
the respective rays for these media have opposite directions.

Figure 9 shows this property, for media “1” and “2”.

4. CONCLUSIONS

An apparently new geometrical interpretation of basic equations of
wave propagation in a medium with dielectric anisotropy and magnetic
isotropy has been performed in terms of components of an unit vector
(parallel to wave vector k) referred to space R3, eigenvalues εi of ε̃,
relative magnetic permeability µr, and phase velocity vp.

We have shown that the locus described by Fresnel’s equation of
wave normals in the space of the director cosines of a direction is a cone.
We have called it Fresnel cone, which is the locus of the directions of
propagation of plane waves that are compatible with a given velocity
of propagation in any given medium.

It must be pointed out that not all the directions of propagation
along the physical medium are allowed, only those directions that lie
on the Fresnel conical surface are physically possible.

Then it is found that the locus of another main equation describing
the projection of vector D onto E is also a cone (named vector D cone).

Although the proposed methodology is obviously valid for biaxial
media, in this paper we are only concerned with uniaxial media
dealing with conics instead of quadrics in order to better visualize
some properties. Moreover, this methodology is also valid for
negative values of dielectric permittivities and magnetic permeability,
it allows the study of propagation of locally plane electromagnetic
waves in LHMs. Therefore, characteristic phenomena of LHMs, like
imperfect backward-wave propagation have been easily explained. The
correspondence with other analogous works has been also stated.

A detailed discussion on wave propagation along indefinite
dielectric media has been carried out. As an example, four indefinite
dielectric uniaxial media (RHMs and LHMs) with given parameters
have been investigated.

Graphical constructions to obtain the extraordinary ray direction
t from the knowledge of an unit wave-vector n = k/k has been proposed
in three interesting cases: when the direction of E is known, when n is
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known and when phase velocity, vp is given. As a marked advantage,
proposed graphical procedures allow a joint study of materials having
the same eigenvalues of ε̃, but opposite values of µr. In this case, the
associated Cauchy quadric has two shells (one-sheeted hyperboloid and
a two-sheeted one).

Finally, the opposite sense of ray propagation in the so called
“opposite media” (media with opposite values of εi and µr) has been
also shown.
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