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Abstract—In this paper, the propagation model considers the two
half-spaces as a homogeneous isotropic medium and one-dimensionally
anisotropic medium. From the exact formulas for the transient field
with delta-function excitation, it is obtained readily the exact formulas
for the transient field excited by a horizontal electric dipole with
Gaussian excitation when both the dipole point and field point are
located on the boundary between a homogeneous isotropic medium and
one-dimensionally anisotropic medium. It is seen that the final exact
formulas can be expressed in terms of several fundamental functions
and finite integrals, which are evaluated easily.
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1. INTRODUCTION

The frequency-domain and time-domain properties of of lateral
electromagnetic waves generated by horizontal and vertical dipoles
on the planar boundary between two different media have been
investigated widely because its of useful applications in subsurface
and closed-to-the-surface communication, radar, and geophysical
prospecting and diagnostics [1–31]. A historical account and extensive
list of references can be found in the the monograph by King, Owens
and Wu [24].

In the available references [21–29], the approximate and exact
formulas are obtained for the lateral electromagnetic pulses due to
horizontal and vertical dipoles with delta-function excitation and
Gaussian excitation on the boundary between two different media.
In a recent paper [28], the exact formulas have been derived for
lateral electromagnetic pulses of a horizontal electric dipole excited
by delta-function excitation on the boundary between a homogeneous
isotropic medium and one-dimensionally anisotropic medium. By using
Fourier’s techniques, the exact transient field can be obtained readily.

In the present study, we will attempt to obtain the exact
formulas in terms of elementary function for three time-dependent
components E2ρ, E2φ, and B2z from a horizontal electric dipole with
Gaussian excitation located on the planar boundary z = 0 between
a homogeneous isotropic medium and one-dimensionally anisotropic
medium.

Figure 1. Geometry of a x̂-directed horizontal electric dipole with
Gaussian excitation on the boundary between a homogeneous isotropic
medium and one-dimensionally anisotropic medium.
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2. THE EXACT FORMULAS FOR THE TRANSIENT
FIELD FROM A HORIZONTAL DIPOLE WITH
GAUSSIAN EXCITATION ON THE SURFACE OF
ONE-DIMENSIONALLY ANISOTROPIC MEDIUM

The relevant geometry and Cartesian coordinate system are shown in
Fig. 1, where a unit horizontal electric dipole in the x̂ direction is
located at (0, 0, −d). Region 1 (z ≤ 0) is the lower half-space with a
homogeneous isotropic medium characterized by the permeability µ0

and relative permittivity ε; Region 2 (z ≥ 0) is the rest half-space with
one-dimensionally anisotropic medium characterized by a permittivity
tensor of the form

ε̂2 = ε0


 εT 0 0

0 εT 0
0 0 εL


 . (1)

It is assumed that both Regions 1 and 2 are nonmagnetic so that
µ1 = µ2 = µ0. The wave numbers of the two regions are

k1 = ω
√

µ0ε0ε1, kT = ω
√

µ0ε0εT , kL = ω
√

µ0ε0εL. (2)

With the time dependence e−iωt, the exact formulas have been
derived for the transient field of a horizontal electric dipole with delta-
function excitation on the boundary between a homogeneous isotropic
medium and one-dimensionally anisotropic medium [28]. We write
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By using Fourier’s techniques, The exact transient field with Gaussian
excitation can be written in the following forms.

E2ρ(ρ, 0; t) =
1

t1
√

π

∫ ∞

−∞
[E2ρ(ρ, 0; t − ζ)]δ · e−ζ2/t21dζ (6)

E2φ(ρ, π/2; t) =
1
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√

π

∫ ∞

−∞
[E2φ(ρ, π/2; t − ζ)]δ · e

−ζ2/t21dζ (7)
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B2z(ρ, π/2; t) =
1

t1
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π

∫ ∞
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[B2z(ρ, π/2; t − ζ)]δ · e−ζ2/t21dζ (8)

where t1 is the half-width of the Gaussian pulse defined by

f(t) =
e−t2/t21

t1
√

π
. (9)

Substituting (3)–(5) into (6)–(8), the formulas of the electromagnetic
field components can be expressed in terms of several integrals.
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The several integrals are as follows:
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It is seen that the integrals I1, I2, I3, I5, I6, I7 have been evaluated
in [24]. The results are
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and the error function is defined by

erf(z) =
2√
π
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0
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In the next step, the main tasks are to evaluate the integrals I4, I8,
and I9. For mathematical conveniences, it is necessary to introduce
the additional notations:

ζ ′ =
ζ

t1
; a2 =

ε1εL(ε1 − εT )
ε21 − εT εL

. (30)
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Substitutions (30) into (16), (20) and (21) yield to
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With the change of the variable x = (t′ − ζ ′)/ρ1, dx = −dζ ′/ρ1, and
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The above two integrals can be easily computed numerically. The
integral I9 can be evaluated analytically.
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(36)

It is noted that the final exact formulas for the transient field of a
horizontal dipole excited by Gaussian pulse are expressed in terms of
several fundamental functions and finite integrals.

3. COMPUTATIONS AND CONCLUSIONS

From the above derivations and analysis, it is seen that each one of
the three components E2ρ, E2φ, and E2z consists of two lateral pulses
which decrease with the amplitude factor ρ−2 and travels in Regions 1
and 2 with different velocities.

With ε1 = 80, εT = 4, and εL = 2, a graph of E2ρ of a horizontal
electric dipole with Gaussian excitation is shown in Fig. 2. The
properties of E2φ and B2z are similar to that of E2ρ. In contrast
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to the approximated results addressed in [29], with ε1 = 80, εT = 4,
and εL = 2, graphs for the approximated case in [29] and those for the
exact case in this paper are computed and plotted in Fig. 5. It is noted
that the horizontal dipole is excited by a Gaussian pulse with t1 = 1
nsec, ρ1 = ρ/ct1 in Figs. 2–5.

From (10), it is seen that the first pulse for E2ρ has a Gaussian
shape with an amplitude that is larger than that of the second pulse.
It should be pointed out that the term of the integral I4 in (10) has a
large negative value near the the first pulse, this yields that the second
pulse has the Gaussian shape with the amplitude that is larger than
that of the first one. The other two components E2φ and B2z have
similar characteristics with those of the component E2ρ.

Similar to the the cases addressed in [26–28], the components E2z,
B2ρ, and B2φ of a horizontal dipole with Gaussian excitation cannot
be expressed in terms of elementary functions and finite integrals.
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