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Abstract—This paper presents a new approach for solving accurate
approximate analytical solution for strong nonlinear oscillators. The
new algorithm offers a promising approach by Hamiltonian for the
nonlinear oscillator. We find that these attained solutions are not only
with high degree of accuracy, but also uniformly valid in the whole
solution domain.

1. INTRODUCTION

This paper considers the following general nonlinear oscillators [1]:

u′′ + ω2
0u + εf(u) = 0 (1)

With initial conditions:

u(0) = A, u′(0) = 0 (2)

where f is a nonlinear function of u′′, u′, u, in this preliminary report,
we suppose the simplest case, i.e., f depends upon only the function
of u.

If there is no small parameter in the equation, traditional
perturbation methods cannot be applied directly. Recently,
considerable attention has been paid to the analytical solutions for
nonlinear equations without possible small parameters. Traditional
perturbation methods have many shortcomings, and they are not valid
for strongly nonlinear equations. To overcome the shortcomings, many
new techniques have appeared in open literature, for example, delta-
perturbation method [2, 3], variational iteration method (VIM) [4–9],
homotopy perturbation method [10–17, 23] and bookkeeping parameter



144 Babazadeh, Ganji, and Akbarzade

perturbation method [18], just to name a few, a detailed review on
some recently developed nonlinear analytical methods can be found in
[19–20, 24–34]. And especially in He’s methods [21, 22].

In energy balance method, a variational principle for the nonlinear
oscillation is established, then the corresponding Hamiltonian is
constructed, from which the angular frequency can be readily obtained
by collocation method. The results are valid not only for weakly
nonlinear systems, but also for strongly nonlinear ones. Some examples
reveal the lowest order approximations which benefit high accuracy [1].

2. BASIC IDEA

First we consider the Duffing equation [1, 21]:

u′′ + u + εu3 = 0, u(0) = A, u′(0) = 0 (3)

Its variational principle can be easily obtained:

J(u) =
∫ t

0

{
−1

2
u′2 +

1
2
u2 +

1
4
εu4

}
dt (4)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
2
u2 +

1
4
εu4 =

1
2
A2 +

1
4
εA4 (5)

Or:
H =

1
2
u′2 +

1
2
u2 +

1
4
εu4 − 1

2
A2 − 1

4
εA4 = 0 (6)

In Eq. (5) and Eq. (6) the kinetic energy (E) and potential energy (T )
can be respectively expressed as: u′2/2, u2/2 + εu4/4 throughout the
oscillation, it holds H = E + T constant.

We use the following trial function to determine the angular
frequency ω.

u = A cos ωt, (7)

Substituting Eq. (7) into Eq. (6), we obtain the following residual
equation:

R(t) = A2ω2 sin2 ωt + cos2 ωt +
1
2
εA2 cos4 ωt − 1 − 1

2
εA2, (8)

If the exact solution had been chosen as the trial function, then it would
be possible to make R zero for all values of t by appropriate choice of



Progress In Electromagnetics Research M, Vol. 4, 2008 145

ω. Since Eq. (7) is only an approximation to the exact solution, R
cannot be made zero everywhere. Collocation at ωt = π/4 gives:

ω =
√

1 +
3
4
εA2 (9)

We can apply various other techniques, for examples, least Square
Method, Galerkin method, to identify the constant ω.

Its period can be written in the form:

T =
2π√

1 + 3
4εA2

(10)

The approximate period obtained by the traditional perturbation
method reads (Nayfeh, 1985).

Tpert = 2π

(
1 − 3

8
εA2

)
(11)

So our theory, in case ε � 1, gives exactly the same result with those
obtained by perturbation method.

What is rather surprising about the remarkable range of validity
of Eq. (10) is that the actual asymptotic period as ε → ∞ is also of
high accuracy.

lim
ε→∞

Tex

T
=

2
√

3/4
π

∫ π/2

0

dx√
1 − 0.5 sin2 x

= 0.9294 (12)

The lowest order approximation given by Eq. (10) is actually within
7.6% of the exact frequency regardless of the magnitude of εA2.

If there is no small parameter in the equation, the traditional
perturbation methods cannot be applied directly [1].

3. APPLICATIONS

In order to assess the advantages and the accuracy of the energy
balance method, we should consider the following three examples:

3.1. Example 1

We consider the following nonlinear oscillator [23]:

u′′ − c2u + εu3 = 0 (13)

where the coefficient of linear term is negative.
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With initial conditions of:

u(0) = A, u′(0) = 0 (14)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 − 1

2
c2u2 +

1
4
εu4 = −1

2
c2A2 +

1
4
εA4 (15)

Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t)=
1
2
A2ω2 sin2ωt− 1

2
c2A2 cos2ωt+

1
4
εA4 cos4ωt+

1
2
c2A2− 1

4
εA4 =0

(16)
If we collocate at ωt = π/4, we obtain:

ω =
√

3
4
εA2 − c2 (17)

Its period can be written in the form:

T =
2π√

3
4εA2 − c2

(18)

So there exists a periodic solution when:

εA2 >
4
3
c2 (19)

In order to compare with Linstedt — Poincare method solution, we
write J. H. He’s result [23]:

ω =
√

3
4
εA2 − c2 (20)

3.2. Example 2

We consider the simple mathematical pendulum which can be written
in the form [4]:

u′′ + Ω2 sinu = 0 (21)

When u designates the deviation angle from the vertical equilibrium
position, Ω2 = g

l where g is the gravitational acceleration, l the length
of the pendulum.

With initial conditions of:

u(0) = A, u′(0) = 0 (22)
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Figure 1. The simple pendulum.

The approximation sin(u) ≈ u − 1
6u3 + 1

120u5 is used:
Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2+Ω2 1

2
u2−Ω2 1

24
u4+Ω2 1

720
u6 = Ω2 1

2
A2−Ω2 1

24
A4+Ω2 1

720
A6

(23)
Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t) =
1
2
A2ω2 sin2 ωt + Ω2 1

2
A2 cos2 ωt − Ω2 1

24
A4 cos4 ωt

+Ω2 1
720

A6 cos6 ωt − Ω2 1
2
A2 + Ω2 1

24
A4 − Ω2 1

720
A6 = 0 (24)

If we collocate at ωt = π/4, we obtain:

ω = Ω
√

1 − 1
8
A2 +

7
2880

A4 (25)

In order to compare with homotopy perturbation method solution, we
write J. H. He’s result [4]:

ω = Ω
√

1 − 1
8
A2 +

1
192

A4 (26)

We can obtain the following approximate solution:

u = A cos Ω
√

1 − 1
8
A2 +

7
2880

A4t (27)
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Table 1. Comparison of energy balance frequency with homotopy
perturbation frequency (Ω = 1).

A (rad) Energy balance frequency
homotopy perturbation

frequency [24]

0.01 1.0000 1.0000

0.1 0.9994 0.9994

0.2 0.9975 0.9975

0.3 0.9944 0.9944

0.4 0.9900 0.9900

0.5 0.9843 0.9844

0.6 0.9774 0.9776

0.7 0.9692 0.9695

0.8 0.9597 0.9603

0.9 0.9489 0.9498

1.0 0.9367 0.9382

1.5 0.8550 0.8632

3.3. Example 3

We consider the following nonlinear oscillator [24]:

u′′ + u + εu5 = 0, (28)

With initial conditions:

u(0) = A, u′(0) = 0 (29)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
2
u2 + ε

1
6
u6 =

1
2
A2 + ε

1
6
A6 (30)

Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t) =
1
2
A2ω2 sin2 ωt +

1
2
A2 cos2 ωt + ε

1
6
A6 cos6 ωt− 1

2
A2 − ε

1
6
A6 = 0

(31)
If we collocate at ωt = π/4, we obtain:

ω =
√

7
12

εA4 + 1 (32)
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Figure 2. Comparison of the Energy balance solution with the
Homotopy perturbation solution: Dashed line: Energy balance and
solid line: The Homotopy perturbation solution (A = 1.5).

Figure 3. Comparison of the Energy balance solution with the
Homotopy perturbation solution: Dashed line: Energy balance and
solid line: The Homotopy perturbation solution (A = 1.0).
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Figure 4. Comparison of the Energy balance solution with the
Homotopy perturbation solution: Dashed line: Energy balance and
solid line: The Homotopy perturbation solution (A = 1.0).

Figure 5. Comparison of the Energy balance solution with the
Homotopy perturbation solution: Dashed line: Energy balance and
solid line: The Homotopy perturbation solution (A = 0.5).
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In order to compare with homotopy perturbation method solution, we
write J. H. He’s result [24]:

ω =
√

5
8
εA4 + 1 (33)

We can obtain the following approximate solution:

u = A cos
√

7
12

εA4 + 1t (34)

Table 2. Comparison of energy balance frequency with homotopy
perturbation frequency (ε = 1).

A Energy balance frequency
homotopy perturbation

frequency [24]

0.01 1.00000 1.00000

0.1 1.00003 1.00003

0.2 1.00047 1.00050

0.3 1.00236 1.00253

0.4 1.00744 1.00797

0.5 1.01807 1.01934

1 1.25831 1.27475

5 19.1202 19.7895

10 76.3828 79.0633

4. CONCLUSIONS

He’s energy balance method, was applied to nonlinear oscillators
which are useful to all oscillators and vibrations in so many branches
of sciences such as: fluid mechanics, electromagnetic and waves,
telecommunication, civil and its structures and all so-called majors
applications and etc. The energy balance method is a well-established
method for the analysis of nonlinear systems, can be easily extended to
any nonlinear equation. We demonstrated the accuracy and efficiency
of the method presenting some examples. Energy balance provides
an easy and direct procedure for determining approximations to the
periodic solutions. It suggests that the energy balance method is
accurate, reliable and easy to use.
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